
Scaffolding to Support Liberal Arts Students Learning to Program
on Photographs

Mark Guzdial
mjguz@umich.edu

University of Michigan
Program in Computing for the Arts and Sciences

Ann Arbor, MI, USA

ABSTRACT
Digital photographs are part of liberal arts students’ classes (e.g.,
art, history, and production classes in film and television) and their
daily smartphone-based life, in apps like Instagram and Snapchat.
Building image filters can be a relevant and engaging context into
using computing for humanities students. We have designed a new
course for introducing computing in terms of creative expression.
We use a scaffolded sequence of programming languages and activities
to explore computing on photographs: (a) a teaspoon language
for generating image filters, (b) a set of custom Snap blocks for
even more sophisticated image filters, and (c) an ebook activity for
mapping from Snap to Python. Each stage takes less than 10minutes
to introduce, with a wide variety of possible student activities (for
in-class active learning or for later homework). While the tools
build on each other, the earliest stage (the teaspoon language) could
be used within a single class session in other liberal arts courses.

CCS CONCEPTS
• Social and professional topics→ Computing education.

KEYWORDS
liberal arts and sciences, computational literacy, CS for All, com-
putational thinking, digital humanities, critical computing, digital
photography, image filters

ACM Reference Format:
Mark Guzdial. 2023. Scaffolding to Support Liberal Arts Students Learning
to Program on Photographs. In Proceedings of the 28th ACM Conference
on Innovation and Technology in Computer Science Education Vol 2 (ITiCSE
2023), July 10–12, 2023, Turku, Finland. ACM, New York, NY, USA, 2 pages.
https://doi.org/XXX

Students often manipulate digital photographs with their smart
phones, which can make it a useful and relevant programming
context for non-CS student. In a new course being developed at the
University of Michigan, liberal arts students learn programming in
a unit focused on digital image manipulation. Our goal is to engage
and interest students in exploring computing further, to develop
conversational programming skills [1], and to avoid the decrease in

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ITiCSE 2023, July 10–12, 2023, Turku, Finland
© 2023 Copyright held by the owner/author(s).
ACM ISBN YYY.
https://doi.org/XXX

self-efficacy that is common in introductory programming classes
[4].

In the image unit, we use a scaffolded sequence of programming
languages and activities to develop knowledge and skills around
computing on photographs. Each stage takes less than 10 minutes
to introduce in class (and all three can be demonstrated in less than
15 minutes in a conference), yet each stage is flexible enough to
support a variety of student activities. While the tools build on
each other, the earliest stage (the teaspoon language) could be used
within a single class session in other liberal arts courses, such as
film or television production class when explaining techniques like
chromakey (“green screen” effects).

1 TEASPOON LANGUAGE FOR PIXEL
MANIPULATION

Students start programming with language using a teaspoon lan-
guage [5, 6] for pixel manipulation (Figure 1). A teaspoon language
is a very small programming language for a specific task. The Pixel
Equations teaspoon language can only be used to create image
filters by specififying logical expressions for selecting pixels and
arithmetic expressions for setting colors.

After choosing a digital image to manipulate, students specify
their image filter by (a) writing a logical expression describing
the pixels that they want to manipulate and (b) writing equations
for how to compute the red, green, and blue channels for those
pixels. In Figure 1, all those pixels on the right half of the picture
(𝑥 > 0, because (0, 0) is the center of the picture) will have their red
channels set to 200 (a high value, because each channel is only a
single byte, with values from 0 to 255). The equation for specifying
the channel change can also reference the previous values of the
channels, using the variables red, green, blue, rojo, verde, or azul.

A variety of image filters can be created with this simple model.
For example, we can posterize to reduce the range of red values in a
picture to only two (Figure 2).We can also negate an image, to create
the negative of each color (Figure 3). An important computer science
idea to explore is to change the input picture without changing
the filter specification, in order to see how an algorithm works the
same on different inputs.

Student activities: The earliest activities are to change the con-
stants in the given examples. For example, students change the
thresholds for posterizing filters, or change the target values. They
can posterize on green or blue instead of red, or posterize two chan-
nels. They get a different effect if they use a constant other than
255 in the negation filter. We might challenge students to recreate a
given filtered image, or to figure out which specification generated
the given image.

https://orcid.org/0000-0003-4427-9763
https://doi.org/XXX
https://doi.org/XXX


ITiCSE 2023, July 10–12, 2023, Turku, Finland Guzdial

Figure 1: Specifying an image filter in the Pixel Equations
teaspoon language

Figure 2: Specifying a posterizing image filter in the Pixel
Equations teaspoon language

Figure 3: Specifying a negation image filter in the Pixel Equa-
tions teaspoon language

2 SNAP CUSTOM BLOCKS FOR PIXEL
MANIPULATION

Students are given Snap [3] blocks that can do equivalent manipula-
tion of pixels. Figure 4 negates an image, as in Figure 3. We provide
students with a special loop construct “for each pixel in pixels of
image.” We provide blocks for setting each channel or reading each
channel. Using an if block, we can process only certain pixels.

We provide a custom Snap block for accessing another pixel
in another (or the same picture) at a given (𝑥,𝑦) position. With
this block, we can inset one image inside another (Figure 5), chro-
makey (where a background color is replaced with another image,
commonly used in movie production), or mirror an image.

Student activities: We ask students to create two image filters,
then use each image filter to create modified forms of two of their
own digital pictures. Students are then asked to export the images
from Snap and create a collage of these images using a slideshow

Figure 4: Negating an image

Figure 5: Inserting a portion of one image inside of another

tool (like Powerpoint, Keynote, or Google Slides). Students are
encouraged to be creative, and perhaps create a story with their
filters and images.

3 SUPPORTING TRANSFER TO PYTHON
At the end of the pixel unit, students engage with a purpose-built
Runestone ebook [2]. On each page of the ebook, students see a
Snap program that they used in class and a Python program that
implements the same filter. Students then answer multiple-choice
questions about the Python program. The goal is to encourage
transfer of knowledge from their Snap programming into more
traditional textual programming [7]. The ebook activities are in-
formed by purpose-first programming [1] to develop conversational
programming skills and encourage a sense of self-efficacy and au-
thenticity.

REFERENCES
[1] Kathryn Cunningham, Barbara J. Ericson, Rahul Agrawal Bejarano, and Mark

Guzdial. 2021. Avoiding the Turing Tarpit: Learning Conversational Programming
by Starting from Code’s Purpose. Association for Computing Machinery, New York,
NY, USA. https://doi.org/10.1145/3411764.3445571

[2] Barbara J. Ericson, Kantwon Rogers, Miranda Parker, Briana Morrison, and Mark
Guzdial. 2016. Identifying Design Principles for CS Teacher Ebooks Through
Design-Based Research. In Proceedings of the 2016 ACM Conference on International
Computing Education Research (Melbourne, VIC, Australia) (ICER ’16). ACM, New
York, NY, USA, 191–200. https://doi.org/10.1145/2960310.2960335

[3] Dan Garcia, Michael Ball, and Yuan Garcia. 2022. Snap! 7 - Microworlds, Scenes,
and Extensions!. In Proceedings of the 53rd ACM Technical Symposium on Computer
Science Education V. 2 (Providence, RI, USA) (SIGCSE 2022). Association for Comput-
ingMachinery, New York, NY, USA, 1179. https://doi.org/10.1145/3478432.3499266

[4] Jamie Gorson and Eleanor O’Rourke. 2020. Why do CS1 Students Think They’re
Bad at Programming? Investigating Self-efficacy and Self-assessments at Three
Universities. In Proceedings of the 2020 ACM Conference on International Computing
Education Research. 170–181.

[5] Mark Guzdial. 2022. Creating New Programming Experiences Inspired by Boxer
to Develop Computationally Literate Society. In Companion Proceedings of the
6th International Conference on the Art, Science, and Engineering of Programming
(Porto, Portugal) (Programming ’22). Association for Computing Machinery, New
York, NY, USA, 67–69. https://doi.org/10.1145/3532512.3539663

[6] Mark Guzdial. 2022. Teaspoon Languages for Integrating Programming into Social
Studies, Language Arts, and Mathematics Secondary Courses. In Proceedings of the
53rd ACM Technical Symposium on Computer Science Education V. 2 (Providence,
RI, USA) (SIGCSE 2022). Association for Computing Machinery, New York, NY,
USA, 1027. https://doi.org/10.1145/3478432.3499240

[7] Ethel Tshukudu and Quintin Cutts. 2020. Semantic Transfer in Programming
Languages: Exploratory Study of Relative Novices. In Proceedings of the 2020 ACM
Conference on Innovation and Technology in Computer Science Education. 307–313.

https://doi.org/10.1145/3411764.3445571
https://doi.org/10.1145/2960310.2960335
https://doi.org/10.1145/3478432.3499266
https://doi.org/10.1145/3532512.3539663
https://doi.org/10.1145/3478432.3499240

	Abstract
	1 Teaspoon language for pixel manipulation
	2 Snap Custom Blocks for Pixel Manipulation
	3 Supporting transfer to Python
	References

