
COEN 11 LAB ASSIGNMENT #8

Revised 1/15/15 1

Goal: Manipulation of WAV audio files:

(1) Implement a function to adjust the tone (bass vs. treble) of an audio recording.

Objective: Familiarity with the WAV audio library (libwav.a).

Background: Waveform Audio File Format (more commonly

known as WAV due to its filename extension) is a

Microsoft file format standard for storing an audio

recording. WAV files store a digital representa-

tion of sound by measuring the signal amplitude at

regular intervals and recording the sampled value

as an integer. Two basic properties determine

quality: the sampling rate, which is the number of

times per second that samples are taken; and the

bit depth, which determines the number of possi-

ble digital values that can be used to represent

each sample. This assignment uses single-channel (monophonic) WAV files that store sampled

audio as a one-dimensional array of 16-bit signed integers.

Download: Download and unpack file lab8.zip from Camino.

WAV Library: Audio recordings are stored in memory using the following data structure:

typedef int16_t SAMPLE ;

typedef struct

 {

 unsigned sample_rate ;

 unsigned num_samples ;

 SAMPLE samples[] ;

 } AUDIO ;

 The library file (libwav.a) provides several functions needed for the manipulation of WAV files:

AUDIO *NewAudio(unsigned samples, unsigned rate) ;

Returns a pointer to memory allocated to hold an audio recording in which the number of sam-

ples is specified by parameter samples and sampled a number of times per second specified by

parameter rate. The actual sample values, however, are not initialized and must be replaced by

the user.

AUDIO *ReadWAV16(char *filespec) ;

Allocates memory to hold an image and fills it from a 16-bit monophonic WAV file. Parameter

filespec is the name of the file given as a character string. The return value is a pointer to the

audio in memory and must be used as an argument to all audio manipulation functions.

void WriteWAV16(char *filespec, AUDIO *audio) ;

COEN 11 LAB ASSIGNMENT #8

Revised 1/15/15 2

Stores an audio recording from memory into a 16-bit monophonic WAV file. Parameter filespec

is the filename specified as a character string.

void FreeAudio(AUDIO *audio) ;

Releases the memory used by an audio recording.

AUDIO *CopySegment(AUDIO *source, unsigned frstndex, unsigned lastndex) ;

Copies an audio segment from source starting at index position frstndex, through and including

index position lastndex. Returns a pointer to a new memory representation of the copy.

AUDIO *InsertSegment(AUDIO *target, AUDIO *segment, unsigned at) ;

Inserts an audio segment specified by segment into the memory representation of target beginning

at the index position specified by parameter at. Returns a pointer to the modified (lengthened)

memory representation of target.

AUDIO *DeleteSegment(AUDIO * source, unsigned frstndex, unsigned lastndex) ;

Deletes an audio segment from source between index positions frstndex through lastndex. Returns

a pointer to the modified (shortened) memory representation of source.

Assignment: You are to complete the source code for the following function that is located within the provided

main program (lab8.c):

AUDIO *AdjustTone(AUDIO *audio, unsigned percent_bass, unsigned percent_treble);

Adjusts the tone of an audio recording by adjusting the relative amount of bass and treble.

Parameters percent_bass and percent_treble are unsigned integers in the range 0 to 100.

COEN 11 LAB ASSIGNMENT #8

Revised 1/15/15 3

 The apparent amount of bass (low frequencies) in a recording can be increased by using a running

weighted average to smooth out the audio waveform and the apparent amount of treble (high fre-

quencies) can be increased using the difference between successive samples. The pseudo-code

shown below computes values for the bass and treble components and then mixes them with the

original sample to produce the new sample value.

sample_avg  0.9 × sample_avg + 0.1 × orig_sample

sample_diff  (orig_sample – prev_sample)

bass_part  sample_avg × (percent_bass / 100)

orig_ part  orig_sample × (100 – percent_bass – percent_treb) / 100)

treb_ part  sample_diff × (percent_treb / 100)

prev_sample  orig_sample

curr_sample  2 × bass_ part + orig_ part + 2 × treb_ part

 Note: The values of sample_avg and prev_sample should be initialized to 0.

Compilation: Compile and link your program using the following command line:

gcc –o lab8 lab8.c -L. -lwav

Execution: Execute your program using the following command syntax:

./lab8 src-file dst-file tone-knob-degrees

 where tone-knob-degrees is an integer between -90 (full bass) and +90 (full treble); the program

uses this value to compute values for percent_bass and percent_treb.

When Done: Demonstrate proper operation of your program to the teaching assistant and upload the completed

source code for file lab8.c to the lab drop box on Camino. Do not upload any other files.

