
Scaffolding to Support Humanities Students Programming in a
Human Language Context

Mark Guzdial
mjguz@umich.edu

University of Michigan
Program in Computing for the Arts and Sciences

Ann Arbor, MI, USA

ABSTRACT
Language is a key topic of interest for students in the humanities
– language is the way in which humans express themselves, com-
municate, and make art. Computing on language (e.g., recognizing
language, generating language, building bots) can be a pathway
into using computing for humanities contexts. At the University of
Michigan, we are developing a new program to support students
in liberal arts and sciences to learn about computing, explicitly
including programming. We have designed two courses for intro-
ducing computing (1) in terms of creative expression and (2) around
the implications of computing on justice. In both classes, we use
a scaffolded sequence of programming languages and activities to
explore computing on language: (a) a teaspoon language for sen-
tence generation and recognition, (b) a set of custom Snap blocks
for sentence generation and recognition, (c) a set of custom Snap
blocks for building Chatbots, and (d) an ebook activity for mapping
from Snap to Python. Each language takes less than 10 minutes
to introduce, with a wide variety of possible student activities (for
in-class active learning or for later homework). While the tools
build on each other, the earliest stage (the teaspoon language) could
be used within a single class session in linguistics, communications,
or other liberal arts courses.

CCS CONCEPTS
• Social and professional topics→ Computing education.

KEYWORDS
liberal arts and sciences, computational literacy, CS for All, compu-
tational thinking, digital humanities, critical computing
ACM Reference Format:
Mark Guzdial. 2023. Scaffolding to Support Humanities Students Program-
ming in a Human Language Context. In Proceedings of the 28th ACM Con-
ference on Innovation and Technology in Computer Science Education Vol 2
(ITiCSE 2023), July 10–12, 2023, Turku, Finland. ACM, New York, NY, USA,
2 pages. https://doi.org/XXX

Much of the humanities is centered on language which can make
it a useful and relevant programming context for humanities stu-
dents [5]. Programming on language might include recognizing

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ITiCSE 2023, July 10–12, 2023, Turku, Finland
© 2023 Copyright held by the owner/author(s).
ACM ISBN YYY.
https://doi.org/XXX

parts of speech in a sentence, generating new sentences from a
language model, and building bots for chatting or Twitter. In two
new courses being developed at the University of Michigan, liberal
arts students learn programming contextualized around language.
Our goal is to engage and interest students in exploring computing
further, to develop conversational programming skills [1], and to
avoid decreases in self-efficacy that is so common in introductory
programming classes [4].

In both classes, we use a scaffolded sequence of programming
languages and activities to explore computing on language. Each
stage takes less than 10 minutes to introduce in class (and all four
stages can be demonstrated in less than 15 minutes at a conference!),
yet is flexible enough to support a variety of student activities.
While the tools build on each other, the earliest stage (the teaspoon
language) could be used within a single class session in linguistics,
communications, or other liberal arts courses.

1 TEASPOON LANGUAGE FOR SENTENCE
RECOGNITION AND GENERATION

Students start programming with language using a teaspoon lan-
guage [6, 7] for sentence generation and recognition (Figure 1). A
teaspoon language is a very small programming language for a
specific task. The sentence model is specified the same way for
recognition or generation, using just the five words: noun, verb,
adjective, adverb, and article.

The sentence recognizer progresses through each word in the
model looking for a match in the input sentence, based on the
provided lexicon. If a match fails, the rest of the model is ignored.
While simple, there are still opportunities to have expectations fail
and to learn debugging. For example, the model “noun verb noun”
will match to“The lazy dog runs to the student,” it will fail to match
on the second noun in “The lazy dog runs to the house,” until the
word “house” is added to the default lexicon.

The sentence generator uses the same model to randomly select
words from the lexicon to generate sentences. Each execution of
the model generates 10 sentences, not all of which will make sense.
In class, we can talk about what features lead to a higher rate of
reasonable sentences: shorter or longer language models, more
words in the lexicon, or more carefully chosen words in the lexicon.

Student activities: Given equivalent sentences in Standard Eng-
lish, Spanglish, African-American Vernacular English, and Hawai-
ian Creole, students are challenged to create language models and
lexicons that will recognize each, all, or even more than one of
the sentences. Students discuss how AI assistants like Alexa or Siri
might handle the problem of recognizing different forms of English.

https://orcid.org/0000-0003-4427-9763
https://doi.org/XXX
https://doi.org/XXX


ITiCSE 2023, July 10–12, 2023, Turku, Finland Guzdial

Figure 1: Sentence Recognition and Generation teaspoon
language

Figure 2: Creating a politically-biased bot

2 SNAP CUSTOM BLOCKS FOR SENTENCE
RECOGNITION AND GENERATION

Students are given Snap [3] blocks that can do equivalent sentence
recognition and generation, such as identifying parts of speech
from a lexicon given an input sentence, or generating sentences
from the parts of speech. These are sufficient to create an algorithm
for how a bot might be created to saying something negative about
the “yellow party,” wait for a response that mentions a noun related
to the opposing “green party,” then retort with a positive statement
about the same “green” noun (Figure 2).

Student activities: Students can create programs to generate ran-
dom Dr. Seuss-like text such as “Cat on hat. Cat on mat.“ By creating
new lexicon categories (e.g., “verbs that end in -er” or “nouns that
end in -at”), students can generate random rhyming text. A com-
mon first programming assignment is to generate random haiku
using lexicon categories built around the number of syllables in the
noun, verb, or other language part.

Figure 3: Two rules in a simple Eliza-like chatbot

3 SNAP CUSTOM BLOCKS FOR CHATBOTS
Students are given examples of chatbots built in Snap with a com-
mon structure: Prompt the user for a response, then test the re-
sponse against a set of rules that change the prompt. To simplify
language parsing, students are given custom blocks that match all
words in the input or match any words in the input (Figure 3).

Student challenges: Students develop chatbots to represent fic-
tional or historical characters, or develop chatbots with different
political or philosophical perspectives.

4 SUPPORTING TRANSFER TO PYTHON
At the end of the text unit, students engage with a purpose-built
Runestone ebook [2]. On each page of the ebook, students see a Snap
program that they used in class and a Python program that does the
same thing. Students then answer multiple-choice questions about
the Python program. The goal is to encourage transfer of knowl-
edge from their Snap programming into more traditional textual
programming [8]. The ebook activities are informed by purpose-first
programming [1] to develop conversational programming skills and
encourage a sense of self-efficacy and authenticity.

REFERENCES
[1] Kathryn Cunningham, Barbara J. Ericson, Rahul Agrawal Bejarano, and Mark

Guzdial. 2021. Avoiding the Turing Tarpit: Learning Conversational Programming
by Starting from Code’s Purpose. Association for Computing Machinery, New York,
NY, USA. https://doi.org/10.1145/3411764.3445571

[2] Barbara J. Ericson, Kantwon Rogers, Miranda Parker, Briana Morrison, and Mark
Guzdial. 2016. Identifying Design Principles for CS Teacher Ebooks Through
Design-Based Research. In Proceedings of the 2016 ACM Conference on International
Computing Education Research (Melbourne, VIC, Australia) (ICER ’16). ACM, New
York, NY, USA, 191–200. https://doi.org/10.1145/2960310.2960335

[3] Dan Garcia, Michael Ball, and Yuan Garcia. 2022. Snap! 7 - Microworlds, Scenes,
and Extensions!. In Proceedings of the 53rd ACM Technical Symposium on Computer
Science Education V. 2 (Providence, RI, USA) (SIGCSE 2022). Association for Comput-
ingMachinery, New York, NY, USA, 1179. https://doi.org/10.1145/3478432.3499266

[4] Jamie Gorson and Eleanor O’Rourke. 2020. Why do CS1 Students Think They’re
Bad at Programming? Investigating Self-efficacy and Self-assessments at Three
Universities. In Proceedings of the 2020 ACM Conference on International Computing
Education Research. 170–181.

[5] Mark Guzdial. 2010. Does contextualized computing education help? ACM Inroads
1, 4 (2010), 4–6.

[6] Mark Guzdial. 2022. Creating New Programming Experiences Inspired by Boxer
to Develop Computationally Literate Society. In Companion Proceedings of the
6th International Conference on the Art, Science, and Engineering of Programming
(Porto, Portugal) (Programming ’22). Association for Computing Machinery, New
York, NY, USA, 67–69. https://doi.org/10.1145/3532512.3539663

[7] Mark Guzdial. 2022. Teaspoon Languages for Integrating Programming into Social
Studies, Language Arts, and Mathematics Secondary Courses. In Proceedings of the
53rd ACM Technical Symposium on Computer Science Education V. 2 (Providence,
RI, USA) (SIGCSE 2022). Association for Computing Machinery, New York, NY,
USA, 1027. https://doi.org/10.1145/3478432.3499240

[8] Ethel Tshukudu and Quintin Cutts. 2020. Semantic Transfer in Programming
Languages: Exploratory Study of Relative Novices. In Proceedings of the 2020 ACM
Conference on Innovation and Technology in Computer Science Education. 307–313.

https://doi.org/10.1145/3411764.3445571
https://doi.org/10.1145/2960310.2960335
https://doi.org/10.1145/3478432.3499266
https://doi.org/10.1145/3532512.3539663
https://doi.org/10.1145/3478432.3499240

	Abstract
	1 Teaspoon language for sentence recognition and generation
	2 Snap Custom Blocks for Sentence Recognition and Generation
	3 Snap Custom Blocks for Chatbots
	4 Supporting transfer to Python
	References

