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ABSTRACT
Digital photographs are part of liberal arts students’ classes (e.g.,
art, history, and production classes in film and television) and their
daily smartphone-based life, in apps like Instagram and Snapchat.
Building image filters can be a relevant and engaging context into
using computing for humanities students. We have designed a new
course for introducing computing in terms of creative expression.
We use a scaffolded sequence of programming languages and activities
to explore computing on photographs: (a) a teaspoon language
for generating image filters, (b) a set of custom Snap blocks for
even more sophisticated image filters, and (c) an ebook activity for
mapping from Snap to Python. Each stage takes less than 10minutes
to introduce, with a wide variety of possible student activities (for
in-class active learning or for later homework). While the tools
build on each other, the earliest stage (the teaspoon language) could
be used within a single class session in other liberal arts courses.
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Students often manipulate digital photographs with their smart
phones, which can make it a useful and relevant programming
context for non-CS student. In a new course being developed at the
University of Michigan, liberal arts students learn programming in
a unit focused on digital image manipulation. Our goal is to engage
and interest students in exploring computing further, to develop
conversational programming skills [1], and to avoid the decrease in
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self-efficacy that is common in introductory programming classes
[4].

In the image unit, we use a scaffolded sequence of programming
languages and activities to develop knowledge and skills around
computing on photographs. Each stage takes less than 10 minutes
to introduce in class (and all three can be demonstrated in less than
15 minutes in a conference), yet each stage is flexible enough to
support a variety of student activities. While the tools build on
each other, the earliest stage (the teaspoon language) could be used
within a single class session in other liberal arts courses, such as
film or television production class when explaining techniques like
chromakey (“green screen” effects).

1 TEASPOON LANGUAGE FOR PIXEL
MANIPULATION

Students start programming with language using a teaspoon lan-
guage [5, 6] for pixel manipulation (Figure 1). A teaspoon language
is a very small programming language for a specific task. The Pixel
Equations teaspoon language can only be used to create image
filters by specififying logical expressions for selecting pixels and
arithmetic expressions for setting colors.

After choosing a digital image to manipulate, students specify
their image filter by (a) writing a logical expression describing
the pixels that they want to manipulate and (b) writing equations
for how to compute the red, green, and blue channels for those
pixels. In Figure 1, all those pixels on the right half of the picture
(𝑥 > 0, because (0, 0) is the center of the picture) will have their red
channels set to 200 (a high value, because each channel is only a
single byte, with values from 0 to 255). The equation for specifying
the channel change can also reference the previous values of the
channels, using the variables red, green, blue, rojo, verde, or azul.

A variety of image filters can be created with this simple model.
For example, we can posterize to reduce the range of red values in a
picture to only two (Figure 2).We can also negate an image, to create
the negative of each color (Figure 3). An important computer science
idea to explore is to change the input picture without changing
the filter specification, in order to see how an algorithm works the
same on different inputs.

Student activities: The earliest activities are to change the con-
stants in the given examples. For example, students change the
thresholds for posterizing filters, or change the target values. They
can posterize on green or blue instead of red, or posterize two chan-
nels. They get a different effect if they use a constant other than
255 in the negation filter. We might challenge students to recreate a
given filtered image, or to figure out which specification generated
the given image.
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Figure 1: Specifying an image filter in the Pixel Equations
teaspoon language

Figure 2: Specifying a posterizing image filter in the Pixel
Equations teaspoon language

Figure 3: Specifying a negation image filter in the Pixel Equa-
tions teaspoon language

2 SNAP CUSTOM BLOCKS FOR PIXEL
MANIPULATION

Students are given Snap [3] blocks that can do equivalent manipula-
tion of pixels. Figure 4 negates an image, as in Figure 3. We provide
students with a special loop construct “for each pixel in pixels of
image.” We provide blocks for setting each channel or reading each
channel. Using an if block, we can process only certain pixels.

We provide a custom Snap block for accessing another pixel
in another (or the same picture) at a given (𝑥,𝑦) position. With
this block, we can inset one image inside another (Figure 5), chro-
makey (where a background color is replaced with another image,
commonly used in movie production), or mirror an image.

Student activities: We ask students to create two image filters,
then use each image filter to create modified forms of two of their
own digital pictures. Students are then asked to export the images
from Snap and create a collage of these images using a slideshow

Figure 4: Negating an image

Figure 5: Inserting a portion of one image inside of another

tool (like Powerpoint, Keynote, or Google Slides). Students are
encouraged to be creative, and perhaps create a story with their
filters and images.

3 SUPPORTING TRANSFER TO PYTHON
At the end of the pixel unit, students engage with a purpose-built
Runestone ebook [2]. On each page of the ebook, students see a
Snap program that they used in class and a Python program that
implements the same filter. Students then answer multiple-choice
questions about the Python program. The goal is to encourage
transfer of knowledge from their Snap programming into more
traditional textual programming [7]. The ebook activities are in-
formed by purpose-first programming [1] to develop conversational
programming skills and encourage a sense of self-efficacy and au-
thenticity.
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