
“main”
2005/9/6
page i

i

i

i

i

i

i

i

i

Introduction to Computing and
Programming in Java:

A Multimedia Approach

Mark Guzdial and Barbara Ericson
College of Computing/GVU

Georgia Institute of Technology

PRENTICE HALL, Upper Saddle River, New Jersey 07458

“main”
2005/9/6
page ii

i

i

i

i

i

i

i

i

ii

Copyright held by Mark Guzdial and Barbara Ericson, 2005.

“main”
2005/9/6
page iii

i

i

i

i

i

i

i

i

iii

Dedicated to our children Matthew, Katherine, and Jennifer.

“main”
2005/9/6
page iv

i

i

i

i

i

i

i

i

Preface

This book is intended to introduce computing, including programming, to
students with no prior programming experience. One of the lessons from the re-
search on computing education is that one doesn’t just “learn to program.” One
learns to program something [4, 17]. How motivating that something is can make
the difference between learning to program or not [6]. Some people are interested
in learning programming just for programming’s sake—but that’s not most people.

Unfortunately, most introductory programming books are written as if stu-
dents have a burning desire to learn to program. They emphasize programming
concepts and give little thought to making the problems that are being solved in-
teresting and relevant. They introduce new concepts without showing why the
students should want to know about them.

In this book students will learn about programming by writing programs to
manipulate media. Students will create and modify images, such as correcting for
“red-eye” and generating negative images. Students will modify sounds, like splicing
words into sentences or reversing sounds to make interesting effects. Students will
write programs to generate web pages from data in databases, in the same way
that CNN.com and Amazon.com do. They will create animations and movies using
special effects like the ones seen on television and in movies.

Students in courses taught at Georgia Tech have found these programs inter-
esting and motivating. Students have even reported turning in their programs and
then continuing to work on them to see what else they can make.

This book is about teaching people to program in order to communicate. Peo-
ple want to communicate. We are social creatures, and the desire to communicate
is one of our primal motivations. Increasingly, the computer is used as a tool for
communication, even more than as a tool for calculation. Virtually all published
text, images, sounds, music, and movies today are prepared using computing tech-
nology. This book focuses on how to manipulate images, sounds, text, and movies
as professionals might, but with programs written by the students.

We realize that most people will use professional-grade applications to perform
these same manipulations. So why learn to program these manipulations yourself ?
Why not just leave it to the developers of Photoshop and iMovie? The answer
depends on your interests and career choices.

• If you have an interest in becoming a computing professional, then it’s worth-
while for you to understand how to build programs used in communication.
Much of the software in the future will be used for communications, so this
is a great domain to start learning useful skills. Most computing classes to-
day are taught in Java, so this book presents the right context for learning
programming and in the right language for you.

• If you expect to be a user of applications in the future, knowing something
of how your tools works can make you a so-called “Power User.” Most com-
mon applications today are much more powerful than most users realize.
Many communications applications are actually themselves programmable

iv

“main”
2005/9/6
page v

i

i

i

i

i

i

i

i

v

with scripting languages that enable users to automate tasks in the applica-
tion. To use all the facilities of an application, it helps to have an under-
standing of what the application is doing—if you know what a pixel is, you
can understand better why it’s useful to manipulate. To use the scripting
facilities of an application, some knowledge of programming is a requirement.

• If you are a creative person who wants complete control of your communi-
cations, you want to know how to do without your applications if you need
to, in order to implement your vision. Knowing how to do manipulate media
with your own programs means that you can do what you want, if you ever
need to. You may want to say something with your media, but you may not
know how to make PhotoShop or Final Cut Pro do what you want. Knowing
how to program means that you have power of expression that is not limited
by your application software.

• Finally, you may have no interest in programming your applications, or pro-
gramming at all. Is it worthwhile for you to learn this stuff? Students who
took our media computation classes at Georgia Tech told us a year later that
the course was relevant in their daily life [15]. We live in a technological
society, and much of that technology is used to manipulate what we see and
hear in our media. If you know something of how that technology works, you
have a way of thinking about how to use it, and how it may be used to change
your perceptions. Students who are not computer science majors told us a
year after finishing the course that they now had a new confidence around
computers because they knew something about how they worked [15].

This book is not just about programming to manipulate media. Media ma-
nipulation programs can be hard to write, or behave in unexpected ways. Questions
arise like “Why is this same image filter faster in Photoshop?” and “That was hard
to debug–are there ways of writing programs that are easier to debug?” Answering
questions like these is what computer scientists do. The last chapters at the end of
the book are about computing, not just programming (chapters 15 and 16).

The computer is the most amazingly creative device that humans have ever
conceived of. It is literally completely made up of mind-stuff. The notion “Don’t
just dream it, be it” is really possible on a computer. If you can imagine it, you
can make it “real” on the computer. Playing with programming can be and should
be enormous fun.

TO TEACHERS

The media computation approach used in this book starts with what students use
computers for: image manipulation, digital music, web pages, games, and so on.
We then explain programming and computing in terms of these activities. We want
students to visit Amazon (for example) and think, “Here’s a catalog website–and I
know that this is implemented with a database and a set of programs that format
the database entries as Web pages.” Starting from a relevant context makes transfer
of knowledge and skills more likely, and it also helps with retention.

The majority of the book spends time giving students experiences with a
variety of media in contexts that they find motivating. After that, though, they

“main”
2005/9/6
page vi

i

i

i

i

i

i

i

i

vi

start to develop questions. “Why is it that Photoshop is faster than my program?”
and “Movie code is slow – how slow do programs get?” are typical. At that point,
we introduce the abstractions and the valuable insights from Computer Science
that answer their questions. That’s what the last part of this book is about.

Researchers in computing education have been exploring why withdrawal or
failure rates in college-level introductory computing courses have been so high. The
rate of students withdrawing from college-level introductory computing courses or
receiving a D or F grade (commonly called the WDF rate) has been reported in
the 30–50% range, or even higher. One of the common themes from research into
why the WDF rate is so high is that computing courses seem “irrelevant” and
unnecessarily focusing on “tedious details” such as efficiency [22][1].

However, students have found media computation to be relevant as evidenced
by survey responses and the reduction in our WDF rate from an average of 28% to
11.5% for the pilot offering of this course. Spring 2004 was the first semester taught
by instructors other than Mark Guzdial, and the WDF rate dropped to 9.5% for
the 395 students who enrolled. Charles Fowler at Gainesville College in Georgia
has been having similar results in his courses there.

The approach in this book is different than in many introductory program-
ming books. We teach the same computing concepts but not necessarily in the
usual order. For example, while we create and use objects early we don’t have
students defining new classes till fairly late. Research in computing education sug-
gests that learning to program is hard and that students often have trouble with
the basics (variables, iteration, and conditionals). We focus on the basics for ten
chapters: three introductory, four on pictures, and three on sounds. We introduce
new concepts only after setting the stage for why we would need them. For exam-
ple, we don’t introduce iteration until after we change pixel colors one-by-one. We
don’t introduce procedural decomposition until our methods get too long to easily
be debugged.

Our approach isn’t the more common approach of introducing one computing
topic per chapter. We introduce computing concepts as needed to do a desired
media manipulation (like using nested loops to mirror a picture). Some chapters
introduce several computing concepts, while others repeat computing concepts in a
different medium. We repeat concepts in different media to increase the odds that
students will find an explanation and relevance that works for them, or better yet,
find two or more explanations that work for them. The famous artificial intelligence
researcher Marvin Minsky once said that if you understand something in only one
way, you don’t understand it at all. Repeating a concept in different relevant
settings can be a powerful way of developing flexible understandings.

Memory is associative–we remember things based on what else we relate to
those things. People can learn concepts and skills on the promise that it will be
useful some day, but those concepts and skills will be related only to those promises,
not to everyday life. The result has been described as “brittle knowledge” [7]–the
kind of knowledge that gets you through the exam, but promptly gets forgotten
because it doesn’t relate to anything but being in that class. If we want students
to gain transferable knowledge (knowledge that can be applied in new situations),
we have to help them to relate the knowledge to more general problems, so that
the memories get indexed in ways that associate with those kinds of problems [20].

“main”
2005/9/6
page vii

i

i

i

i

i

i

i

i

vii

Thus, we teach with concrete experiences that students can explore and relate to
(e.g., iteration for removing red-eye in pictures).

We do know that starting from the abstractions doesn’t really work for stu-
dents. Ann Fleury has shown that novice students just don’t buy what we tell them
about encapsulation and reuse (e.g., [10]). Students prefer simpler code that they
can trace easily, and actually think that code that an expert would hate is better.
Some of the early methods are written the way that a beginning student would
prefer, with values hard coded rather than passed in as parameters. It takes time
and experience for students to realize that there is value in well-designed systems.
Without experience to give the abstractions value, it’s very difficult for beginning
students to learn the abstractions.

Another unusual thing about this book is that we start using arrays in chap-
ter 4, in our first significant programs. Typically, introductory computing courses
push arrays off until later, since they’re obviously more complicated than variables
with simple values. But a relevant context is very powerful [17]. The matrices
of pixels in images occur in the students’ everyday life–a magnifying glass on a
computer monitor or television makes that clear.

Our goal is to teach programming in a way that students find relevant, moti-
vating, and social. To be relevant we have the students write programs to do things
that students currently use computers for: i.e. image, sound, and text manipula-
tion. For motivation we assign open-ended creative assignments such as: create an
image collage with the same image at least 4 times using 3 different image manip-
ulations and a mirroring. As for the social aspect we encourage collaboration on
assignments and on-line, public posting of student work. Students learn from each
other and try to outdo each other, in a spirit of creative competition.

Ways to Use This Book

This book is based on content that we teach at Georgia Tech. Individual teachers
may skip some sections (e.g., the section on additive synthesis, MIDI, and MP3),
but all of the content here has been tested with our students.

However, we can imagine using this material in many other ways:

• A short introduction to computing could be taught with just chapters 2 - 4.
We have taught even single day workshops on media computation using just
this material.

• Students with some programming experience could skip or review chapters 1
- 2 and begin at chapter 3. Students with object-oriented experience could
start at chapter 4.

• Chapter 7 is about drawing using existing Java classes. It also introduces the
concepts of inheritance and interfaces. The concepts introduced here are also
used in chapter 14 (movies). If you are skipping movies you could skip this
chapter as well.

• Chapters 8 through 10 replicate much of the computer science basics from
chapters 4 through 6, but in the context of sounds rather than images. We
find the replication useful–some students seem to relate better to the concepts

“main”
2005/9/6
page viii

i

i

i

i

i

i

i

i

viii

of iteration and conditionals better when working with one medium than
the other. Further, it gives us the opportunity to point out that the same
algorithm can have similar effects in different media (e.g., scaling a picture up
or down and shifting a sound higher or lower in pitch is the same algorithm).
But it could certainly be skipped to save time. You might want to at least
cover class methods and private methods in chapter 10.

• Chapter 11 explains how to create classes. This is an essential chapter.

• Chapters 12 and 13 manipulate text. They also cover exceptions, reading and
writing files, reading from the network, import statements, helper methods,
some collection classes, iterators, generics, and working with databases. We
recommend covering these chapters.

• Chapter 14 (on movies) introduces no new programming or computing con-
cepts. While motivating, movie processing could be skipped for time.

• We do recommend getting to chapter 15 on speed. This is the first chapter
that is more about computing than programming.

• Chapter 16 is about JavaScript. This gives students exposure to another
language that is similar to Java. It also discusses interpreters and compilers.
It could be skipped to save time.

JAVA

The programming language used in this book is Java. Java is a high-level object-
oriented programming language that runs on most computers and many small elec-
tronic devices. It is widely used in industry and in universities.

The development environment used in this book is DrJava. It was created
at Rice University. It is free and easy to use. DrJava lets the student focus on
learning to program in Java and not on how to use the development environment.
An advantage of DrJava is that you can try out Java code in the interactions pane
without having to write a ”main” method.

You don’t have to use this development environment. There are many de-
velopment environments that are available for use with Java. If you use another
development environment just add the directory that has the Java classes devel-
oped for this book to the classpath. See the documentation for your development
environment for how to do this. Of course, you can also use more than one devel-
opment environment. You could use DrJava for the interactions pane as well as
another environment.

TYPOGRAPHICAL NOTATIONS

Examples of Java code look like this: x = x + 1;. Longer examples look like this:

public class Greeter
{

public stat ic void main (St r ing [] a rgs)
{

// show the s t r i n g ”He l l o World” on the conso l e

“main”
2005/9/6
page ix

i

i

i

i

i

i

i

i

ix

System . out . p r i n t l n (” He l lo World”) ;
}

}

When showing something that the user types in the interactions pane with
DrJava’s response, it will have a similar font and style, but the user’s typing will
appear after a DrJava prompt (>):

> 3 + 4
7

User interface components of DrJava will be specified using a smallcaps font,
like File menu item and the Compile All button.

There are several special kinds of sidebars that you’ll find in the book.

Program 1: An Example Program

Programs (recipes) appear like this:

public stat ic void main (St r ing [] a rgs)
{

// show the s t r i n g ”He l l o World” on the conso l e
System . out . p r i n t l n (” He l lo World”) ;

}

“main”
2005/9/6
page x

i

i

i

i

i

i

i

i

x

Computer Science Idea: An Example Idea
Key computer science concepts appear like this.

Â

Á

¿

À

Common Bug: An Example Common Bug
Common things that can cause your program to fail appear
like this.

Debugging Tip: An Example Debugging Tip
If there’s a good way to keep those bugs from creeping into
your programs in the first place, they’re highlighted here.

Â

Á

¿

À

Making it Work Tip: An Example How To Make
It Work
Best practices or techniques that really help are highlighted
like this.

ACKNOWLEDGEMENTS

Our sincere thanks go out to the following:

• Adam Wilson built the MediaTools that are so useful for exploring sounds
and images and processing video.

• Matthew, Katherine, and Jennifer Guzdial all contributed pictures for use in
this book.

• Thanks for permission to use their snapshots to Georgia Tech students: Jakita
N. Owensby, and Tammy C.

• Thank you to the anonymous reviewers and to Brent Laminack for finding
problems and for making suggestions to improve the book.

• Thank you to Thomas Bressoud and Matt Kretchmar at Denison University
for trying an early version of the book and for their feedback on it.

• Thank you to the high school teachers in Georgia who took summer workshops
using versions of this material and who taught it to their classes.

“main”
2005/9/6
page xi

i

i

i

i

i

i

i

i

Contents

Preface iv

Contents xi

I Introduction 1

1 Introduction to Computer Science and Media Computation 2
1.1 What is Computer Science About? 2
1.2 What Computers Understand . 6
1.3 Media Computation: Why Digitize Media? 8
1.4 Computer Science for Everyone . 9

1.4.1 It’s About Communication 10
1.4.2 It’s About Process . 10

2 Introduction to Java 15
2.1 Java . 15

2.1.1 History of Java . 15
2.1.2 Introduction to Objects and Classes 16

2.2 Introduction to DrJava . 17
2.2.1 Starting DrJava . 17

2.3 Java Basics . 20
2.3.1 Math Operators . 20
2.3.2 Printing the Result of a Statement 23
2.3.3 Data Types in Math Expressions 24
2.3.4 Casting . 24
2.3.5 Relational Operators . 25
2.3.6 Strings . 26

2.4 Variables . 28
2.4.1 Declaring Variables . 28
2.4.2 Using Variables in Calculations 28
2.4.3 Memory Maps of Variables 30
2.4.4 Object Variables . 31
2.4.5 Reusing Variables . 33
2.4.6 Multiple References to an Object 35

2.5 Concepts Summary . 36
2.5.1 Statements . 36
2.5.2 Relational Operators . 37
2.5.3 Types . 37
2.5.4 Casting . 38
2.5.5 Variables . 38

xi

“main”
2005/9/6
page xii

i

i

i

i

i

i

i

i

xii

3 Introduction to Programming 42
3.1 Programming is About Naming . 43
3.2 Files and their Names . 44
3.3 Class and Object Methods . 45

3.3.1 Invoking Class Methods . 45
3.3.2 Executing Object Methods 47

3.4 Working with Turtles . 47
3.4.1 Defining Classes . 48
3.4.2 Creating Objects . 48
3.4.3 Sending Messages to Objects 50
3.4.4 Objects Control Their State 52
3.4.5 Additional Turtle Capabilities 53

3.5 Creating Methods . 55
3.5.1 Methods that Take Input . 61

3.6 Working with Media . 64
3.6.1 Creating a Picture Object . 64
3.6.2 Showing a Picture . 66
3.6.3 Variable Substitution . 67
3.6.4 Object references . 70
3.6.5 Playing a Sound . 71
3.6.6 Naming your Media (and other Values) 72
3.6.7 Naming the Result of a Method 72

3.7 Concepts Summary . 74
3.7.1 Invoking Object Methods . 74
3.7.2 Invoking Class Methods . 74
3.7.3 Creating Objects . 75
3.7.4 Creating new Methods . 75

II Pictures 81

4 Modifying Pictures using Loops 82
4.1 How Pictures are Encoded . 82

4.1.1 Color Representations . 87
4.2 Manipulating Pictures . 91

4.2.1 Exploring Pictures . 97
4.3 Changing color values . 98

4.3.1 Using a For-Each Looop . 99
4.3.2 Using While Loops . 101
4.3.3 Increasing/Decreasing Red (Green, Blue) 105
4.3.4 Creating a Sunset . 120
4.3.5 Making Sense of Methods . 122
4.3.6 Variable Name Scope . 125
4.3.7 Using a For Loop . 129
4.3.8 Lightening and Darkening . 131
4.3.9 Creating a Negative . 132
4.3.10 Converting to Grayscale . 134

“main”
2005/9/6
page xiii

i

i

i

i

i

i

i

i

xiii

4.4 Concepts Summary . 136
4.4.1 Arrays . 136
4.4.2 Loops . 136
4.4.3 Comments . 138

5 Modifying Pixels in a Matrix 143
5.1 Copying Pixels . 143

5.1.1 Looping Across the Pixels with a Nested Loop 144
5.1.2 Mirroring a Picture . 146

5.2 Copying and Transforming Pictures 154
5.2.1 Copying . 155
5.2.2 Creating a Collage . 161
5.2.3 Blending Pictures . 167
5.2.4 Rotation . 169
5.2.5 Scaling . 173

5.3 Concepts Summary . 179
5.3.1 Two-dimensional Arrays . 179
5.3.2 Nested Loops . 179
5.3.3 Returning a Value from a Method 181
5.3.4 Method Overloading . 181

6 Conditionally Modifying Pixels 185
6.1 Conditional Pixel Changes . 186

6.1.1 Comparing Colors . 187
6.1.2 Replacing Colors . 187
6.1.3 Reducing Red-Eye . 191

6.2 Simple Edge Detection: conditionals with two options 193
6.2.1 Negation . 194
6.2.2 Testing for Both Conditions 194
6.2.3 Conditionals with Two Options 194
6.2.4 Simple Edge Detection . 195

6.3 Sepia-Toned and Posterized Pictures: Using multiple conditionals to
choose the color . 198

6.4 Highlighting Extremes . 205
6.5 Combining Pixels: Blurring . 206
6.6 Background Subtraction . 209
6.7 Chromakey . 214
6.8 Concepts Summary . 218

6.8.1 Boolean Expressions . 219
6.8.2 Combining Boolean Expressions 219
6.8.3 Conditional Execution . 219

7 Drawing 225
7.1 Drawing on Images Using the Graphics Class 225

7.1.1 Drawing with Graphics methods 228
7.1.2 Vector and bitmap representations 234
7.1.3 Drawing Text (Strings) . 236

“main”
2005/9/6
page xiv

i

i

i

i

i

i

i

i

xiv

7.2 Programs as Specifying Drawing Process 240
7.2.1 Why do we write programs? 243

7.3 Using Graphics2D for Advanced Drawing 243
7.3.1 Setting the Brush Width . 244
7.3.2 Copying Pictures by Drawing Images 245
7.3.3 General Scaling . 249
7.3.4 Shearing . 250
7.3.5 Drawing with a GradientPaint 252
7.3.6 Interfaces . 252
7.3.7 Blending Pictures Using AlphaComposite 254
7.3.8 Clipping . 257

7.4 Concept Summary . 258
7.4.1 Packages . 259
7.4.2 Predefined Java Classes . 259
7.4.3 Inheritance . 260
7.4.4 Interfaces . 260

III Sounds 265

8 Modifying all Samples in a Sound 266
8.1 How Sound is Encoded . 266

8.1.1 The Physics of Sound . 267
8.1.2 Exploring Sounds . 270
8.1.3 Encoding Sounds . 272

8.2 Manipulating Sounds . 276
8.2.1 Opening Sounds and Manipulating Samples 277
8.2.2 Using MediaTools for Looking at Sounds 280
8.2.3 Introducing Loops . 282

8.3 Changing the Volume of Sounds . 285
8.3.1 Increasing Volume . 286
8.3.2 Did that Really Work? . 287
8.3.3 Decreasing Volume . 291
8.3.4 Using a For Loop . 293
8.3.5 Making Sense of Methods . 294

8.4 Normalizing Sounds . 295
8.4.1 Generating Clipping . 297

8.5 Concepts Summary . 299
8.5.1 Arrays . 299
8.5.2 Loops . 300
8.5.3 Conditional Execution . 301

9 Modifying Samples using Ranges 308
9.1 Manipulating Different Sections of the Sound Differently 308
9.2 Create a Sound Clip . 310
9.3 Splicing Sounds . 312
9.4 Reversing a Sound . 320

“main”
2005/9/6
page xv

i

i

i

i

i

i

i

i

xv

9.5 Mirroring a Sound . 321
9.6 Concepts Summary . 322

9.6.1 Ranges in Loops . 322
9.6.2 Returning a Value from a Method 322

10 Combining and Creating Sounds 327
10.1 Composing Sounds Through Addition 327
10.2 Blending Sounds . 329
10.3 Creating an Echo . 330

10.3.1 Creating Multiple Echoes . 333
10.4 How Sampling Keyboards Work . 334

10.4.1 Sampling as an Algorithm . 340
10.5 Additive Synthesis . 340

10.5.1 Making Sine Waves . 340
10.5.2 Creating Sounds Using Static Methods 341
10.5.3 Adding Sine Waves Together 343
10.5.4 Checking our Result . 344
10.5.5 Square Waves . 345
10.5.6 Triangle Waves . 348

10.6 Modern Music Synthesis . 349
10.6.1 MP3 . 349
10.6.2 MIDI . 350
10.6.3 Private Methods . 352

10.7 Concepts Summary . 355
10.7.1 Class Methods . 355
10.7.2 Private Methods . 355
10.7.3 Build a Program from Multiple Methods 356

11 Creating Classes 359
11.1 Identifying the Objects and Fields 360
11.2 Defining a Class . 360

11.2.1 Defining Fields . 361
11.2.2 Inherited Methods . 363
11.2.3 Overriding Inherited Methods 365
11.2.4 Default Field Initialization 366
11.2.5 Declaring Constructors . 367
11.2.6 Using a Debugger . 369

11.3 Overloading Constructors . 370
11.4 Creating and Initializing an Array 372

11.4.1 Calculating the Grade Average 373
11.4.2 Using Step Into in the Debugger 376

11.5 Creating Accessors (Getters) and Modifiers (Setters) 378
11.5.1 Creating Accessors (Getters) 379
11.5.2 Creating Modifiers (Setters) 380

11.6 Creating a Main Method . 382
11.7 Javadoc Comments . 383

11.7.1 Class Comment . 384

“main”
2005/9/6
page xvi

i

i

i

i

i

i

i

i

xvi

11.7.2 Method Comments . 384
11.7.3 Constructor Comments . 385
11.7.4 Generating the Documentation 385

11.8 Creating another Class . 385
11.8.1 Adding Constructors . 387
11.8.2 Adding Accessors and Modifiers 388

11.9 Reusing a Class Via Inheritance . 389
11.9.1 Dynamic (Run-time) Binding 395

11.10Concepts Summary . 396
11.10.1Declaring a Class . 396
11.10.2Fields . 396
11.10.3Constructors . 397
11.10.4Arrays . 397
11.10.5Using a Debugger . 397
11.10.6 Javadoc Comments . 398

IV Text, Files, Networks, Databases, and Unimedia 401

12 Creating and Modifying Text 402
12.1 Text as Unimedia . 403
12.2 Strings: Character Sequences . 403

12.2.1 Unicode . 404
12.2.2 String Methods . 405
12.2.3 Processing Delimited Strings Using Split 408
12.2.4 Strings Don’t Have a Font . 410

12.3 Files: Places to put Your Strings and Other Stuff 410
12.3.1 Reading from Files . 411
12.3.2 Handling Exceptions . 412
12.3.3 Working with an ArrayList 417
12.3.4 Writing to a File . 422
12.3.5 Generating a Form Letter . 423
12.3.6 Modifying Programs . 425

12.4 Other Useful Classes . 435
12.4.1 Another Fun Class: Random 436

12.5 Networks: Getting our Text From the Web 439
12.6 Using Text to Shift Between Media 445
12.7 Concepts Summary . 451

12.7.1 Exceptions . 451
12.7.2 Reading and Writing Files . 451
12.7.3 Reading from the Internet . 452
12.7.4 Import Statements . 452
12.7.5 While Loops . 452

13 Making Text for the Web 459
13.1 HTML: The Notation of the Web . 459
13.2 Writing programs to generate HTML 465

“main”
2005/9/6
page xvii

i

i

i

i

i

i

i

i

xvii

13.2.1 Creating a Web Page from a Directory 470
13.2.2 Creating a Web Page from other Web Pages 472
13.2.3 Adding Randomness to a Homepage 474

13.3 Databases: A place to store our text 477
13.3.1 Key and Value Maps . 477
13.3.2 Downcasting . 478
13.3.3 Generics . 481

13.4 Relational databases . 484
13.4.1 SQL . 486
13.4.2 Getting Started: Drivers and Connections 486
13.4.3 Querying the Database . 490
13.4.4 Using a database to build Web pages 494

13.5 Concepts Summary . 496
13.5.1 HTML . 496
13.5.2 Helper Methods . 496
13.5.3 Throwing an Exception . 497
13.5.4 The “Unnamed” Package . 497
13.5.5 HashMap . 497
13.5.6 Generics . 497
13.5.7 Iterators . 497
13.5.8 JDBC and SQL . 498

V Movies 501

14 Encoding, Manipulating, and Creating Movies 502
14.1 Generating Frame-Based Animations 503
14.2 Working with Video Frames . 513

14.2.1 Video manipulating examples 513
14.3 Concepts Summary . 519

VI Topics in Computer Science 523

15 Speed 524
15.1 Focusing on Computer Science . 524
15.2 What makes programs fast? . 525

15.2.1 What computers really understand 525
15.2.2 Compilers and Interpreters 526
15.2.3 The Special Case of Java . 535
15.2.4 How fast can we really go? 536
15.2.5 Making searching faster . 538
15.2.6 Algorithms that never finish or can’t be written 541
15.2.7 Why is Photoshop faster than our programs in Java? 543

15.3 What makes a computer fast? . 543
15.3.1 Clock rates and actual computation 543
15.3.2 Storage: What makes a computer slow? 544

“main”
2005/9/6
page xviii

i

i

i

i

i

i

i

i

xviii

15.3.3 Display . 545
15.4 Concepts Summary . 546

16 JavaScript 549
16.1 JavaScript syntax . 549
16.2 JavaScript inside of Web pages . 551
16.3 User interfaces in JavaScript . 553
16.4 Multimedia in JavaScript . 559
16.5 Concepts Summary . 561

APPENDICES

A Quick Reference to Java 563
A.1 Variables . 563
A.2 Method Declarations . 564
A.3 Loops . 565
A.4 Conditionals . 566
A.5 Operators . 567
A.6 String escapes . 567
A.7 Classes . 567
A.8 Fields . 568
A.9 Constructors . 568
A.10 Packages . 569

“main”
2005/9/6
page xix

i

i

i

i

i

i

i

i

List of Figures

1.1 A cooking recipe–the order of the steps is important. 3
1.2 Comparing programming languages: A common simple program-

ming task is to print the words “Hello, World!” to the screen. 13
1.3 Eight wires with a pattern of voltages is a byte, which gets inter-

preted as a pattern of eight 0’s and 1’s, which gets interpreted as a
decimal number. 14

2.1 DrJava Preferences Window . 18
2.2 DrJava Splash Screen . 18
2.3 DrJava (with annotations) . 20
2.4 A calculator with a number in memory 28
2.5 Declaring primitive variables and memory assignment 30
2.6 Showing the parent and child relationship between mammal and dog

(left) and Object and String (right) 32
2.7 Declaring object variables and memory assignment 33
2.8 Shows creation and reuse of an object variable. 34
2.9 An object with multiple references to it 35
2.10 An object with no references to it . 36
3.1 A window that shows a World object. 49
3.2 A window that shows a Turtle object in a World object. 50
3.3 A window that shows two Turtle objects in a World object. 51
3.4 The result of messages to the first Turtle object. 52
3.5 The result of messages to the second Turtle object. 52
3.6 The turtle won’t leave the world . 53
3.7 Drawing two squares with a turtle. 55
3.8 Defining and executing drawSquare() 59
3.9 An object stores data for that object and has a reference to the class

that created it . 61
3.10 Showing the result of sending the width as a parameter to drawSquare 63
3.11 Creating a Picture object using new Picture() 64
3.12 The File Chooser . 65
3.13 File chooser with media types identified 67
3.14 Picking, making, and showing a picture, using the result of each

method in the next method. The picture used is beach-smaller.jpg. . 68
3.15 Picking, making, and showing a picture, when naming the pieces.

The picture shown is tammy.jpg. Tammy is one of the computer
science graduate students at Georgia Tech. 71

4.1 A depiction of the first five elements in an array 83
4.2 The top left corner of a battleship guess board with a miss at B-3. . 85
4.3 Picturing a 2-d array as row-major or column-major 85
4.4 An example matrix (two-dimensional array) of numbers 86

xix

“main”
2005/9/6
page xx

i

i

i

i

i

i

i

i

xx LIST OF FIGURES

4.5 Upper left corner of DrJava window with part magnified 600% . . . 86
4.6 Image shown in the picture explorer: 100% image on left and 500%

on right (close-up of the branch over the mountain) 87
4.7 Merging red, green, and blue to make new colors 88
4.8 Picking colors using the HSB color model 88
4.9 The ends of this figure are the same colors of gray, but the middle

two quarters contrast sharply so the left looks darker than the right 89
4.10 The Macintosh OS X RGB color picker 90
4.11 Picking a color using RGB sliders from Java 90
4.12 RGB triplets in a matrix representation 91
4.13 Directly modifying the pixel colors via commands: Note the small

black line on the left under the line across the leaf 97
4.14 Exploring the caterpillar with the line 97
4.15 Using the MediaTools image exploration tools on barbara.jpg 98
4.16 Flowchart of a while loop . 102
4.17 The original picture (left) and red-decreased version (right) 107
4.18 Using the picture explorer to convince ourselves that the red was

decreased . 117
4.19 Overly blue (left) and red increased by 30% (right) 119
4.20 Original (left) and blue erased (right) 120
4.21 Original beach scene (left) and at (fake) sunset (right) 122
4.22 Flowchart of a for loop . 130
4.23 Original picture, lightened picture, and darkened picture 133
4.24 Negative of the image . 134
4.25 Color picture converted to grayscale 135
5.1 Once we pick a mirror point, we can just walk x halfway and copy

from (x,y) to (width - 1 - x,y) . 147
5.2 Original picture (left) and mirrored along the vertical axis (right) . . 148
5.3 A motorcycle mirrored horizontally, top to bottom (left) and bottom

to top (right) . 150
5.4 Temple of Hephaistos from the ancient agora in Athens, Greece . . . 151
5.5 Coordinates where we need to do the mirroring 151
5.6 The manipulated temple . 152
5.7 Copying a picture to a canvas . 156
5.8 Copying a picture midway into a canvas 157
5.9 Copying part of a picture onto a canvas 159
5.10 Flowers in the mediasources folder 161
5.11 Collage of flowers . 164
5.12 Blending the picture of Katie and Jenny 169
5.13 Rotating some numbers in a table to the left 90 degrees 170
5.14 Copying a picture to a blank page rotated to the left 90 degrees . . . 171
5.15 Scaling the picture of Jakita (a CS graduate student at Georgia Tech)

down . 174
5.16 Scaling up a picture . 176
6.1 Flowchart of an if statement . 186
6.2 Increasing reds in the browns . 189
6.3 On left the couch color changes, on right the couch color doesn’t change190

“main”
2005/9/6
page xxi

i

i

i

i

i

i

i

i

LIST OF FIGURES xxi

6.4 Finding the range of where Jenny’s eyes are red 192
6.5 After fixing red-eye. 193
6.6 Flowchart of an if with an else . 195
6.7 Original picture and after edge detection 197
6.8 Flowchart of an if, else if, and an else 199
6.9 Original scene (left) and using our sepia-tone program 200
6.10 Reducing the colors (right) from the original (left) 202
6.11 Pictures posterized to two levels (left) and four levels (right) 205
6.12 Original picture (left) and light or dark areas highlighted (right) . . 207
6.13 Making the flower bigger, then blurring to reduce pixellation 210
6.14 A picture of a child (Katie), and her background without her 210
6.15 A new background, the moon . 211
6.16 Katie on the moon . 212
6.17 Two kids in front of a wall, and a picture of the wall 214
6.18 Swapping a country bridge for the wall, using background subtrac-

tion, with a threshold of 50 . 215
6.19 Mark in front of a blue sheet . 216
6.20 Mark on the moon . 217
6.21 Mark on the beach . 217
7.1 Adding a grid of lines to a picture (barbara.jpg) 227
7.2 Viewing the Java API for java.awt.Graphics 230
7.3 A box washed up on the shore of the beach 230
7.4 An example drawn picture . 233
7.5 A drawn face (left) and the face with enclosing rectangles (right) . . 234
7.6 Shows font information including the baseline 236
7.7 Drawing a string on a picture . 238
7.8 Drawing a string centered on a picture 239
7.9 A programmed gray scale effect . 240
7.10 Nested colored rectangles . 242
7.11 Nested outlined rectangles . 243
7.12 Drawing a red X on a picture . 246
7.13 Drawing a turtle on a beach . 247
7.14 Documentation for Graphics2D . 248
7.15 Original picture and picture scaled up 2 times in x and down by half

in y . 250
7.16 Picture sheared by 1.0 in x . 252
7.17 A beach with a sun that is filled with a gradient from yellow to red . 254
7.18 Two pictures with a horizontal overlap 257
7.19 Clip picture using an ellipse . 258
8.1 Raindrops causing ripples in the surface of the water, just as sound

causes ripples in the air . 267
8.2 One cycle of the simplest sound, a sine wave 268
8.3 The note A above middle C is 440 Hz 269
8.4 Some synthesizers using triangular (or sawtooth) or square waves. . . 270
8.5 Sound editor main tool . 270
8.6 Viewing the sound signal as it comes in 271
8.7 Viewing the sound in a spectrum view 272

“main”
2005/9/6
page xxii

i

i

i

i

i

i

i

i

xxii LIST OF FIGURES

8.8 Viewing a sound in spectrum view with multiple “spikes” 273
8.9 Viewing the sound signal in a sonogram view 274
8.10 Area under a curve estimated with rectangles 274
8.11 A depiction of the first five elements in a real sound array 276
8.12 A sound recording graphed in the MediaTools 276
8.13 The sound editor open menu in MediaTools application 281
8.14 MediaTools application open file dialog 281
8.15 A sound opened in the editor in MediaTools application 282
8.16 Exploring the sound in the editor in MediaTools application 282
8.17 Comparing the graphs of the original sound (left) and the louder one

(right) . 287
8.18 Comparing specific samples in the original sound (left) and the louder

one (right) . 288
8.19 Comparing the original sound with the normalized one 298
8.20 Comparing the original sound with one with all values set to extremes.299
9.1 Exploring the ”This is a test” to find the end of the first word . . . 311
9.2 Exploring the sound clip . 313
9.3 Comparing the original sound (left) to the spliced sound (right) . . . 318
9.4 Comparing the original sound (left) to the reversed sound (right) . . 321
9.5 Comparing the mirror point in the original sound (left) to the mir-

rored sound (right) . 322
10.1 The top and middle waves are added together to create the bottom

wave . 328
10.2 The original “ahh” sound, the original bassoon note, and the blended

sound . 331
10.3 The original “This is a test” sound (left), and the sound with an

echo (right) . 332
10.4 The original sound (left), and the sound with the frequency doubled

(right) . 335
10.5 The sine wave with a frequency of 880 and a maximum amplitude of

4000 . 343
10.6 The raw 440 Hz signal on top, then the 440+880+1320 Hz signal on

the bottom . 345
10.7 FFT of the 440 Hz sound . 345
10.8 FFT of the combined sound . 345
10.9 The 440 Hz square wave (top) and additive combination of square

waves (bottom) . 347
10.10FFT’s of the 440 Hz square wave (top) and additive combination of

square waves (bottom) . 347
11.1 DrJava with the class definition for Student 361
11.2 Showing a student object with a reference to its class. 363
11.3 Showing a student object with a reference to its class and a reference

from the class to its parent class. 364
11.4 Showing a student object with the default initialization of the fields. 366
11.5 DrJava with debug mode turned on 370
11.6 A breakpoint highlighted in red . 371
11.7 Execution stops at the breakpoint 372

“main”
2005/9/6
page xxiii

i

i

i

i

i

i

i

i

LIST OF FIGURES xxiii

11.8 After clicking on Step Over . 373
11.9 Showing a student object after a constructor that takes a name and

array of grades has executed. 374
11.10Breakpoint in the constructor that takes a name and grade array . . 376
11.11Execution stopped at the breakpoint 377
11.12Execution stopped after step over . 378
11.13Execution stopped at the second breakpoint 379
11.14Execution stopped at the beginning of getAverage 380
11.15Showing the HTML documentation generated from Javadoc comments386
11.16UML class diagram . 387
11.17Result of commands to a confused turtle. 392
11.18Result of overriding the turn method. 393
11.19Diagram of the methods executed by fred.turnLeft(). 394
11.20Result of fixing the methods turnLeft() and turnRight(). 395
12.1 Diagram of a directory tree . 411
12.2 Showing a class stack before a method returns and after 412
12.3 A depiction of the inheritance tree for some exception classes 414
12.4 Original cartoon (left) and after the class has been modified (right)) 430
12.5 A depiction of the inheritance tree for some of the Reader Classes . 442
12.6 Sound-as-text file read into Excel 447
12.7 Sound-as-text file graphed in Excel 448
12.8 A visualization of the sound “her.wav” 450
13.1 Simple HTML page source . 461
13.2 Simple HTML page open in Internet Explorer 461
13.3 HTML styles . 462
13.4 Inserting an image into an HTML page 463
13.5 An HTML page with a link in it . 464
13.6 Inserting a table into an HTML page 464
13.7 Creating an image thumbnail page 473
13.8 An example relational table . 485
13.9 Representing more complex relationships across multiple tables . . . 485
13.10ODBC Data Source Administrator Window 487
13.11Create New Data Source Window . 488
13.12An ODBC data source for the Microsoft Access person database . . 488
14.1 A few frames from the first movie: Moving a rectangle 505
14.2 Frames from the tickertape method 507
14.3 Moving two rectangles at once . 508
14.4 Frames from moving Mark’s head around 509
14.5 Frames from the make sunset movie 511
14.6 Frames from the slow fade-out movie 512
14.7 Movie tools in MediaTools . 513
14.8 Frames from the Mommy watching Katie movie 513
14.9 Frames from the original movie of the kids crawling in front of a blue

screen . 516
14.10Frames from the kids on the moon movie 517
14.11Some frames from the original too blue movie 517
14.12Some frames from the color corrected movie 519

“main”
2005/9/6
page xxiv

i

i

i

i

i

i

i

i

xxiv LIST OF FIGURES

15.1 Results of running the GraphicsInterpreter 530
15.2 A couple sample computer advertisements 543
16.1 Simple JavaScript function . 552
16.2 Showing the parts of the simple JavaScript function 552
16.3 Using JavaScript to insert HTML . 553
16.4 Using JavaScript to compute a loop 554
16.5 Computing a list that counts to ten 554
16.6 Inserting the date and time into a web page 555
16.7 Example JavaScript dialog windows 555
16.8 Example catching the onClick event 556
16.9 Opening a JavaScript window . 557
16.10Changing the new JavaScript window 558
16.11Changing color of list items . 558
16.12A simple HTML form . 559
16.13Inch/centimeter converter in JavaScript 559

“main”
2005/9/6
page 1

i

i

i

i

i

i

i

i

P A R T O N E

INTRODUCTION
Chapter 1 Introduction to Computer Science and Me-

dia Computation

Chapter 2 Introduction to Java

Chapter 3 Introduction to Programming

1

“main”
2005/9/6
page 2

i

i

i

i

i

i

i

i

C H A P T E R 1

Introduction to Computer
Science and Media
Computation

1.1 WHAT IS COMPUTER SCIENCE ABOUT?

1.2 WHAT COMPUTERS UNDERSTAND

1.3 MEDIA COMPUTATION: WHY DIGITIZE MEDIA?

1.4 COMPUTER SCIENCE FOR EVERYONE

Chapter Learning Objectives
• To explain what computer science is about and what computer scientists are

concerned with.

• To explain why we digitize media.

• To explain why it’s valuable to study computing.

• To use the concept of an encoding .

• To explain the basic components of a computer.

1.1 WHAT IS COMPUTER SCIENCE ABOUT?

Computer science is the study of process: How we do things, how we specify what
we do, how we specify what the stuff is that you’re processing. But that’s a pretty
dry definition. Let’s try a metaphorical one.

Computer Science Idea: Computer science is the
study of recipes (programs)
They’re a special kind of recipe—one that can be exe-

cuted by a computational device, but that point is only of
importance to computer scientists. The important point
overall is that a computer science program defines exactly
what’s to be done as shown in the recipe in (Figure 1.1).

If you’re a biologist who wants to describe how migration works or how DNA
replicates, or if you’re a chemist who wants to explain how an equilibrium is reached
in a reaction, or if you’re a factory manager who wants to define a machine-and-
belt layout and even test how it works before physically moving heavy things into

2

“main”
2005/9/6
page 3

i

i

i

i

i

i

i

i

Section 1.1 What is Computer Science About? 3

FIGURE 1.1: A cooking recipe–the order of the steps is important.

position, then being able to write a program that specifies exactly what happens, in
terms that can be completely defined and understood, is very useful. This exactness
is part of why computers have radically changed so much of how science is done
and understood.

It may sound funny to call programs or algorithms a recipe, but the analogy
goes a long way. Much of what computer scientists study can be defined in terms
of recipes:

• Some computer scientists study how recipes are written: Are there better
or worse ways of doing something? If you’ve ever had to separate whites
from yolks in eggs, you know that knowing the right way to do it makes a
world of difference. Computer science theoreticians worry about the fastest
and shortest recipes, and the ones that take up the least amount of space
(you can think about it as counter space — the analogy works). How a
recipe works, completely apart from how it’s written, is called the study of
algorithms. Software engineers worry about how large groups can put together
recipes that still work. (The recipe for some programs, like the one that keeps
track of Visa/MasterCard records has literally millions of steps!)

• Other computer scientists study the units used in recipes. Does it matter
whether a recipe uses metric or English measurements? The recipe may work
in either case, but if you have the read the recipe and you don’t know what
a pound or a cup is, the recipe is a lot less understandable to you. There are
also units that make sense for some tasks and not others, but if you can fit the
units to the tasks well, you can explain yourself more easily and get things
done faster—and avoid errors. Ever wonder why ships at sea measure their
speed in knots? Why not use things like meters per second? There are places,

“main”
2005/9/6
page 4

i

i

i

i

i

i

i

i

4 Chapter 1 Introduction to Computer Science and Media Computation

like at sea, where more common terms aren’t appropriate or don’t work as
well. The study of computer science units is referred to as data structures.
Computer scientists who study ways of keeping track of lots of data in lots of
different kinds of units are studying databases.

• Can recipes be written for anything? Are there some recipes that can’t be
written? Computer scientists actually do know that there are recipes that
can’t be written. For example, you can’t write a recipe that can absolutely
tell, for any other recipe, if the other recipe will actually work. How about
intelligence? Can we write a recipe that, when a computer followed it, the
computer would actually be thinking (and how would you tell if you got it
right)? Computer scientists in theory , intelligent systems, artificial intelli-
gence, and systems worry about things like this.

• There are even computer scientists who worry about whether people like
what the recipes produce, like the restaurant critics for the newspaper. Some
of these are human-computer interface specialists who worry about whether
people like how the recipes work (those “recipes” that produce an interface
that people use, like windows, buttons, scrollbars, and other elements of what
we think about as a running program).

• Just as some chefs specialize in certain kinds of recipes, like crepes or barbe-
cue, computer scientists also specialize in special kinds of recipes. Computer
scientists who work in graphics are mostly concerned with recipes that pro-
duce pictures, animations, and even movies. Computer scientists who work
in computer music are mostly concerned with recipes that produce sounds
(often melodic ones, but not always).

• Still other computer scientists study the emergent properties of recipes. Think
about the World Wide Web. It’s really a collection of millions of recipes
(programs) talking to one another. Why would one section of the Web get
slower at some point? It’s a phenomena that emerges from these millions
of programs, certainly not something that was planned. That’s something
that networking computer scientists study. What’s really amazing is that
these emergent properties (that things just start to happen when you have
many, many recipes interacting at once) can also be used to explain non-
computational things. For example, how ants forage for food or how termites
make mounds can also be described as something that just happens when you
have lots of little programs doing something simple and interacting.

The recipe metaphor also works on another level. Everyone knows that some
things in a recipe can be changed without changing the result dramatically. You
can always increase all the units by a multiplier (say, double) to make more. You
can always add more garlic or oregano to the spaghetti sauce. But there are some
things that you cannot change in a recipe. If the recipe calls for baking powder,
you may not substitute baking soda. If you’re supposed to boil the dumplings then
saute’ them, the reverse order will probably not work well (Figure 1.1).

Similarly, for software recipes (programs), there are usually things you can
easily change: The actual names of things (though you should change names con-

“main”
2005/9/6
page 5

i

i

i

i

i

i

i

i

Section 1.1 What is Computer Science About? 5

sistently), some of the constants (numbers that appear as plain old numbers, not
as variables), and maybe even some of the data ranges (sections of the data) being
manipulated. But the order of the commands to the computer, however, almost
always has to stay exactly as stated. As we go on, you’ll learn what can be changed
safely, and what can’t.

Computer scientists specify their programs with programming languages (Fig-
ure 1.2). Different programming languages are used for different purposes. Some of
them are wildly popular, like Java and Visual Basic. Others are more obscure, like
Squeak and T. Others are designed to make computer science ideas very easy to
learn, like Scheme or Python, but the fact that they’re easy to learn doesn’t always
make them very popular nor the best choice for experts building larger or more
complicated programs. It’s a hard balance in teaching computer science to pick a
language that is easy to learn and is popular and useful enough that students are
motivated to learn it.

Why don’t computer scientists just use natural human languages, like English
or Spanish? The problem is that natural languages evolved the way that they did
to enhance communications between very smart beings, humans. As we’ll go into
more in the next section, computers are exceptionally dumb. They need a level of
specificity that natural language isn’t good at. Further, what we say to one another
in natural communication is not exactly what you’re saying in a computational
recipe (program). When was the last time you told someone how a videogame like
Doom or Quake or Super Mario Brothers worked in such minute detail that they
could actually replicate the game (say, on paper)? English isn’t good for that kind
of task.

There are so many different kinds of programming languages because there are
so many different kinds of programs to write. Programs written in the programming
language C tend to be very fast and efficient, but they also tend to be hard to read,
hard to write, and require units that are more about computers than about bird
migrations or DNA or whatever else you want to write your program about. The
programming language Lisp (and its related languages like Scheme, T, and Common
Lisp) is very flexible and is well suited to exploring how to write programs that have
never been written before, but Lisp looks so strange compared to languages like C
that many people avoid it and there are (natural consequence) few people who know
it. If you want to hire a hundred programmers to work on your project, you’re going
to find it easier to find a hundred programmers who know a popular language than
a less popular one—but that doesn’t mean that the popular language is the best
one for your task!

The programming language that we’re using in this book is Java (http:
//java.sun.com for more information on Java). Java is a very popular pro-
gramming language. Delta uses it to handle its web site (http://www.delta.
com). NASA used it on the Mars Rover ”Spirit” (http://www.sun.com/aboutsun/
media/features/mars.html). It has been used in touchscreen kiosks for Super
Bowl fans (http://java.sun.com/features/1998/01/superbowl.html).

Java is known for being object-oriented, platform neutral (runs on many com-
puters and electronic devices), robust, and secure. An early drawback to Java was
that programs written in Java often had a slower execution time than ones written
in C or C++. However, current Java compilers and interpreters have substantially

“main”
2005/9/6
page 6

i

i

i

i

i

i

i

i

6 Chapter 1 Introduction to Computer Science and Media Computation

reduced this problem.
Let’s make clear some of our language that we’ll be using in this book. A

program is a description of a process in a particular programming language that
achieves some result that is useful to someone. A program could be small (like one
that implements a calculator), or could be huge (like the program that your bank
uses to track all of its accounts). An algorithm (in contrast) is a description of
a process apart from any programming language. The same algorithm might be
implemented in many different languages in many different ways in many different
programs–but it would all be the same process if we’re talking about the same
algorithm.

Computer Science Idea: Programs versus Algo-
rithms
A program is written in a programming language and can
be executed by a computer. An algorithm can be writ-
ten in English and is a description of a process. Many
programs can implement an algorithm in many different
programming languages.

1.2 WHAT COMPUTERS UNDERSTAND

Programs are written to run on computers. What does a computer know how to do?
What can we tell the computer to do in the program? The answer is “Very, very
little.” Computers are exceedingly stupid. They really only know about numbers.

Actually, even to say that computers know numbers is a myth. It might be
more appropriate to say that computers are used to encode (represent) numbers.
Computers are electronic devices that react to voltages on wires. We group these
wires into sets (a set of eight of these wires is called a byte and one wire is called a
bit). If a wire has a voltage on it, we say that it encodes a 1. If it has no voltage
on it, we say that it encodes a 0. So, from a set of eight wires (a byte), we get a
pattern of eight 0’s and 1’s, e.g., 01001010. Using the binary number system, we
can interpret this byte as a decimal number (Figure 1.3). That’s where we come
up with the claim that a computer knows about numbers1.

Computer Science Idea: Binary Number System
Binary numbers are made up of only 2 digits (0 and 1). We
usually work in the decimal number system which has the
digits (0 to 9). The value of a decimal number is calculated
by multiplying each digit by a power of 10 and summing
the result. The powers of 10 start at 0 and increase from
right to left. The value of a binary number is calculated by
multiplying each digit by a power of 2 and summing the
result (Figure 1.3).

The computer has a memory filled with bytes. Everything that a computer is
working with at a given instant is stored in its memory. That means that everything

1We’ll talk more about this level of the computer in chapter 15

“main”
2005/9/6
page 7

i

i

i

i

i

i

i

i

Section 1.2 What Computers Understand 7

that a computer is working with is encoded in its bytes: JPEG pictures, Excel
spreadsheets, Word documents, annoying Web pop-up ads, and the latest spam
email.

A computer can do lots of things with numbers. It can add them, subtract
them, multiply them, divide them, sort them, collect them, duplicate them, filter
them (e.g., “make a copy of these numbers, but only the even ones”), and compare
them and do things based on the comparison. For example, a computer can be told
in a program “Compare these two numbers. If the first one is less than the second
one, jump to step 5 in this program. Otherwise, continue on to the next step.”

It sounds like computers are incredible calculators, and that’s certainly why
they were invented. The first use of computers was during World War II for calcu-
lating trajectories of projectiles (“If the wind is coming from the SE at 15 MPH,
and you want to hit a target 0.5 miles away at an angle of 30 degrees East of North,
then incline your launcher to . . .”). The computer is an amazing calculator. But
what makes it useful for general programs is the concept of encodings.

Computer Science Idea: Computers can layer en-
codings
Computers can layer encodings to virtually any level of
complexity. Numbers can be interpreted as characters,
which can be interpreted in groups as Web pages. But
at the bottommost level, the computer only “knows” volt-
ages which we interpret as numbers.

If one of these bytes is interpreted as the number 65, it could just be the
number 65. Or it could be the letter A using a standard encoding of numbers-to-
letters called the American Standard Code for Information Interchange (ASCII).
If that 65 appears in a collection of other numbers that we’re interpreting as text,
and that’s in a file that ends in “.html” it might be part of something that looks
like this <a href=. . ., which a Web browser will interpret as the definition of a link.
Down at the level of the computer, that A is just a pattern of voltages. Many layers
of programs up, at the level of a Web browser, it defines something that you can
click on to get more information.

If the computer understands only numbers (and that’s a stretch already), how
does it manipulate these encodings? Sure, it knows how to compare numbers, but
how does that extend to being able to alphabetize a class list? Typically, each layer
of encoding is implemented as a piece or layer of software. There’s software that
understands how to manipulate characters. The character software knows how to
do things like compare names because it has encoded that a comes before b and
so on, and that the numeric comparison of the order of numbers in the encoding
of the letters leads to alphabetical comparisons. The character software is used by
other software that manipulates text in files. That’s the layer that something like
Microsoft Word or Notepad or TextEdit would use. Still another piece of software
knows how to interpret HTML (the language of the Web), and another layer of
that software knows how to take HTML and display the right text, fonts, styles,
and colors.

We can similarly create layers of encodings in the computer for our specific

“main”
2005/9/6
page 8

i

i

i

i

i

i

i

i

8 Chapter 1 Introduction to Computer Science and Media Computation

tasks. We can teach a computer that cells contain mitochondria and DNA, and that
DNA has four kinds of nucleotides, and that factories have these kinds of presses
and these kinds of stamps. Creating layers of encoding and interpretation so that
the computer is working with the right units (recall back to our recipe analogy)
for a given problem is the task of data representation or defining the right data
structures.

If this sounds like lots of software, it is. When software is layered like this,
it slows the computer down somewhat. But the amazing thing about computers is
that they’re amazingly fast—and getting faster all the time!

Computer Science Idea: Moore’s Law
Gordon Moore, one of the founders of Intel (maker of com-
puter processing chips for computers running Windows op-
erating systems), made the claim that the number of tran-
sistors (a key component of computers) would double at
the same price every 18 months, effectively meaning that
the same amount of money would buy twice as much com-
puting power every 18 months. This Law has continued to
hold true for decades.

Computers today can execute literally BILLIONS of program steps per sec-
ond! They can hold in memory entire encyclopedias of data! They never get tired
nor bored. Search a million customers for a particular card holder? No problem!
Find the right set of numbers to get the best value out of an equation? Piece of
cake!

Process millions of picture elements or sound fragments or movie frames?
That’s media computation.

1.3 MEDIA COMPUTATION: WHY DIGITIZE MEDIA?

Let’s consider an encoding that would be appropriate for pictures. Imagine that
pictures were made up of little dots. That’s not hard to imagine: Look really closely
at your monitor or at a TV screen and see that your images are already made up of
little dots. Each of these dots is a distinct color. You may know from physics that
colors can be described as the sum of red , green, and blue. Add the red and green
to get yellow. Mix all three together to get white. Turn them all off, and you get
a black dot.

What if we encoded each dot in a picture as a collection of three bytes, one
each for the amount of red, green, and blue at that dot on the screen? We could
collect a bunch of these three-byte-sets to specify all the dots of a given picture.
That’s a pretty reasonable way of representing pictures, and it’s essentially how
we’re going to do it in chapter 4.

Manipulating these dots (each referred to as a pixel or picture element) can
take a lot of processing. There can be thousands or even millions of them in a
picture. But, the computer doesn’t get bored and it’s mighty fast.

The encoding that we will be using for sound involves 44,100 two-byte-sets
(called a sample) for each second of time. A three minute song requires 158,760,000
bytes. Doing any processing on this takes a lot of operations. But at a billion

“main”
2005/9/6
page 9

i

i

i

i

i

i

i

i

Section 1.4 Computer Science for Everyone 9

operations per second, you can do lots of operations to every one of those bytes in
just a few moments.

Creating these kinds of encodings for media requires a change to the media.
Look at the real world: It isn’t made up of lots of little dots that you can see.
Listen to a sound: Do you hear thousands of little bits of sound per second? The
fact that you can’t hear little bits of sound per second is what makes it possible
to create these encodings. Our eyes and ears are limited: We can only perceive so
much, and only things that are just so small. If you break up an image into small
enough dots, your eyes can’t tell that it’s not a continuous flow of color. If you
break up a sound into small enough pieces, your ears can’t tell that the sound isn’t
a continuous flow of auditory energy.

The process of encoding media into little bits is called digitization, sometimes
referred to as “going digital .” Digital means (according to the American Heritage
Dictionary) “Of, relating to, or resembling a digit, especially a finger.” Making
things digital is about turning things from continuous, uncountable, to something
that we can count, as if with our fingers.

Digital media, done well, feel the same to our limited human sensory appara-
tus as the original. Phonograph recordings (ever seen one of those?) capture sound
continuously, as an analog signal. Photographs capture light as a continuous flow.
Some people say that they can hear a difference between phonograph recordings
and CD recordings, but to my ear and most measurements, a CD (which is digi-
tized sound) sounds just the same—maybe clearer. Digital cameras at high enough
resolutions produce photograph-quality pictures.

Why would you want to digitize media? Because it’s easier to manipulate, to
replicate, to compress, and to transmit. For example, it’s hard to manipulate images
that are in photographs, but it’s very easy when the same images are digitized. This
book is about using the increasingly digital world of media and manipulating it—
and learning computation in the process.

Moore’s Law has made media computation feasible as an introductory topic.
Media computation relies on the computer doing lots and lots of operations on lots
and lots of bytes. Modern computers can do this easily. Even with slow (but easy to
understand) languages, even with inefficient (but easy to read and write) programs,
we can learn about computation by manipulating media.

1.4 COMPUTER SCIENCE FOR EVERYONE

But why should you learn about computation? Of course, people who want to be
computer scientists will need to learn about computation. Why should anyone who
doesn’t want to be a computer scientist learn about computer science?

Most professionals today do manipulate media: Papers, videos, tape record-
ings, photographs, drawings. Increasingly, this manipulation is done with a com-
puter. Media are very often in a digitized form today.

We use software to manipulate these media. We use Adobe Photoshop for
manipulating our images, and Macromedia SoundEdit to manipulate our sounds,
and perhaps Microsoft PowerPoint for assembling our media into slideshows. We
use Microsoft Word for manipulating our text, and Netscape Navigator or Microsoft
Internet Explorer for browsing media on the Internet.

“main”
2005/9/6
page 10

i

i

i

i

i

i

i

i

10 Chapter 1 Introduction to Computer Science and Media Computation

So why should anyone who does not want to be a computer scientist study
computer science? Why should you learn to program? Isn’t it enough to learn to
use all this great software? The following two sections provide two answers to these
questions.

1.4.1 It’s About Communication

Digital media are manipulated with software. If you can only manipulate media
with software that someone else made for you, you are limiting your ability to
communicate. What if you want to say something or say it in some way that
Adobe, Microsoft, Apple, and the rest don’t support you in saying? If you know
how to program, even if it would take you longer to do it yourself, you have that
freedom.

What about learning those tools in the first place? In my years in computers,
I’ve seen a variety of software come and go as the package for drawing, painting,
word-processing, video editing, and beyond. You can’t learn just a single tool and
expect to be able to use that your entire career. If you know how the tools work,
you have a core understanding that can transfer from tool to tool. You can think
about your media work in terms of the algorithms, not the tools.

Finally, if you’re going to prepare media for the Web, for marketing, for print,
for broadcast, for any use whatsoever, it’s worthwhile for you to have a sense of
what’s possible, what can be done with media. It’s even more important as a
consumer of media that you know how the media can be manipulated, to know
what’s true and what could be just a trick. If you know the basics of media
computation, you have an understanding that goes beyond what any individual
tool provides.

1.4.2 It’s About Process

In 1961, Alan Perlis gave a talk at MIT where he made the argument that com-
puter science, and programming explicitly, should be part of a general, liberal
education [13]. Perlis is an important figure in the field of computer science. The
highest award that a computer scientist can be honored with is the ACM Turing
Award. Perlis was the first recipient of that award. He’s also an important fig-
ure in software engineering, and he started several of the first computer science
departments in the United States.

Perlis’ argument can be made in comparison with calculus. Calculus is gen-
erally considered part of a liberal education: Not everyone takes calculus, but if
you want to be well-educated, you will typically take at least a term of calculus.
Calculus is the study of rates, which is important in many fields. Computer science,
as we said before (page 2), is the study of process. Process is important to nearly
every field, from business to science to medicine to law. Knowing process formally
is important to everyone.

PROBLEMS

1.1. What is a program?
1.2. What is an algorithm?
1.3. What is memory used for in a computer?

“main”
2005/9/6
page 11

i

i

i

i

i

i

i

i

Section 1.4 Computer Science for Everyone 11

1.4. What type of computer scientist studies how recipes are written? What type
of computer scientist studies how to make a computer think? What type of
computer scientist studies the units used in recipes?

1.5. What is Moore’s Law? What does it have to do with computers getting faster
and cheaper?

1.6. Every profession uses computers today. Use a Web browser and a search engine
like Google to find sites that relate your field of study with computer science or
computing or computation. For example, search for “biology computer science”
or “management computing.”

1.7. Look in the classified section of your newspaper. What kinds of jobs can people
get with a degree in computer science? How much money do they make? How
many jobs are available?

1.8. Go to http://www.howstuffworks.com and find out how digital cameras work.
1.9. Go to http://www.howstuffworks.com and find out how digital recording and

CDs work.
1.10. Go to http://www.howstuffworks.com and find out remote entry devices work.
1.11. Find an ASCII table on the Web: A table listing every character and its corre-

sponding numeric representation. Write down the sequence of numbers whose
ASCII values make up your name.

1.12. Find a Unicode table on the Web. What’s the difference between ASCII and
Unicode? How many bytes does each use to represent a character?

1.13. Consider the representation for pictures described in Section 1.3, where each
“dot” (pixel) in the picture is represented by three bytes, for the red, green,
and blue components of the color at that dot. How many bytes does it take
to represent a 640x480 picture, a common picture size on the Web? How many
bytes does it take to represent a 1024x768 picture, a common screen size? (What
do you think is meant now by a “3 megapixel” camera?)

1.14. How many digits are used in the binary number system? How many digits are
used in the decimal number system? How would you represent 3, 5, 8, and 13 in
the binary number system?

1.15. What is the hexadecimal number system? How many digits are used in the
hexadecimal number system? How would you represent 4, 18, 33, and 64 in this
number system?

1.16. What is the octal number system? How many digits are used in the octal number
system? How would you represent 4, 18, 33, and 64 in this number system?

1.17. How many digits are in one byte? How many different numbers can be repre-
sented by one byte? What if you have two bytes? Four bytes?

*1.18. How would you represent negative numbers in bytes? Do a search on the web
for “negative numbers” and see what you find.

*1.19. How might you represent a floating point number in terms of bytes? Do a search
on the Web for “floating point” and see what you find.

1.20. Look up Alan Kay and the Dynabook on the Web. Who is he, and what does he
have to do with media computation?

1.21. Look up Alan Turing on the Web. Who was he, and what does he have to do
with our notion of what a computer can do and how encodings work?

1.22. Look up Kurt Goedel on the Web. Who was he, and what amazing things did
he do with encodings?

“main”
2005/9/6
page 12

i

i

i

i

i

i

i

i

12 Chapter 1 Introduction to Computer Science and Media Computation

TO DIG DEEPER

James Gleick’s book Chaos describes more on emergent properties–how small changes
can lead to dramatic effects, and the unintended impacts of designs because of
difficult-to-foresee interactions.

Mitchel Resnick’s book Turtles, Termites, and Traffic Jams: Explorations in
Massively Parallel Microworlds [23] describes how ants, termites, and even traffic
jams and slime molds can be described pretty accurately with hundreds or thou-
sands of very small processes (programs) running and interacting all at once.

Exploring the Digital Domain [3] is a wonderful introductory book to compu-
tation with lots of good information about digital media.

“main”
2005/9/6
page 13

i

i

i

i

i

i

i

i

Section 1.4 Computer Science for Everyone 13

Python/Jython

def hello():
print "Hello World"

Java

public class HelloWorld
{

public static void main(String[] args)
{

System.out.println("Hello World!");
}

}

C++

#include <iostream.h>

main() {
cout << "Hello World!" << endl;
return 0;

}

Scheme

(define helloworld
(lambda ()

(display "Hello World")
(newline)))

FIGURE 1.2: Comparing programming languages: A common simple programming
task is to print the words “Hello, World!” to the screen.

“main”
2005/9/6
page 14

i

i

i

i

i

i

i

i

14 Chapter 1 Introduction to Computer Science and Media Computation

0 1 0 0 1 0 1 0

22222222
01234567

20 = 1 * 0 = 0

21 = 2 * 1 = 2

22 = 4 * 0 = 0

23 = 8 * 1 = 8

2
4
 = 16 * 0 = 0

25 = 32 * 0 = 0

26 = 64 * 1 = 64

27 = 128 * 0 = 0

74

FIGURE 1.3: Eight wires with a pattern of voltages is a byte, which gets interpreted
as a pattern of eight 0’s and 1’s, which gets interpreted as a decimal number.

“main”
2005/9/6
page 15

i

i

i

i

i

i

i

i

C H A P T E R 2

Introduction to Java

2.1 JAVA

2.2 INTRODUCTION TO DRJAVA

2.3 JAVA BASICS

2.4 VARIABLES

2.5 CONCEPTS SUMMARY

Chapter Learning Objectives
The computer science goals for this chapter are:

• To introduce objects and classes.

• To use DrJava to execute Java statements.

• To use Java math and relational operators.

• To recognize different types (encodings) of data, such as integers, floating
point numbers, booleans, characters, and strings.

• To introduce casting.

• To introduce variables and show the difference between primitive and object
variables.

2.1 JAVA

The programming language that we’re going to be using in this book is called Java.
It’s a language invented by James Gosling (http://java.sun.com/people/jag/)
at Sun Microsystems.

2.1.1 History of Java

Back in 1990 Sun created project Green to try and predict the next big thing in
computers. The goal of the project was to try and develop something to position
Sun ahead of its competitors. They thought that the next big thing would be
networked consumer electronics devices like set-top boxes for downloading video on
demand. They tried to develop a prototype using C++ but after many problems
they decided to develop a new object-oriented language which they originally named
Oak, after a tree outside James Gosling’s office. They created a demonstration but
the cable companies weren’t really interested and the future of the project was in
doubt.

15

“main”
2005/9/6
page 16

i

i

i

i

i

i

i

i

16 Chapter 2 Introduction to Java

At a brainstorming session they decided to try to reposition the language for
use with the internet. They created a web browser that had programs (applets)
embedded in HTML pages to do 3D rotation of a molecule and animation of a
sorting algorithm. They showed this at a conference. At that time web pages didn’t
respond to user action. They simply displayed text and unchanging graphics. The
audience was amazed to see the user rotate a 3d molecule on a web page.

A patent search found that there was an existing programming language with
the copyrighted name Oak, so the team brainstormed new names at a local coffee
house and Java was selected. Java was released for free in 1995. Since then it has
become one of the fastest adopted technologies of all times. It is now used for more
than just web pages. It is used in many devices from cell phones to web servers.
For more on the history of Java see http://java.sun.com/features/1998/05/
birthday.html.

2.1.2 Introduction to Objects and Classes

Java is an object-oriented programming language. This means that the focus is on
objects (who) as well as procedures (what). Objects are persons, places, or things
that do the action in a situation or are acted upon.

An example might help you to understand what focusing on the objects means.
When customers enter a restaurant a greeter will welcome them to the restaurant
and show them to their table. A waiter will take the order and bring the drinks
and food. One or more chefs will cook the food. The waiter will create the bill and
give it to the customers. The customers will pay the bill.

How many people does it take to get a customer fed in a restaurant? Well,
you need at least a customer, greeter, waiter, and a chef. What other things are
doing action or being acted upon? We mentioned order, table, drink, food, and
bill. Each of these are objects. The objects in this situation are working together
to feed the customer.

What types of objects are they? We have given names to each thing we
mentioned: customer, waiter, food, etc. The names we gave are how we classify
these objects. You probably know what we mean by a customer or food. But the
computer doesn’t know what we mean by these things. The way that we get the
computer to understand what we mean is by defining a class. A class in Java tells
the computer what data we expect objects of that class to have and what they can
do. We would expect that food would have a name, a price, and a way to prepare
it. We would expect that a customer would know what they can afford to pay and
how to pay a bill.

Every object of the same class will have the same skills or operations (things
it can do) and data or variables (things it knows about). For example, each object
of the order class should know which customer placed that order and what food is
in the order. An object of the chef class should know how to prepare the food.

There can be many objects of the same class. A restaurant might have 3
chefs, 10 waiters, 2 greeters, and 100 food objects on its menu. On a given day and
time it might have 100 customers.

Why don’t restaurants just have one type of employee? One person could
greet the customers, take the orders, cook the food and deliver the food. That

“main”
2005/9/6
page 17

i

i

i

i

i

i

i

i

Section 2.2 Introduction to DrJava 17

might be okay if there is only one customer but what about when there are many
customers? You can imagine that one person wouldn’t be able to handle so many
tasks and food would get burnt, orders would take too long to fill, and customers
wouldn’t be happy. Restaurants break the tasks into different jobs so that they
can be efficient and effective. Object-oriented programs also try to distribute the
tasks to be done so that no one object does all the work. This makes it easier to
maintain and extend the program. It can also make the program more efficient.

2.2 INTRODUCTION TO DRJAVA

We recommend that you program using a tool called DrJava. DrJava is a simple
editor (tool for entering program text) and interaction space so that you can try
things out in DrJava and create new programs (methods) and classes. DrJava is
available for free under the DrJava Open Source License, and it is under active
development by the JavaPLT group at Rice University.

If you don’t wish to use DrJava you can use this book with another devel-
opment environment. Simply set the classpath (place to look for classes that you
are using in your program) to include the classes used in this book. Check your
documentation for your development environment to see how to do this. We rec-
ommend using DrJava because it is free, easy to use, has an interactions pane for
trying out Java statements, is written in Java so it works on all platforms, and it
includes a debugger. Since it is free, you can use it just for the interactions pane,
and do your coding in another development environment if you prefer.

To install DrJava, you’ll have to do these things:

1. Make sure that you have Java 1.4 or above installed on your computer. If
you don’t have it, load it from the CD, or you can get it from the Sun site at
http://www.java.sun.com.

2. You’ll need to install DrJava. You can either load it from the CD or get it
from http://drjava.org/. Be sure to get a version of DrJava that works
with the version of Java you are using! The current stable release at the time
this book was being written only worked with Java 1.4. To use Java 1.5 you
would need to download the beta version of DrJava. If you have more than
one version of Java installed on your machine you will probably need to use
the jar file version of DrJava instead of the DrJava executable. See the CD
for more information on using the jar file version of DrJava.

3. Add the Java classes that come with the book to the extra classpaths for
DrJava. Start DrJava (see the next section for how to do this), click on Edit
and then Preferences. This will show the Preferences window (Figure 2.1).
Click on the Add button below the Extra Classpath textarea and add the
path to the directory where the classes that come with the book are, such as:
c:/intro-prog-java/bookClasses.

2.2.1 Starting DrJava

How you start DrJava depends on your platform. In Windows, you’ll have a DrJava
icon that you’ll simply double-click. In Linux, you’ll probably cd into your Dr-

“main”
2005/9/6
page 18

i

i

i

i

i

i

i

i

18 Chapter 2 Introduction to Java

FIGURE 2.1: DrJava Preferences Window

Java directory and type a command like java -jar drjava-DATE-TIME.jar where
DATE-TIME are values for the release of DrJava that you are using. On the Mac-
intosh, you’ll probably have to type commands in your Terminal application where
you cd to the correct directory then type ./DrJava. See the instructions on the
CD for what will work for your kind of computer.

'

&

$

%

Common Bug: DrJava is slow to start
DrJava will take a while to load on all platforms. Don’t
worry—you’ll see (Figure 2.2) for a long time. This is
called a splash screen, which is a small picture that displays
while a program is loading. If you see the splash screen
(Figure 2.2), DrJava will load.

FIGURE 2.2: DrJava Splash Screen

“main”
2005/9/6
page 19

i

i

i

i

i

i

i

i

Section 2.2 Introduction to DrJava 19

'

&

$

%

Common Bug: Making DrJava run faster
As we’ll talk more about later, when you’re running Dr-

Java, you’re actually running Java. Java needs memory. If
you’re finding that DrJava is running slowly, give it more
memory. You can do that by quitting out of other ap-
plications that you’re running. Your email program, your
instant messenger, and your digital music player all take
up memory (sometimes lots of it!). Quit out of those and
DrJava will run faster.

Once you start DrJava, it will look something like Figure 2.3. There are three
main areas in DrJava (the bars between them move so that you can resize the
areas):

• The top left window pane is the files pane. It has a list of the open files in
DrJava. In Java each class that you create is usually stored in its own file.
Java programs often consist of more than one class, thus more than one file.
You can click on a file name in the Files pane to view the contents of that file
in the top right window pane (definitions pane).

• The top right part is the definitions pane. This is where you write your
classes: a collection of related data and methods. This area is simply a
text editor—think of it as Microsoft Word for your programs. The computer
doesn’t actually try to interpret the names that you type up in the program
area until you compile. You can compile all the current files open in the files
pane by clicking on the Compile All button near the top of the DrJava
window. Compiling your code changes it into instructions that the computer
understands and can execute.

• The bottom part is the interactions pane. This is where you can literally
command the computer to do something. You type your commands at the
> prompt, and when you hit return, the computer will interpret your words
(i.e., apply the meanings and encodings of the Java programming language)
and do what you have told it to do. This interpretation will include whatever
you typed and compiled in the definitions pane as well.

There are other features of DrJava visible in Figure 2.3. The Open button
will let you open a file, it will add the file name to the files pane, and show the
code in that file in the definitions pane. The Save button will save the file that is
currently displayed in the definitions pane. The Javadoc button creates HTML
documentation from the Javadoc comments in your files (comments that start with

‘‘main’’
2005/9/6
page 20

i

i

i

i

i

i

i

i

20 Chapter 2 Introduction to Java

FIGURE 2.3: DrJava (with annotations)

’/**’ and end with ’*/’.'

&

$

%

Making it Work Tip: Get to know your Help!
An important feature to already start exploring is the
Help. If you click on Help and then click on Help again
when a menu is displayed you will see a help window. Start
exploring it now so that you have a sense for what’s there.

2.3 JAVA BASICS

We’re going to start out by simply typing commands in the interactions pane—not
defining new names yet, but simply using the names and symbols that Java knows.

2.3.1 Math Operators

Try typing the following in the interactions pane.

> 34 + 56
90
> 26 - 3

“main”
2005/9/6
page 21

i

i

i

i

i

i

i

i

Section 2.3 Java Basics 21

23
> 3 * 4
12
> 4 / 2
2

As you can see Java understands how to recognize numbers, add, subtract,
multiply and divide. You can type a mathematical expression in the interactions
pane and then hit the “Enter” key and it will display the result of the expression.

“main”
2005/9/6
page 22

i

i

i

i

i

i

i

i

22 Chapter 2 Introduction to Java

Go ahead and try it.'

&

$

%

Making it Work Tip: Using Another Development
Environment
If you are not using DrJava you will need to type all code
that we show in the interactions pane in a main method in-
stead. Compile and execute the class with a main method.
To get the above example to work in another development
environment we could have written the following class def-
inition in a file named “Test.java”.

public class Test
{

public stat ic void main (St r ing [] a rgs)
{

System . out . p r i n t l n (34 + 56) ;
System . out . p r i n t l n (26 − 3) ;
System . out . p r i n t l n (3 ∗ 4) ;
System . out . p r i n t l n (4 / 2) ;

}
}
The next step is to compile the Java source file. This
changes it from something people can read and understand
into something the computer can read and understand. To
compile the source file with the free command line tools
from Sun do the following:

> javac Test . java

When you compile a Java source file the compiler will cre-
ate a class file, so if you compile the source file “Test.java”
the compiler will create the file “Test.class”. This file will
have the same name as the source file but will have an
extension of “.class”. After you have compiled the source
you can execute the class. To execute it using the free
command line tools from Sun is to use:

> java Test

We have included this Test class in your bookClasses
directory. You can continue to use the Test class and just
change the code in the main method to try the examples
we show in DrJava’s interactions pane. We will explain all
about classes and main methods in chapter 11.
The ability to try things in the interactions pane without
having to create a class and a main method is one of the
major advantages to using DrJava. Remember that it is
free, so even if you use another development environment
you can download it and use it too, at least for the inter-
actions pane!

“main”
2005/9/6
page 23

i

i

i

i

i

i

i

i

Section 2.3 Java Basics 23

2.3.2 Printing the Result of a Statement

In English you end sentences with a period. In Java you typically end a program-
ming statement with a semicolon. However, in the interactions pane you can leave
off the semicolon and it will print the result of whatever you have typed (as you saw
in the interactions pane). If you do add the semicolon at the end of a Java state-
ment in the interactions pane it will execute the statement, but not automatically
print the result in the interactions pane.

Even though you do not have to type the semicolon after statements in the
interactions pane you must type the semicolon at the end of your statements in the
definitions pane or the code will not compile.

Since you will need to provide the semicolon at the end of statements in
the definitions pane, you should get used to using them in the interactions pane
too. But, how do you show the result of a statement in the interactions pane?
The phrase System.out.println() is an important one to know. The meaning
for System.out.println() is “Use the PrintStream object known as out in the
System class to print out the value of whatever is in the parentheses followed by
an end-of-line character.” DrJava will print the result of an expression in the
interactions pane when you use System.out.println(expression).

You can have nothing in the parentheses which will just move the output to a
new line, or it can be a name that the computer knows, or an expression (literally,
in the algebraic sense). Try typing System.out.println(34 + 56) by clicking in
the interactions area, typing the command, and hitting return—like this:

> System.out.println(34 + 56);
90
> System.out.println(26 - 3);
23
> System.out.println(3 * 4);
12
> System.out.println(4 / 2);
2
> System.out.println(9 % 4);
1
> System.out.println(9 / 5 * -3 + 32);
29
> System.out.println(3 + 2 * 4);
11
> System.out.println((3 + 2) * 4);
20

The code 34 + 56 is a numeric expression that Java understands. Obviously,
it’s composed of two numbers and an operation that Java knows how to do, ’+’
meaning “add.” In Java we call math symbols like ’+’ and ’-’ operators. The
operator ’-’ means subtract. The operator ’*’ means multiply. The operator ’/’
means divide. The operator ’%’ means calculate the remainder of the first number
divided by the second one. This is called the modulus operator.

“main”
2005/9/6
page 24

i

i

i

i

i

i

i

i

24 Chapter 2 Introduction to Java

Notice that you get a different result from System.out.println(3 + 2 *
4); than from System.out.println((3 + 2) * 4);. This is because multiplica-
tion has higher precedence than addition (meaning it is done first by default). You
can use parentheses to change the default order of evaluation of an expression or
to make the order clear.'

&

$

%

Common Bug: Matching Parentheses
When you use parentheses you will need an open paren-
thesis for each close parenthesis. If you don’t have a match
you will get an error.

> System.out.println(3 + 2) * 4);
Syntax Error: ")"
> System.out.println((3 + 2 * 4);
Syntax Error: ";"

2.3.3 Data Types in Math Expressions

Java takes how you specify numbers seriously. If it sees you using integers, it thinks
you want an integer result. If it sees you using floating point numbers, it thinks
you want a floating point result. Sounds reasonable, no? But how about:

> System.out.println(1.0/2.0);
0.5
> System.out.println(1/2);
0

The answer to 1/2 is 0? Well, sure! The numbers 1 and 2 are integers. There
is no integer equal to 1/2, so the answer must be 0 (the part after the decimal point
is thrown away)! Simply by adding “.0” to a number convinces Java that we’re
talking about floating point numbers (specifically the Java primitive type double),
so the result is in floating point form.

We call integer and floating point numbers two different types of data. By
data we mean the values that we use in computation. The type of the data, which
is also called the data type, determines how many bits are used to represent the
value and how the bits are interpreted by the computer.

2.3.4 Casting

We could also have used casting to get the correct result from the division of two
integers. Casting is like using a mold to give some material a new shape. It tells
the compiler to change a value to a particular type even if it could lead to a loss of
data. To cast you put the type that you want the value changed to inside an open
and close parenthesis: (type). There are two floating point types in Java: float
and double. The type double is larger than the type float and thus more precise.
We will use this type for most of the floating point numbers in this book. Notice
that we can cast either the 1 or 2 to double and the answer will then be given as
a double. We could cast both the 1 and 2 to double and the result would be fine.

“main”
2005/9/6
page 25

i

i

i

i

i

i

i

i

Section 2.3 Java Basics 25

However, if we cast the result of the integer division to a double it is too late since
the result of integer division of 1 by 2 is 0 since the result is an integer.

> System.out.println((double) 1 / 2);
0.5
> System.out.println(1 / (double) 2);
0.5
> System.out.println((double) (1/2));
0.0

2.3.5 Relational Operators

We can write Java statements that do simple math operations. But if that was all
we could do, computers wouldn’t be terribly useful. Computers can also decide if
something is true or false.

> System.out.println(3 > 2);
true
> System.out.println(2 > 3);
false
> System.out.println(’a’ < ’b’);
true
> System.out.println(’j’ > ’c’);
true
> System.out.println(2 == 2);
true
> System.out.println(2 != 2);
false
> System.out.println(2 >= 2);
true
> System.out.println(2 <= 2);
true
> System.out.println(true == false);
false

Using symbols we can check if one value is greater than another ’>’, less than
another ’<’, equal to another ’==’, not equal to another ’ !=’, greater or equal to
another ’>=’, and less than or equal to another ’<=’. You can use these relational
operators on many items such as numbers and characters as shown above. A
character can be specified between a pair of single quotes (’a’).

You might find ’==’ odd as a way to test for equality. But, in Java ’=’ is
used to assign a value, not check for equality, as you will see in the next section.

Notice that Java understands the concepts true and false. These are re-

“main”
2005/9/6
page 26

i

i

i

i

i

i

i

i

26 Chapter 2 Introduction to Java

served words in Java which means that they can’t be used as names.'

&

$

%

Making it Work Tip: Java Primitive Types

• Integers are numbers without a decimal point in
them. Integers are represented by the types: int,
byte, short, or long. Example integers are: 3,
502893, and -2350. In this book we will use only
int to represent integers. Each integer takes up 32
bits of memory (4 bytes).

• Floating point numbers are numbers with a decimal
point in them. Floating point numbers can be rep-
resented by the types: double or float. Example
doubles are 3.0, -19.23, and 548.675. In this book we
will use mostly use double to represent floating point
numbers. Each double in memory takes up 64 bits
(8 bytes).

• Characters are individual characters such as can be
made with one key stroke on your keyboard. Char-
acters are represented by the type: char. Characters
are specified inside single quotes, like ’a’ or ’A’. Each
character in memory takes up 16 bits (2 bytes).

• True and false values are represented by the type
boolean. Variables of type boolean can only have
true or false as values. While a boolean could be
represented by just one bit the size of a boolean is
up to the virtual machine.

2.3.6 Strings

Computers can certainly work with numbers and even characters. They can also
work with strings. Strings are sequences of characters. Try the following in the
interactions pane.

> System.out.println("Mark");
Mark
> System.out.println("13 + 5");
13 + 5

Java knows how to recognize strings (lists of characters) that start and end
with " (double quotes). Notice what happens when you enclose a math expression
like 13 + 5 in a pair of double quotes. It doesn’t print the result of the math
expression but the characters inside the pair of double quotes. Whatever is inside a
pair of double quotes is not evaluated, the value of it is exactly what was entered.

“main”
2005/9/6
page 27

i

i

i

i

i

i

i

i

Section 2.3 Java Basics 27

Now try the following in the interactions pane.

> System.out.println("Barbara" + "Ericson");
BarbaraEricson
> System.out.println("Barbara" + " " + "Ericson");
Barbara Ericson
> System.out.println("Barbara " + "Ericson");
Barbara Ericson

You can “add” strings together using a + operator as you see in "Barbara"
+ "Ericson". It simply creates a new string with the characters in the first string
followed by the characters in the second string. This is called appending or con-
catenating strings. Notice that no space is added automatically. If you want space
in your string you will need to put it there using a space between a pair of double
quotes as shown above with "Barbara" + " " + "Ericson". Or you can have a
space inside a string as shown in "Barbara " + "Ericson".

Now try the following in the interactions pane.

> System.out.println("The total is " + (13 + 5));
The total is 18
> System.out.println("The total is " + 13 + 5);
The total is 135

You can “add” a string and a number. It will turn the number into a string
and then append the two strings. This does what you would expect to show the
result of "The total is " + (13 + 15) but you may not expect what happens
with "The total is " + 13 + 5.

The computer evaluates statements from left to right so the computer eval-
uates this as “add” the string "The total is" to the number 13 by turning the
number 13 into a string "13". Next it sees the + 5 as adding a number to the
string "The total is 13". It turns the second number into a string and results
in The total is 135.

The way to get what you would expect is to use parentheses to enclose the
math expression. Just like in algebra the parentheses change the order things are
evaluated. The (13 + 5) will be evaluated before the append of the string and the
resulting number 18.

If you want to put a double quote inside of a string you will need some way
to tell the computer that this isn’t the ending double quote. In Java the backslash
\ character is used to treat the next character differently. So using \" results in a
double quote inside a string. Some other special characters are \n to force a new
line and \t to force a tab.

> System.out.println("Barb says, \"Hi\".");
Barb says, "Hi."
> System.out.println("This is on one line.\nThis is on the next");
This is on one line.
This is on the next

‘‘main’’
2005/9/6
page 28

i

i

i

i

i

i

i

i

28 Chapter 2 Introduction to Java

2.4 VARIABLES

We have used Java to do calculations and to append strings, but we have not stored
the results. The results would be in memory but we don’t know where they are in
memory and we can’t get back to them. On a calculator we can store the result
of one calculation to memory (Figure 2.4). We can then use that stored value in
other calculations. On a calculator you also have access to the result of the last
calculation.

FIGURE 2.4: A calculator with a number in memory

2.4.1 Declaring Variables

On a computer we can store many calculated values by naming them. We can
then access those values by using the variable names. The computer takes care of
mapping the name to the memory location (address) that stores the value. We call
naming values declaring a variable.

When you declare a variable in Java you specify the type for the variable and
a name (type name). You need to specify a type so that Java knows how many
bits to reserve in memory and how to interpret the bits. You can also assign a
value to a variable using the ’=’ operator and provide a value or an expression
(type name = expression). Don’t read ’=’ as equals but as assign the value of
the right side to the variable on the left (which makes using ’==’ for ’is equal to’ or
’is equivalent to’ make more sense). The bits in the variable will be set to represent
the value. We will use the type int for storing integer values (numbers without
decimal points) and the type double for storing floating point values (numbers with
decimal points).

2.4.2 Using Variables in Calculations

What if you want to calculate the total bill for a meal including the tip? You would
start with the bill value and multiply it by the percentage you want to tip (20%),
that would give you the tip amount. You could then add the tip amount to the bill
total to get the total amount to leave.

We will use the type double to store the bill amount, tip, and total amount
since these can have decimal points. If we also wanted to calculate the cost per
person we could divide the total by the number of people. We could use an integer
variable to hold the number of people.

“main”
2005/9/6
page 29

i

i

i

i

i

i

i

i

Section 2.4 Variables 29

> int numPeople = 2;
> System.out.println(numPeople);
2
> double bill = 32.45;
> System.out.println(bill);
32.45
> double tip = bill * 0.2;
> System.out.println(tip);
6.490000000000001
> double total = bill + tip;
> System.out.println(total);
38.940000000000005
> double totalPerPerson = total / numPeople;
> System.out.println(totalPerPerson);
19.470000000000002

'

&

$

%

Common Bug: Mistyping
You just saw a whole bunch of Java statements, and some
of them are pretty long. What happens if you type one of
them wrong? DrJava will complain that it doesn’t know
what you mean, like this:

> double tip = bil * 0.2;
Error: Undefined class ’bil’

It’s no big deal. Use the up arrow on the keyboard to bring
up the last thing you typed into DrJava and then use the
left arrow to get to the place with the error and then fix it.
You can use the up arrow to get to any of the commands
you have typed in the interactions pane since you started
DrJava.

So, each person would need to pay 19.47, which they would probably round
up to 19.50.'

&

$

%

Making it Work Tip: Variable Names
By convention the first word in a variable name is lower-
case. So if the variable name is just one word then the
whole thing is lowercase such as bill. The first letter
of each additional word in a variable name should be up-
percase, as shown by the variables named numPeople and
totalPerPerson. This is a Java convention (usual way
something is done) and it will make your programs easier
to read.

We don’t have to print out the value of the variable after we assign a value to
it. We are doing that so that you see that the computer does return a value when
you use the name of a variable. What about the extra amount for the final answer?

“main”
2005/9/6
page 30

i

i

i

i

i

i

i

i

30 Chapter 2 Introduction to Java

The answer should be just $19.47 per person. If we look back at the printing of the
tip amount we see where this first occurred. Floating point numbers do not always
give exact results.

2.4.3 Memory Maps of Variables

In Java when you declare variables to be of the type int or double you are asking
the computer to set aside space for a variable of that type (32 bits for int and 64
for double) and to remember the address of that space. When you assign a value
to a variable using the ’=’ operator you change the value in that space to represent
the new value. The code int numPeople reserves 32 bits of space and associates
the name “numPeople” with that reserved space (Figure 2.5). The code = 2 sets
the value of that space to the integer value 2. The code double bill reserves 64
bits of space and associates the name “bill” with that space. The = 32.45 changes
the values in the reserved space to represent the value 32.45.

0

1

2

3

4

5

6

7

8

9

10

11

double bill = 32.45;

Reserves 64 bits (8 bytes)
and sets the value stored
in that space to 32.45. The
 name "bill" is associated
with this space.

int numPeople = 2;

Reserves 32 bits (4 bytes)
and sets the value stored
in that space to 2. The
name "numPeople" is
associated with this space.

2

2
3

.
4
5

FIGURE 2.5: Declaring primitive variables and memory assignment

When we print out a variable name using System.out.println(bill); the
computer looks up the name bill to find the address of that variable in memory
and prints the value stored in that space. It knows how many bytes to use and
how to interpret the bytes in calculating the value based on the declared type of
the variable.

How would you calculate the cost of a shirt that was originally $47.99, but is
now 40% off? And, what if you also had a coupon for an additional 20% off the
sale price? First you would need to determine the first discount amount by multi-
plying 40% (0.40) times the original price. Next, calculate the first discount total
by subtracting the first discount amount from the original price. Then calculate
the second discount amount by mutliplying 20% (0.20) times the second discount
amount. The second discount total is the first discount total minus the second
discount amount. We would need variables to hold the first discount amount, first
discount total, second discount amount, and second discount total. What type

“main”
2005/9/6
page 31

i

i

i

i

i

i

i

i

Section 2.4 Variables 31

should those variables be declared to be? Since they have fractional parts they can
be declared as double.

> double originalPrice = 47.99;
> double firstDiscountAmount = originalPrice * 0.40;
> System.out.println(firstDiscountAmount);
19.196
> double firstDiscountTotal = originalPrice - firstDiscountAmount;
> System.out.println(firstDiscountTotal);
28.794
> double secondDiscountAmount = firstDiscountTotal * 0.20;
> System.out.println(secondDiscountAmount);
5.758800000000001
> double secondDiscountTotal = firstDiscountTotal -
secondDiscountAmount;
> System.out.println(secondDiscountTotal);
23.0352

When these statements are executed 64 bits of space is reserved for each
variable declared as a double. So how much memory does this calculation take?
We have declared 5 doubles so we have used 5 times 64 bits of space. Each byte
has 8 bits in it so how many bytes have we used? How much memory does your
computer have and how much of it have you used? If your computer has 128
Megabytes of memory then that is 128,000,000 bytes of memory and we used 40
bytes then we have only used 0.0000003125% of memory. That isn’t very much.
We can declare lots of variables and still not use up all of the memory.

Each time we use the variable name above the computer substitutes the value
in the memory location associated with that name. What are the values in each of
the 5 declared variables when these statements are finished?

2.4.4 Object Variables

Variables that are declared to be of any of the primitive types: byte, short, int,
long, float, double, boolean or char reserve space and associate the variable
name with the starting location of that space. Variables that are declared to be of
any other type are object variables. This is because all other types inherit from
the class Object.

You can think of inheritance as saying that one class “is a kind of” another
class, like saying that a dog is a kind of mammal (Figure 2.6). If you need a mammal
you can use a dog, but if you need a dog another mammal (like a cat) won’t do.
Because a dog is a kind of mammal we know that it has the same characteristics
that a mammal does such as breathing oxygen, bearing live young, having hair, etc.
We say that it inherits characteristics from mammal. The String class is a child
of the Object class so it is a kind of object (Figure 2.6). All of the classes that you
define will inherit from the Object class either directly or indirectly.

When you declare a variable you specify the type and a name type name ; or
type name = expression ;. What if you want to declare a variable that will refer

“main”
2005/9/6
page 32

i

i

i

i

i

i

i

i

32 Chapter 2 Introduction to Java

Mammal

Dog

Object

String

FIGURE 2.6: Showing the parent and child relationship between mammal and dog
(left) and Object and String (right)

to a string? What type can you use? Well it can’t be int or double because those
represent numbers. It can’t be char because that represents a single character.

Java has a class String that is used to represent character strings. The String
class inherits from the Object class. So to declare a variable that represents a string
of characters use: String name ;

Object variables reserve space for something which is areference to an object.
A reference isn’t the address of the object in memory. It is more like a Dewey
Decimal System number. Once you know the Dewey Decimal System number for
a book you can find the book on the library shelves. An object reference gives the
computer a way to find an object in memory.

Object variables do not reserve space for the object. If the object variable
doesn’t reference an object yet it has the value null.

> String test;
> System.out.println(test);
null
> test = "Hi";
> System.out.println(test);
Hi
> test = new String("Bye");
> System.out.println(test);
Bye

When the variable test was declared as type String space was reserved for
an object reference and the value of the test variable was set to null (Figure 2.7).
The default value for an object variable is null which means it isn’t referring to
any object yet. The compiler will create a String object when it sees characters
enclosed in double quotes so the "Hi" creates an object of the String class and sets
the characters in that String object to be the characters "Hi". The code test =
"Hi" changes the value of the space reserved for the object reference from null to
a reference to the String object with the characters "Hi".

What happens to the String object with the characters "Hi" in it when you
changed the variable test to refer to the new String object with the characters
"Bye"? Java keeps track of used space and if there are no valid references to the
used space it will put it back into available space. This is called garbage collection.

“main”
2005/9/6
page 33

i

i

i

i

i

i

i

i

Section 2.4 Variables 33

null

String test;

Reserves space and
sets the value to null.
Associates "test" with this
space.

test

test test = "Hi";

Creates a String object and
sets the characters in that
object to "Hi". Changes
the value in the object
reference "test" to refer to the
String object.

Hi

test test = new String("Bye");

Creates a String object and
sets the characters in that
object to "Bye". Changes
the value in the object
reference "test" to refer to the
String object. The String
object with "Hi" in it still exists
but can be garbage collected
since there is no reference
to it.

Bye

Hi

FIGURE 2.7: Declaring object variables and memory assignment

The fact that Java automatically handles freeing used memory when it is no
longer needed is one of the advantages to Java over languages like C++ which
required the programmer to free memory when it was no longer needed. Program-
mers aren’t very good at keeping track of when memory is no longer needed and
so many programs never free memory when it is no longer needed. This is called a
memory leak and it is why some programs use more and more memory while they
are running. Sometimes programmers free memory when it is still being used which
can cause major problems such as incorrect results and even cause your computer
to crash.

2.4.5 Reusing Variables

Once we have declared variables we can reuse them by assigning new values to
them.

> String myName = "Mark";
> System.out.println(myName);
Mark
> myName = "Barb";
> System.out.println(myName);
Barb

“main”
2005/9/6
page 34

i

i

i

i

i

i

i

i

34 Chapter 2 Introduction to Java

This actually means to first set the variable myName to refer to the String
object with the characters ”Mark” in it. Then it changes the variable myName to
refer to another String object with the characters ”Barb” in it. The first String
object with the characters ”Mark” in it still exists and can be garbage collected
(reused as available space).

myName

Mark

String myName = "Mark";

Creates a String object and
sets the characters in that
object to "Mark". Sets
the value in the object
reference "myName" to
refer to the String object.

myName = "Barb";

Creates a String object and
sets the characters in that
object to "Barb". Changes
the value in the object
reference "myName" to refer
to the new String object. The
String object with "Mark" in
it still exists but can be
garbage collected since
there is no reference to it.

myName

Barb

Mark

FIGURE 2.8: Shows creation and reuse of an object variable.

'

&

$

%

Making it Work Tip: Variables versus Literals
Notice that we have changed the value of the variable test
several times. We call items like test variables because the
values inside of them can change. This is different from
literals such as the string literal "Hi" in that the value of
that won’t change. You can set the value of a variable to a
literal but you can’t set the value of a literal to a variable.

You can’t declare the same variable name twice. Declare the name one time
(by specifying the type and name) and then you can use it many times.

> String myName = "Mark";
> System.out.println(myName);
Mark
> String myName = "Sue";
Error: Redefinition of ’myName’

The binding between the name and the data only exists (a) until the name gets
assigned to something else or (b) you quit DrJava or (c) you reset the interactions

‘‘main’’
2005/9/6
page 35

i

i

i

i

i

i

i

i

Section 2.4 Variables 35

pane (by clicking on the Reset button. The relationship between names and data
in the interactions pane only exists during a session of DrJava.'

&

$

%

Common Bug: Redefinition Error
You can’t declare a variable with the same name more
than once in the interactions pane. If you do you will get a
“Redefinition Error”. If you want to “start over” click the
Reset button in DrJava to let it know that you want to
get rid of all currently defined variables. Or, just remove
the types and you won’t be redeclaring the variables, just
changing their values (reusing them).

2.4.6 Multiple References to an Object

You can have several variables that reference an object. You can use any of the
references to access the object.

> String name1 = "Suzanne Clark";
> System.out.println(name1);
Suzanne Clark
> String name2 = name1;
> System.out.println(name2);
Suzanne Clark

When the compiler encounters the characters inside the pair of double quotes
it creates a String object. The code String name1 creates a variable name1 that
will refer to this string object. Print out name1 to see what it refers to using
System.out.println(name1);. Next the code String name2 = name1; creates
another variable name2 and sets the value of it to refer to the same string. Printing
the new variable name2 will result in the same string being printed.

Suzanne Clark

String Object name1

name2

FIGURE 2.9: An object with multiple references to it

An object can only be garbage collected when there are no current references
to it. To allow the String object with the characters "Suzanne Clark" in it to be
garbage collected set the variables that refer to it to null.

> name1 = null;
> System.out.println(name1);
null
> System.out.println(name2);

“main”
2005/9/6
page 36

i

i

i

i

i

i

i

i

36 Chapter 2 Introduction to Java

Suzanne Clark
> name2 = null;
> System.out.println(name2);
null

Now all references to the String object are set to null so the object can be
garbage collected.

Suzanne Clark

String Object name1

name2

FIGURE 2.10: An object with no references to it

2.5 CONCEPTS SUMMARY

This chapter introduced many basic concepts: printing the result of a statement
(expression), math operators, relational operators, types, casting, and variables.

2.5.1 Statements

Java programs are made of statements. Java statements can end in semicolons ’;’
just like sentences can end in periods ’.’ in English. When you type statements
in the definitions pane (when you define methods) they must have some sort of
punctuation to show the end of the statement. One way to do this is to use a
semicolon ’;’.

If you leave off the semicolon in the interactions pane it will print the result
of the statement. If you do end a statement with a semicolon in the interactions
pane, and you want to print the result use System.out.println(expression); to
print the result of the expression.

> int numPeople = 3;
> double bill = 52.49;
> double amountPerPerson = bill / numPeople;
> System.out.println("Each person should pay: " + amountPerPerson);
Each person should pay: 17.496666666666666

“main”
2005/9/6
page 37

i

i

i

i

i

i

i

i

Section 2.5 Concepts Summary 37

Math Operators

+ Addition Used to add numbers together (3
+ 4) = 7

- Subtraction Used to subtract one number
from another (5 - 2) = 3

* Multiplication Used to multiply two numbers to-
gether (2 * 3) = 6

/ Division Used to divide one number by an-
other (18 / 2) = 9

% Modulus (Re-
mainder)

Used to find the remainder of one
number divided by another (19 %
2) = 1

2.5.2 Relational Operators

< Less Than Used to check if one value is less
than another (2 < 3) is true

> Greater Than Used to check if one value is
greater than another (3 > 2) is
true

== Equals Used to check if two values are
the same (2 == 2) is true

!= Not Equals Used to check if two values aren’t
equal (2 != 3) is true

<= Less Than or
Equal

Used to check if one value is less
than or equal to another (2 <= 3)
is true

>= Greater Than or
Equal

Used to check if one value is
greater than or equal to another
(3 >= 2) is true

2.5.3 Types

A type is a description of the “kind of” thing something is. It affects how much
space is reserved for a variable and how the bits in that space are interpreted. In
this chapter, we talked about several kinds of types (encodings) of data.

“main”
2005/9/6
page 38

i

i

i

i

i

i

i

i

38 Chapter 2 Introduction to Java

Floating point
numbers

Java primitive types double or
float e.g., 5.2, -3.01, 928.3092

Numbers with a decimal point in
them.

Integers Java primitive types int, byte,
short, long e.g., -3, 5239, 0

Numbers without a decimal
point—they can’t represent
fractions.

Characters Java primitive type char e.g. ’a’,
’b’, ’?’

A character is delimited by a pair
of single quotes.

Strings Java String object e.g.,
"Hello!"

A sequence of characters (includ-
ing spaces, punctuation, etc.) de-
limited on either end with a dou-
ble quote character.

Booleans Java primitive type boolean with
only two possible values

The value of a boolean can be
the reserved word true or the re-
served word false.

2.5.4 Casting

Java compilers recognize integer (-3) and floating point values (32.43). The result
of a mathematical expression depends on the types involved in the expression.
Expressions that involve integer values will have integer results. Expressions that
have floating point (decimal) values will have floating point results.

This can lead to unexpected results.

> 1 / 2
0

There are two ways to fix this problem. One is to make one of the numbers a
floating point number by adding ’.0’ (it doesn’t matter which one) and the other is
to use casting to change the type of one of the numbers to a floating point number
(the primitive type float or double).

> 1.0 / 2
0.5
> (double) 1 / 2
0.5

2.5.5 Variables

Variables are used to store and access values. You create variables by declaring
them: type name ; or type name = expression ;. Declaring a variable reserves
space for the variable and allows the computer to map the variable name to the
address of that reserved space.

We introduced two types of variables: primitive and object. Primitive vari-
ables are any of the types: int, byte, short, long, float, double, char, or boolean.
Object variables refer to an object of a class. Use the class name as the type when
declaring object variables ClassName name; or ClassName name = expression;.

Primitive variables store a value in the reserved space for that variable. You
can change the value using variableName = value;. You can access the value
using variableName.

“main”
2005/9/6
page 39

i

i

i

i

i

i

i

i

Section 2.5 Concepts Summary 39

Object variables store a reference to an object in the reserved space for that
variable. Object variables do not just store the address of the object. They store a
reference to an object which allows the address of the object to be determined.

If the object variable doesn’t refer to any object yet it has the value null. You
can change what object a variable references using variableName = objectReference;.
You can access the referenced object using variableName.

PROBLEMS

2.1. Some computer science concept questions:

• What is an object?

• What is a class?

• What is a type? Why are types important?

• What is casting? What is it used for?

• What is a variable? When do you need one? What are the differences
between object variables and primitive variables?

• What is garbage collection?

• What are relational operators? What are math operators?

• What is a string?

2.2. What objects would you encounter in a bank?
2.3. What objects would you encounter in going to a movie?
2.4. What objects would you encounter in a clothing store?
2.5. What objects are involved in a airplane flight?
2.6. What objects are in your classroom?
2.7. What objects would you encounter when you go to the dentist?
2.8. Use the interactions pane to calculate how long it will take to travel 770 miles

at an average speed of 60 miles per hour? How much shorter will it take if you
average 70 miles per hour?

2.9. Use the interactions pane to calculate how much money you will make if you
work 40 hours at $13.00 and 10 hours at time and a half?

2.10. Test your understanding of Java with the following:

• What does System.out.println(); do?

• What does the statement System.out.println(3 + 2); do?

• What does the statement System.out.println("The answer is: " + 3 +

2); do?

• What does the statement System.out.println("Hi " + " there"); do?

2.11. Test your understanding of Java with the following:

• What does the code int x = 3; System.out.println("The result is " +

x); do?

• What does the code String firstName = "Sue"; System.out.println(firstName);

do?

• What does the code System.out.println(2 < 3); do?

• What does the code System.out.prinltn(2 == 3); do?

• What does the code Ssytem.out.println(3 >= 2); do?

“main”
2005/9/6
page 40

i

i

i

i

i

i

i

i

40 Chapter 2 Introduction to Java

2.12. What does int x = 1 / 3; System.out.println(x); do and why?
2.13. What does double d = 1 / 2.0; System.out.println(d); do and why?
2.14. What does double d1 = 1 / 3; System.out.println(d1); do and why?
2.15. What does the double d2 = (double) 1 / 3; System.out.println(d2); do and

why?
2.16. Declare variables for each of the following:

• the number of people in your family

• the cost of a video game

• your name

• answer to, ”Are you righthanded?”

• the temperature in your room

• the number of items in a shopping cart

2.17. Declare variables for each of the following:

• your grade point average

• your telephone number

• the number of times you were absent from class

• the number of miles from your home to school

• answer to, ”Do you wear glasses?”

• your credit card number

2.18. Which of the following is the correct way to declare a variable that represents a
price?

• declare double price = 0;

• int price = 0;

• Integer price = 0.0;

• double PRICE = 0.0;

• double price;

2.19. Which of the following is the correct way to declare a variable that represents
the desired quantity of an item in an order?

• double numItems;

• INT numItems;

• int numItems;

• DOUBLE numItems;

2.20. Which of the following is the correct way to declare a variable that represents if
an order has been canceled?

• BOOLEAN canceled = false;

• boolean canceled = false;

• boolean CANCELED = false;

• boolean canceled = FALSE;

“main”
2005/9/6
page 41

i

i

i

i

i

i

i

i

Section 2.5 Concepts Summary 41

TO DIG DEEPER

There is a wealth of material for Java on Sun’s Java web site http://java.sun.com
including tutorials, papers, and APIs. To learn more about DrJava see the web site
http://www.drjava.org/. Thinking in Java by Bruce Eckel is a good book for
those who have some coding experience and like to understand a language deeply.
Beginners might want to start with Headfirst Java by Kathy Sierra and Bert Bates.
If you are someone who wants lots and lots of examples see Deitel and Deitel’s Java,
How to Program.

“main”
2005/9/6
page 42

i

i

i

i

i

i

i

i

C H A P T E R 3

Introduction to Programming

3.1 PROGRAMMING IS ABOUT NAMING

3.2 FILES AND THEIR NAMES

3.3 CLASS AND OBJECT METHODS

3.4 WORKING WITH TURTLES

3.5 CREATING METHODS

3.6 WORKING WITH MEDIA

3.7 CONCEPTS SUMMARY

Chapter Learning Objectives
The media learning goals for this chapter are:

• To create a World object and Turtle objects and move the turtles to draw
shapes.

• To create Picture objects and show them.

• To create Sound objects and play them.

The computer science goals for this chapter are:

• To invoke class and object methods.

• To create objects using the new keyword.

• To write methods (functions).

42

“main”
2005/9/6
page 43

i

i

i

i

i

i

i

i

Section 3.1 Programming is About Naming 43

3.1 PROGRAMMING IS ABOUT NAMING

Computer Science Idea: Much of programming is
about naming
A computer can associate names, or symbols, with just
about anything: With a particular byte; with a collection
of bytes making up a numeric variable or a string of let-
ters; with a media element like a file, sound, or picture; or
even with more abstract concepts, like a named recipe (a
program or method) or a named encoding (a type or class).
A computer scientist sees a choice of names as being high
quality in the same way that a philosopher or mathemati-
cian might: If the names are elegant, parsimonious, and
usable.

Obviously, the computer itself doesn’t care about names. Names are for the
humans. If the computer were just a calculator, then remembering names and the
names’ association with values would be just a waste of the computer’s memory.
But for humans, it’s very powerful. It allows us to work with the computer in a
natural way.

A programming language is really a set of names that a computer has en-
codings for, such that those names make the computer do expected actions and
interpret our data in expected ways. Some of the programming language’s names
allow us to define new names—which allows us to create our own layers of encod-
ing. We can associate a name with a location in memory, this is called declaring
a variable. We can associate a name with a group of Java statements, we call this
defining a method (function). In Java you can also assign a name to a group of
related variables and methods (functions) when you define a class (type).

Computer Science Idea: Programs are for people,
not computers.
Remember names are only meaningful for people, not com-
puters. Computers just take instructions. A good program
is meaningful (understandable and useful) for humans.

A program is a set of names and their values, where some of these names have
values of instructions to the computer (“code”). Our instructions will be in the
Java programming language. Combining these two definitions means that the Java
programming language gives us a set of useful names that have a meaning to the
computer, and our programs are then made up of Java’s useful names as a way of
specifying what we want the computer to do.

There are good names and bad names. Bad names aren’t curse words, or
TLA’s (Three Letter Acronyms), but names that aren’t understandable or easy
to use. A good set of encodings and names allow one to describe methods in
a way that’s natural, without having to say too much. The variety of different
programming languages can be thought of as a collection of sets of namings-and-
encodings. Some are better for some tasks than others. Some languages require you

“main”
2005/9/6
page 44

i

i

i

i

i

i

i

i

44 Chapter 3 Introduction to Programming

to write more to describe the same program (function) than others—but sometimes
that “more” leads to a much more (human) readable program that helps others to
understand what you’re saying.

Philosophers and mathematicians look for very similar senses of quality. They
try to describe the world in few words, using an elegant selection of words that cover
many situations, while remaining understandable to their fellow philosophers and
mathematicians. That’s exactly what computer scientists do as well.

How the units and values (data) of a program can be interpreted is often also
named. Remember how we said in Section 1.2 (page 6) that everything is stored
in groups of eight bits called bytes, and we can interpret those bytes as numbers?
In some programming languages, you can say explicitly that some value is a byte,
and later tell the language to treat it as a number, an integer (or sometimes int).
Similarly, you can tell the computer that these series of bytes is a collection of
numbers (an array of integers), or a collection of characters (a String), or even
as a more complex encoding of a single floating point number (any number with a
decimal point in it).

In Java, we will explicitly tell the computer how to interpret our values.
Languages such as Java, C++, and C# are strongly typed . Names are strongly
associated with certain types or encodings. They require you to say that this name
will only be associated with integers, and that one with floating point numbers.
In Java, C++, and C# you can also create your own types which is part of what
makes object-oriented languages so powerful. We do this in Java by defining classes
such as Picture which represents a simple digital picture. An object of the Picture
class has a width and height and you can get and set the pixels of the Picture
object. This isn’t a class that is part of the Java language, but a class that we have
defined using Java to make it easier for students to work with digital pictures.

3.2 FILES AND THEIR NAMES

A programming language isn’t the only place where computers associate names and
values. Your computer’s operating system takes care of the files on your disk, and
it associates names with those files. Operating systems you may be familiar with
include Windows XP, Windows 2000 (Windows ME, NT,. . .), MacOS, and Linux.
A file is a collection of values (bytes) on your hard disk (the part of your computer
that stores things after the power gets turned off). If you know the name of a file,
you can tell it to the operating system, and it can give you the values associated
with that name.

You may be thinking, “I’ve been using the computer for years, and I’ve never
’given a file name to the operating system.’ ” Maybe you didn’t realize that you
were doing it, but when you pick a file from a file choosing dialog in Photoshop,
or double-click a file in a directory window (or Explorer or Finder), you are asking
some software somewhere to give the name you’re picking or double-clicking to the
operating system, and get the values back. When you write your own programs,
though, you’ll be explicitly getting file names and asking for the values stored in
that file.

Files are very important for media computation. Disks can store acres and
acres of information on them. Remember our discussion of Moore’s Law (Page 8)?

“main”
2005/9/6
page 45

i

i

i

i

i

i

i

i

Section 3.3 Class and Object Methods 45

Disk capacity per dollar is increasing faster than computer speed per dollar! Com-
puter disks today can store whole movies, hours (days?) of sounds, and the equiv-
alent of hundreds of film rolls of pictures.

These media are not small. Even in a compressed form, screen size pictures
can be over a million bytes large, and songs can be three million bytes or more. You
need to keep them someplace where they’ll last past the computer being turned off
and where there’s lots of space. This is why they are stored on your hard disk.

In contrast, your computer’s memory (RAM) is impermanent (the contents
disappear when the power does) and is relatively small. Computer memory is
getting larger all the time, but it’s still just a fraction of the amount of space on
your disk. When you’re working with media, you will load the media from the disk
into memory, but you wouldn’t want it to stay in memory after you’re done. It’s
too big.

Think about your computer’s memory as your desk. You would want to keep
books that you are currently working with on your desk but when you are done you
will probably move those books to a book shelf. You may have many more books
on your book shelf than can fit on your desk. A computer can fit much more data
on the hard disk than can fit in memory. However, data must be read from disk
into memory before you can work with it.

When you bring things into memory, you usually will name the value, so that
you can retrieve it and use it later. In that sense, programming is something like
algebra. To write generalizable equations and functions (those that work for any
number or value), you wrote equations and functions with variables, like PV = nRT
or e = Mc2 or f(x) = sin(x). Those P’s, V’s, R’s, T’s, e’s, M’s, c’s, and x’s were
names for values. When you evaluated f(30), you knew that the x was the name
for 30 when computing f . We’ll be naming values when we program.

3.3 CLASS AND OBJECT METHODS

Java also understands about functions. Remember functions from algebra? They’re
a “machine or box” into which you put one value, and out comes another. Java
calls these methods.

However, you can’t just call a function or method in Java like you can in
some other languages. Every method or function in Java must be defined inside a
class. There are two types of methods in Java: class methods or object methods.
Class methods are methods that can be executed using the class name or on an
object of the class. Object methods can only be executed on an object of the class.
Class methods are used for general methods that don’t pertain to a particular
object. They are defined using the keyword static. Object methods work with a
particular object’s data (the object the method was called on).

3.3.1 Invoking Class Methods

Class methods can be invoked (executed) by using the class name followed by a pe-
riod and then the method name: ClassName.methodName ();. By convention class
names in Java start with an uppercase letter: like Character. The Character class
is a wrapper class for the primitive type char. It also provides general character

“main”
2005/9/6
page 46

i

i

i

i

i

i

i

i

46 Chapter 3 Introduction to Programming

methods.'

&

$

%

Making it Work Tip: Wrapper Classes
Wrapper classes are classes that you use to “wrap” around
primitive types in order to have an object to work with.
Many general purpose classes in Java such as the collec-
tion classes (List and Set) require the values that you add
to the collections to be objects. Since primitive types are
not objects you wouldn’t be able to use them in collec-
tions (prior to Java version 5.0). However, if you wrap a
primitive type with a wrapper object you will be able to
use it with classes that require objects. As of Java version
5.0 (also called jdk 1.5) the wrapping of a primitive value
is automatically done when it is needed. This is called
boxing and unboxing.

One of the class methods for the Character class takes a character as the
input value (the value that goes into the box) and returns (the value that comes
out of the box) the number that is the integer value for that character. Charac-
ters in Java are specified between single quotes: ’A’. The name of that method is
getNumericValue and you can use System.out.println to display the value that
the method getNumericValue returns:

> System.out.println(Character.getNumericValue(’A’));
10

Another class method that’s built in to the Math class in Java is named abs—
it’s the absolute value function. It returns the absolute value of the input numeric
value.

> System.out.println(Math.abs(1));
1
> System.out.println(Math.abs(-1));
1

Debugging Tip: Common typos
If you type a class name and Java can’t figure out what
class you are talking about you will get an undefined class
error.

> Mat.abs(-3);
Error: Undefined class ’Mat’

If you mistype a method (function) name you will get the
following error:

> Math.ab(-3);
Error: No ’ab’ method in ’java.lang.Math’

“main”
2005/9/6
page 47

i

i

i

i

i

i

i

i

Section 3.4 Working with Turtles 47

3.3.2 Executing Object Methods

Object methods are methods that must be executed on an object using:

objectReference.methodName ();

An object reference can be the name of an object variable. You can’t invoke object
methods using the class name like you can with class methods.

In Java there is a String class which is how you represent lists of characters
(letters), like the letters of a person’s name. Objects of the String class are created
by the compiler whenever it sees string literals (characters enclosed with double
quotes), like "Barbara" or "cat.jpg". The double quotes tell the compiler that
this is an object of the String class and not a variable name.

There are many object methods in the String class, such as toLowerCase()
and toUpperCase(). These methods actually create and return new String objects
(objects of the class String). See the API (application program interface) for the
String class for a full listing of the available methods.

> String name = "Fred Farmer";
> System.out.println(name);
Fred Farmer
> String lowerName = name.toLowerCase();
> System.out.println(lowerName);
fred farmer
> String upperName = name.toUpperCase();
> System.out.println(upperName);
FRED FARMER
> System.out.println(name);
Fred Farmer

Notice that the value of name didn’t change even though we invoked the
method toLowerCase on it. All of the String methods that can modify a string
don’t change the original string but instead return a new string with the action
done on that string. We say that strings are immutable, meaning that they don’t
change.

3.4 WORKING WITH TURTLES

Dr. Seymour Papert, at MIT, used robot turtles to help children think about how
to specify a procedure in the late 1960s. The turtle had a pen in the middle of it
that could be raised and lowered to leave a trail of its movements. As graphical
displays became available he used a virtual turtle on a computer screen.

We are going to work with some turtle objects that move around a world.
The turtles know how to move forward, turn left, turn right, and turn by some
specified angle. The turtles have a pen in the middle of them that leaves a trail to
show their movements. The world keeps track of the turtles that are in it.

“main”
2005/9/6
page 48

i

i

i

i

i

i

i

i

48 Chapter 3 Introduction to Programming

3.4.1 Defining Classes

How does the computer know what we mean by a world and a turtle? We have to
define what a world is, what it knows about, and what it can do. We have to define
what a turtle is, what it knows about, and what it can do. We do this by writing
class definitions for World and Turtle. In Java each new class is usually defined
in a file with the same name as the class and an extension of “.java”. Class names
start with a capital letter and the first letter of each additional word is capitalized.
So we define the class Turtle in the file Turtle.java. We define the class World in
the file World.java. The class Turtle inherits from a class called SimpleTurtle
(notice that the first letter of each additional word is capitalized). We have defined
these classes for you so that you can practice creating and sending messages to
objects.

3.4.2 Creating Objects

Object-oriented programs consist of objects. But, how do we create those objects?
The class knows what each object of that class needs to keep track of and what it
should be able to do, so the class creates the objects of that class. You can think
of a class as an object factory. The factory can create many objects. A class is also
like a cookie cutter. You can make many cookies from one cookie cutter and they
will all have the same shape. Or you can think of the class as a blueprint and the
objects as the houses that you can create from the blueprint.

To create and initialize an object use new Class (parameterList) where the
parameter list is a list of items used to initialize the new object. This asks the object
that defines the class to reserve space in memory for the data that an object of that
class needs to keep track of and also keep a reference to the object that defines the
class. The new object’s data will be initialized based on the items passed in the
parameter list. There can be several ways to initialize a new object and which one
you are using depends on the order and types of things in the parameter list.

One way to create an object of the class World is to use new World(). We
don’t have to pass any parameters to initialize the new world. Objects can have
default values.

> System.out.println(new World());
A 640 by 480 world with 0 turtles in it.

'

&

$

%

Common Bug: Finding Classes
You should have set your classpath to include the classes
from the book in chapter 2. If you didn’t do this you will
get an error message (Undefined Class) when you try to
create a World object. Make sure that the full path to
the directory that has the classes from the book is in your
classpath. The classpath tells Java where to look for the
compiled class definitions. Java needs to load the class
definition before it can create an object of a class.

When you type the above in the interactions pane you will see a window
appear with the title “World” as shown in Figure 3.1. We have created an object

“main”
2005/9/6
page 49

i

i

i

i

i

i

i

i

Section 3.4 Working with Turtles 49

FIGURE 3.1: A window that shows a World object.

of the World class which has a width of 640 and a height of 480. The world doesn’t
have any turtles in it yet. We would like to add a turtle to this world, but we have
a problem. We don’t have any way to refer to this World object. We didn’t declare
a variable that refers to that object in memory, so it will just be garbage collected
after you close the window. Go ahead and close the window and let’s try again,
but this time we will declare a variable to let us refer to the World object again.

When we declare a variable we are associating a name with the memory lo-
cation so that we can access it again using it’s name. To declare a variable in Java
you must give the type of the variable and a name for it:

Type name ;

The Type is the name of the class if you are creating a variable that refers to
an object. So to create a variable that will refer to a World object we need to say
the type is World and give it a name. The first word in the variable name should
be lowercase but the first letter of each additional word should be uppercase. The
name should describe what the variable represents. So, let’s declare a variable that
refers to an object of the class World using the name worldObj.

> World worldObj = new World();
> System.out.println(worldObj);
A 640 by 480 world with 0 turtles in it.

This says to create a variable with the name of worldObj that will be of
type World (will refer to an object of the class World). It will refer to the ob-
ject created by the World class because of the code: new World(). We can use
System.out.println(worldObj) to ask the new World object to print out some
information about itself.

To create a turtle object in this world we will again use:

new Class (parameterList)

This time we will ask the Turtle class to create the object in our World by passing

“main”
2005/9/6
page 50

i

i

i

i

i

i

i

i

50 Chapter 3 Introduction to Programming

a reference to the world to create it in. We will declare a variable so that we can
refer to the Turtle object again.

> Turtle turtle1 = new Turtle(worldObj);
> System.out.println(turtle1);
No name turtle at 320, 240 heading 0.

Now a Turtle object appears in the middle of the World object as shown in
Figure 3.2. This turtle hasn’t been assigned a name and has a location of (320,240)
and a heading of 0 which is north. The default location for a new turtle is the
middle of the World object. The default heading is 0 (north).

FIGURE 3.2: A window that shows a Turtle object in a World object.

We can create another Turtle object and this time we can say what location
we want it to appear at. To do this we need to pass more than one parameter in
the parameter list of items to use to initialize the new object. To do this separate
the values with commas.

> Turtle turtle2 = new Turtle(30,50,worldObj);
> System.out.println(turtle2);
No name turtle at 30, 50 heading 0.

Notice that the second turtle appears at the specified location (30,50). The
top left of the window is location (0,0). The x values increase going to the right
and the y values increase going down.

3.4.3 Sending Messages to Objects

We have been talking about executing or invoking methods on classes and objects.
A more object-oriented way of saying that is that we send messages to objects to
ask them to do things. The full syntax for sending a message is

objectReference.message (parameterList);

The objectReference is a reference to an object, message is what we want the
object to do, and parameterList is any additional information that more fully

‘‘main’’
2005/9/6
page 51

i

i

i

i

i

i

i

i

Section 3.4 Working with Turtles 51

FIGURE 3.3: A window that shows two Turtle objects in a World object.

describes what we want the object to do. The ’.’ and ’()’ are required even if there
is no parameter list.

Turtles know how to go forward, turn left, turn right, turn by a specified
angle, change their color, and set their names. So if we want turtle1 to go for-
ward 20 steps we would use turtle1.forward(20);. If we want it to turn left
we would use turtle1.turnLeft();. If we want it to turn right we would use
turtle1.turnRight();. If we want it to turn by an angle to the left by 45 degrees
we would use turtle1.turn(-45);. To turn turtle1 to the right 45 degrees use
turtle1.turn(45);. Negative angles turn to the left and positive angles turn that
amount to the right.

We actually don’t need to use System.out.println(); every time we ask
the computer to do something. If we want to call a method that doesn’t return
anything we can just ask the method to be executed by typing the variable name
for the object followed by a ’.’ and then the method name and its input (if any) in
parentheses followed by a semicolon.

> turtle1.forward(20);
> turtle1.turnLeft();
> turtle1.forward(30);
> turtle1.turnRight();
> turtle1.forward(40);
> turtle1.turn(-45);
> turtle1.forward(30);
> turtle1.turn(90);
> turtle1.forward(20);

In Figure 3.4 we see the trail of the first turtle’s movements. Notice that all of
the messages were sent to the first Turtle object that is referenced by the turtle1
variable. The messages only get sent to that object. Notice that the second Turtle
object didn’t move. It didn’t get any messages yet. To send a message to the
second Turtle object we use the variable name that refers to that Turtle object
which is turtle2.

> turtle2.turnRight();

‘‘main’’
2005/9/6
page 52

i

i

i

i

i

i

i

i

52 Chapter 3 Introduction to Programming

FIGURE 3.4: The result of messages to the first Turtle object.

> turtle2.forward(200);
> turtle2.turnRight();
> turtle2.forward(200);

In Figure 3.5 we see the trail of the second turtle’s movement. Can you draw
a square with a turtle? Can you draw a triangle with a turtle? Can you draw a
pentagon with a turtle? How about a circle?

FIGURE 3.5: The result of messages to the second Turtle object.

3.4.4 Objects Control Their State

In object-oriented programming we ask an object to doing something by sending
it a message. The object can refuse to do what you ask it to do. Why would an
object refuse? An object should refuse when you ask it to do something that would
cause it’s data to be wrong. The world that the turtles are in is 640 by 480. Try
asking the Turtle object to go forward past the end of the world. What happens?
First click the Reset button to reset the interactions pane. When you reset the
interactions pane you get rid of any currently declared variables. Then create a
new World and Turtle.

> World world1 = new World();

“main”
2005/9/6
page 53

i

i

i

i

i

i

i

i

Section 3.4 Working with Turtles 53

> Turtle turtle1 = new Turtle(world1);
> System.out.println(turtle1);
No name turtle at 320, 240 heading 0.
> turtle1.turnRight();
> turtle1.forward(400);
> System.out.println(turtle1);
No name turtle at 639, 240 heading 90.
> System.out.println(world1.getWidth());
640

Remember that Turtle objects are first created in the middle of the world
(320,240) facing the top of the world. When the turtle turned right it was facing
the right side of the window. If the turtle went forward 300 steps it would it would
be past the right edge of the window (320 + 400 = 720) since the x values increase
to the right. Notice that the turtle stops when the middle of it reaches the limit of
the window (639) Figure 3.6. This means your turtle will always have at least part
of it in the world.

FIGURE 3.6: The turtle won’t leave the world

It may seem strange that turtle1 stopped when it reached 639 but the first
pixel is at 0 and the last is 639. If we asked you to count 10 numbers starting at 0
you should end at 9. The number of items is the ending value minus the starting
value plus 1. So 639 - 0 + 1 is 640, which means that a window with a width of
640 that starts with 0 must end at 639.

3.4.5 Additional Turtle Capabilities

You may not want to see the turtle, but just the trail of it’s movements. To ask
the turtle to stop drawing itself, send it the message hide(). To start drawing the
turtle again send it the message show().

On the other hand you may not want to see the trail. Ask the turtle to stop
showing the trail by asking it to pick up the pen penUp(). To start showing the
trail again send the turtle the message penDown().

You can ask a turtle to move to a particular location by sending it the message
moveTo(x,y) where x is the x value that you want to move to and y is the y value
that you want to move to.

“main”
2005/9/6
page 54

i

i

i

i

i

i

i

i

54 Chapter 3 Introduction to Programming

You can ask a turtle to use a particular name by sending it the message
setName(name) where name is the new name to use. If you print the variable that
refers to a turtle you will see the name printed. You can also get a turtle’s name
by sending it the message getName().

We can use these new messages to draw two squares with a turtle. First reset
the interactions pane and create a world and a turtle. Name the turtle “Jane”.
Draw one square with an upper left corner at (50,50) and a width and height of 30.
Draw another square at (200,200) with a width and height of 30. We can use new
Turtle(x,y,world) to create a turtle object that is located at (x,y). Let’s turn
off seeing the turtle when we draw the second square by sending it the message
hide().

> World world1 = new World();
> Turtle turtle1 = new Turtle(50,50,world1);
> turtle1.setName("Jane");
> turtle1.turnRight();
> turtle1.forward(30);
> turtle1.turnRight();
> turtle1.forward(30);
> turtle1.turnRight();
> turtle1.forward(30);
> turtle1.turnRight();
> turtle1.forward(30);
> turtle1.penUp();
> turtle1.moveTo(200,200);
> turtle1.hide();
> turtle1.penDown();
> turtle1.turnRight();
> turtle1.forward(30);
> turtle1.turnRight();
> turtle1.forward(30);
> turtle1.turnRight();
> turtle1.forward(30);
> turtle1.turnRight();
> turtle1.forward(30);
> System.out.println(turtle1);
Jane turtle at 200, 200 heading 0.

You can see the result of these commands in Figure 3.7.'

&

$

%

Making it Work Tip: Reuse the previous line in
DrJava
You can use the up arrow on the keyboard to bring up
previous lines you have typed in the interactions pane in
DrJava. This is easier than typing the same line in again.

“main”
2005/9/6
page 55

i

i

i

i

i

i

i

i

Section 3.5 Creating Methods 55

FIGURE 3.7: Drawing two squares with a turtle.

3.5 CREATING METHODS

We had to send many messages to our Turtle object just to draw two squares.
Do you notice any similarities in how we draw the squares? Each time we draw a
square we turn right and go forward by 30 steps for a total of 4 times. It would be
nice to name the list of steps for drawing a square and then just do the list of steps
when a turtle is asked to draw a square. We do this by creating a method that
knows how to draw a square. Methods are named blocks of commands that are
defined inside a class definition. Once we have defined a method and successfully
compiled the class definition the objects of the class will respond to a message with
the same name and parameters as the new method. So if we want Turtle objects
to understand the message drawSquare() we define a method drawSquare().

Computer Science Idea: Messages Map to Meth-
ods
When we send an object a message it must map to a
method that objects of that class understand. If objects
of the class don’t understand the message you will get an
error when you compile. Be sure that the parameter list
is correct because if it isn’t you will get an error that says
such a method does not exist. Make sure that you compile
a new method before you try and use it.

You have seen how you declare variables in Java:

type name; or type name = expression ;.

To declare a method in Java use:

visibility type methodName(parameterList)

The structure of how you declare a method is referred to as the syntax —the
words and characters that have to be there for Java to understand what’s going on,

“main”
2005/9/6
page 56

i

i

i

i

i

i

i

i

56 Chapter 3 Introduction to Programming

and the order of those things.
A method declaration usually has a visibility (usually the keyword public),

the type of the thing being returned from the method, the method name, and the
parameter list in parentheses. This is usually followed by a block of statements
which is an open curly brace followed by a series of statements followed by a close
curly brace. The statements in the block will be executed when the method is
invoked.'

&

$

%

Common Bug: Curly Braces Come in Pairs
Each open curly brace in your Java code must have a
matching close curly brace. You should indent code in-
side of a pair of curly braces. Indentation doesn’t matter
to the compiler but makes your code easier to read and
understand. Be careful not to mix up curly braces and
parentheses.

To declare a method that will draw a square we can use:

public void drawSquare ()
{

// s ta tements to execu te when the method i s execu ted
}

The visibility in this method declaration is public. Visibility means who
can invoke the method (ask for the method to be executed). The keyword public
means that this method can be invoked by any code in any class definition. If the
keyword private is used then the method can only be accessed from inside the
class definition. You can think of this as a security feature. If you keep your
journal on the web (a blog) then it is open and anyone can read it. If you keep it
hidden in your room then it is private and hopefully only you can read it.

The return type in this method declaration is void. The return type is re-
quired and is given before the method name. If you leave off a return type you will
get a compiler error. If your method returns a value the return type must match the
type of the value returned. Remember that types can be any of the primitive types
(char, byte, int, short, long, float, double, or boolean) or a class name. Methods
that don’t return any value use the Java keyword void for the return type in the
method declaration.

The method name in this declaration is drawSquare. By convention method
names start with a lowercase letter and the first letter of each additional word is
uppercase: drawSquare. Another example method name is turnRight.

A method must have parentheses following the method name. If any param-
eters are passed to the method then they will be declared inside the parentheses
separated by commas. To declare a parameter you must give a type and name.
The type can be any primitive type or class name. The name can be used by the
code in the body of the method to refer to the passed value.

We create a collection of statements by defining a block . A block is code
between an open curly brace ’{’and a close curly brace ’}’. The block of commands
that follow a method declaration are the ones associated with the name of the
method (function) and are the ones that will be executed when the method is

“main”
2005/9/6
page 57

i

i

i

i

i

i

i

i

Section 3.5 Creating Methods 57

invoked.
Most real programs that do useful things require the definition of more than

one method (function). Imagine that in the definitions pane you have several
method declarations. How do you think Java will figure out that one method
has ended and a new one begun? Java needs some way of figuring out where the
method body ends: Which statements are part of this method and which are part
of the next? Java uses curly braces to do this. All statements between the open
curly brace and close curly brace are part of the method body.

Debugging Tip: Proper Method Declarations
All method declarations must be inside a class definition
which means that they are defined inside the open ’{’ and
close ’}’ curly braces that enclose the body of the class
definition. If you put a method declaration after the end
of the class definition you will get “Error: ’class’ or ’in-
terface’ expected”. Methods can not be defined inside of
other methods. If you accidently do this you will get “Er-
ror: illegal start of expression” at the beginning of the
inner method declaration. Statements in a method end in
a semicolon (this is not optional in the definitions pane). If
you forget to put the semicolon at the end of a statement
you will get “Error: ’;’ expected”. All compiler errors will
highlight the line of code that caused the error. If you
don’t see the error on that line of code check the preceding
line. You can double click on an error in the “Compiler
Output” area and it will place the cursor at that line of
code and highlight it.

We can now define our first program (method)! Open Turtle.java by clicking
on the Open button near the top of the window and using the file chooser to pick
“Turtle.java”. Type the following code into the definitions pane of DrJava before
the last closing curly brace ’}’ (which ends the class definition). When you’re
done, save the file and click the Compile All button near the top of the window
(Figure 3.8).

Debugging Tip: Compile All
The Compile All button will compile all open files. If
you have an empty file open named (Untitled) go ahead
and close it. DrJava creates this for you so that you can
start writing a new class definition. But, we won’t do that
right away. Select the name of the file in the Files Pane
and press the Close button to close a file.

Program 2: Draw a Square

public void drawSquare ()

“main”
2005/9/6
page 58

i

i

i

i

i

i

i

i

58 Chapter 3 Introduction to Programming

{
this . turnRight () ;
this . forward (3 0) ;
this . turnRight () ;
this . forward (3 0) ;
this . turnRight () ;
this . forward (3 0) ;
this . turnRight () ;
this . forward (3 0) ;

}

'

&

$

%

Making it Work Tip: Copying and pasting
Text can be copied and pasted between the interactions
pane and definitions pane. To copy text select it and click
copy (in the Edit menu), then click in the definitions
pane and click on paste (also in the Edit menu). You
can also use keyboard shortcuts for copy (Control-c) and
paste (Control-v). This means to hold the “Ctrl” key and
then press the “c” key to copy and hold the “Ctrl” key and
the ’v’ key to paste. You can copy entire methods in the
definitions pane by selecting the text in the method and
then copying and pasting it. You can select a method name
in the definitions pane and paste it in the interactions pane
to send a message asking for that method to be executed.
You can also try things out in the interactions pane and
later save them in a method in the definitions pane.

Notice that we changed turtle1.turnRight(); to this.turnRight();. The
variable turtle1 isn’t defined inside the method drawSquare(). Variables names
are known in a context (area that they apply). This is also known as the scope of
a variable. The variables that we define in the interactions pane are only known in
the interactions pane, they aren’t known inside methods. We need some other way
to reference the object that we want to turn. Object methods are implicitly passed
a reference to the object the method was invoked on. You can refer to that current
object using the keyword this.

Compiling a Java class definition “Turtle.java” will produce a “Turtle.class”
file. Compiling translates the Java source code which is in a format that humans
understand into a format that computers understand. One of the advantages to
Java is that the “.class” files aren’t specific to any particular type of computer.
They can be understood by any computer that has a Java run-time environment.
So you can create your Java source code on a Window’s based computer and run

“main”
2005/9/6
page 59

i

i

i

i

i

i

i

i

Section 3.5 Creating Methods 59

3. Try new method here

1. Type method
here

2. Compile

FIGURE 3.8: Defining and executing drawSquare()

the compiled code on an Apple computer.
'

&

$

%

Making it Work Tip: Try every program!
To really understand what’s going on, type in, compile,
and execute every program (method) in the book. EVERY
one. None are long, and the practice will go a long way to-
wards convincing you that the programs work, developing
your programming skill, and helping you understand why
they work.

This code creates a method with the name drawSquare that takes no param-
eters and whenever the method is executed it will execute the statements inside of
the open and close curly braces. It is a public method. It doesn’t return anything so
it uses the keyword void to indicate this. This method must be called on an object
of the Turtle class. The this is a keyword that refers to the object this method
was invoked on. Since this method is defined in the Turtle class the keyword this
will refer to a Turtle object.

Once the method has successfully compiled you can ask for it to be executed
by sending a message to a Turtle object with the same name and parameter list
as the method. Click on the Interactions tab in the interactions pane (near the
bottom of the window). This method doesn’t take any parameters so just finish
with the open and close parentheses and the semicolon. When you compile the
interactions pane will be reset, meaning that all the variables that we have defined

“main”
2005/9/6
page 60

i

i

i

i

i

i

i

i

60 Chapter 3 Introduction to Programming

in the interactions pane will no longer be understood. We will need to create a
World and Turtle object again.

> World world1 = new World();
> Turtle turtle1 = new Turtle(world1);
> turtle1.drawSquare();

When you invoke the method drawSquare() on the Turtle object referenced
by the variable turtle1 the Java virtual machine has to find the method to execute.
Methods are defined inside of a class definition so we defined drawSquare inside of
the class Turtle by editing the file Turtle.java. Next we compiled the source file
Turtle.java which created a Turtle.class file which contained the code for the
Turtle class in byte codes for the Java virtual machine.

The first time you use a class the Java virtual machine loads the compiled
class definition (the Turtle.class file) and creates an object that contains all the
information about the class including the code for the methods. Every object has
a reference to the object that defines its class. The object that defines a class is
an object of a class named Class. You can get the Class object using the method
getClass().

> System.out.println(world1.getClass());
class World
> System.out.println(turtle1.getClass());
class Turtle

The Java virtual machine will check for a method with the same name and
parameter list in the object that defines the class (an object of the class Class and
if it is found it will execute that method. This means that the statements in the
body of the method will be executed starting with the first statement. The object
that the method was invoked on is implicitly passed to the method as well and can
be referred to using the keyword this.

What if we want to draw a larger or smaller square? We could change each
of the this.forward(30); lines to the new width and height and then compile.
But, it would be easier to declare a variable in the method that would represent the
width of the square and then use that variable name as the amount to go forward
by like this: this.forward(width);. Then if we want to change the size of the
square we only have to change 1 line. You can declare a variable anywhere in the
body of a method but you must declare it before you use it. The name will be
known and the value substituted for each occurrence of the name in the rest of the
method. But, the name will only be known inside the method it is declared in.

We can’t have two methods with the same name and the same parameter list
so we need a new name for this method. We simply named it drawSquare2 to show
that it is the second version. We can copy the first method and paste it and rename
it and then change it to declare and use the width variable.

Program 3: Draw Square Using a Variable for Width

“main”
2005/9/6
page 61

i

i

i

i

i

i

i

i

Section 3.5 Creating Methods 61

Turtle Object

Turtle:Class

information on how to create
and initialize objects of the class

Data for Turtle Object

method definitions

turtle1

Turtle Object

Data for Turtle Object
turtle2

FIGURE 3.9: An object stores data for that object and has a reference to the class
that created it

public void drawSquare2 ()
{

int width = 30 ;
this . turnRight () ;
this . forward (width) ;
this . turnRight () ;
this . forward (width) ;
this . turnRight () ;
this . forward (width) ;
this . turnRight () ;
this . forward (width) ;

}

Compile and run this method and check that you get the same results as with
drawSquare().

> World world = new World();
> Turtle turtle1 = new Turtle(world);
> turtle1.drawSquare2();

3.5.1 Methods that Take Input

This is a bit better than the first version and a bit easier to change. But, you still
have to recompile after you change the width to draw a larger or smaller square.
Wouldn’t it be nice if there was a way to tell the method what size you want when
you ask for the method to be executed by sending a message that matches the
method? Well you can! That is what the parameter list is for.

We can make the width of the square a parameter. Remember that if a
method takes a parameter you must list the type and name for the parameter in
the parameter list. What type should we use for width? Well, in the second version

“main”
2005/9/6
page 62

i

i

i

i

i

i

i

i

62 Chapter 3 Introduction to Programming

we used int because the turtle only takes whole steps not fractional ones so let’s
use that. What should we call this method? We could call it drawSquare3(int
width) but someone may think this means it draws a square with a width of 3. We
could call it drawSquareWithPassedWidth(int width) but that is rather long and
you can tell it takes a passed width by looking at the parameter list. How about if
we just call it drawSquare(int width)? You may think that isn’t allowed since we
have a method drawSquare() but that method doesn’t take any parameters and
our new method does. Java allows you to use the same method name as another
method as long as the parameter list is different. This is called method overloading .

Program 4: Draw Square With Width as a Parameter

/∗∗
∗ Method to draw a square wi th a width and he i g h t
∗ o f some passed amount .
∗ @param width the width and h e i g h t to use
∗/

public void drawSquare (int width)
{

this . turnRight () ;
this . forward (width) ;
this . turnRight () ;
this . forward (width) ;
this . turnRight () ;
this . forward (width) ;
this . turnRight () ;
this . forward (width) ;

}

Type in the new method declaration and compile. Let’s try this new method
out.

> World world1 = new World();
> Turtle turtle1 = new Turtle(world1);
> turtle1.drawSquare(200);

When you execute turtle1.drawSquare(200); you are asking the object
referred to by the variable named turtle1 to execute a method named drawSquare
that takes an integer parameter. The method drawSquare will use 200 for the
parameter width everywhere it appears in the method drawSquare. The parameter
name width is known throughout the body of the method. This is very similar to
drawSquare2() but has the advantage that we don’t need to change the method
and recompile to use a different width.

An important reason for using parameters is to make a method more general.
Consider method drawSquare(int width). That method handles the general case
of drawing a square. We call that kind of generalization abstraction. Abstraction

“main”
2005/9/6
page 63

i

i

i

i

i

i

i

i

Section 3.5 Creating Methods 63

FIGURE 3.10: Showing the result of sending the width as a parameter to drawSquare

leads to general solutions that work in lots of situations.

'

&

$

%

Making it Work Tip: Use names that make sense
We called the first method drawSquare() and the second
drawSquare2(). Does it matter? Absolutely not! Well,
not to the computer, at any rate. The computer doesn’t
care what names you use—they’re entirely for your benefit.
Pick names that (a) are meaningful to you (so that you can
read and understand your program), (b) are meaningful to
others (so that others can read and understand it), and (c)
are easy to type. Long names, like,
drawARectangleWithEqualWidthAndHeight
are meaningful, easy-to-read, but are a pain to type.
Does this mean that you can use ”orange” as a method
name? Yes, you can, but it may be confusing even for you,
and especially confusing for others. It helps to use method
names that indicate what the method does.

Defining a method that takes input is very easy. It continues to be a matter
of substitution and evaluation. We’ll put a type and name inside those parentheses
after the method name. The names given inside the parentheses are called the
parameters or input variables.

When you evaluate the method, by specifying its name with input values
(also called the arguments) inside parentheses, such as turtle1.drawSquare(20);
or new Turtle(20,30,world1), each parameter variable is set to a copy of the
argument value. This is called pass by value. All arguments in Java are passed by
making a copy of their value. Does this mean that we make a copy of the World
object when we pass it as a parameter? No, we just make a copy of the object
reference which means we make another reference to that World object.

“main”
2005/9/6
page 64

i

i

i

i

i

i

i

i

64 Chapter 3 Introduction to Programming

FIGURE 3.11: Creating a Picture object using new Picture()

3.6 WORKING WITH MEDIA

What if we want to create and manipulate media like pictures or sounds? Just as
we created the World and Turtle classes to define what we mean by these to the
computer we have created Picture and Sound classes.

3.6.1 Creating a Picture Object

How would you create a picture? The syntax for creating an object is

new Class (parameterList)

Try entering the following in the interactions pane.

> System.out.println(new Picture());
Picture, filename null height 100 width 200

It looks like we created a Picture object with a height of 100 and a width
of 200, but why don’t we see it? New objects of the class Picture aren’t shown
automatically. You have to ask them to show themselves using the message show().
So let’s ask the Picture object to show itself. Oops, we forgot to declare a variable
to refer to the Picture object so we don’t have any way to access it. Let’s try it
again and this time declare a variable for it. The syntax for declaring a variable is
type name ; or type name = expression ;. The type is the name of the class
so we will use a type of Picture. What should the name be? Well the name should
describe what the object is so let’s use picture1.

> Picture picture1 = new Picture();
> picture1.show();

Now we can see the created picture in Figure 3.11.
Why doesn’t it have anything in it? When you create a Picture object

using new Picture() the default width is 200 and the default height is 100 and
the default is that all of the pixels in the picture are white. How can we create a
picture from data in a file from a digital camera? We can use new Picture(String
fileName) which takes an object of the String class which is the fully qualified
file name of a file to read the picture information from.

“main”
2005/9/6
page 65

i

i

i

i

i

i

i

i

Section 3.6 Working with Media 65

FIGURE 3.12: The File Chooser

What is the fully qualified file name of a file? The full or complete name of a
file is the path to the file as well as the base file name and extension. How can we
get the full file name for a file? One way is to use another class we have created for
you. The FileChooser class has a class method pickAFile() which will display a
dialog window that will help you pick a file.

> System.out.println(FileChooser.pickAFile());

Â

Á

¿

À

Common Bug: File Chooser doesn’t appear
If you don’t see the window with the file chooser in it
after typing in the code above, try minimizing your DrJava
window. Sometimes the file chooser comes up behind the
DrJava window.

You’re probably already familiar with how to use a file chooser or file dialog
like this:

• Double-click on folders/directories to open them.

• Click on the top right iconic button to see the details about the files such as
the types of files they are (if you put the cursor over the button and leave it
there it will show “Details”). To create a picture we want to pick a file with
a type of “JPEG Image”. To create a sound we would pick a file with a type
of “Wave Sound”.

• Click on the file name to select it and then click Open, or double-click, to
select a file.

Once you select a file, what gets returned is the full file name as a string (a
sequence of characters). (If you click Cancel, pickAFile() returns null which

“main”
2005/9/6
page 66

i

i

i

i

i

i

i

i

66 Chapter 3 Introduction to Programming

is a predefined value in Java that means that it doesn’t refer to a valid object).
Try it, type the code below after the > in the interactions pane and select a file
by clicking the mouse button when the cursor points to the desired file name, then
click on the Open button.

> System.out.println(FileChooser.pickAFile());
C:\intro-prog-java\mediasources\flower1.jpg

What you get when you finally select a file will depend on your operating
system. On Windows, your file name will probably start with C: and will have
backslashes in it (e.g., \). There are really two parts to this file name:

• The character between words (e.g., the \ between “intro-prog-java” and “me-
diasources”) is called the path separator . Everything from the beginning of
the file name to the last path separator is called the path to the file. That
describes exactly where on the hard disk (in which directory) a file exists.
A directory is like a drawer of a file cabinet and it can hold many files. A
directory can even hold other directories.

• The last part of the file (e.g. “flower1.jpg”) is called the base file name. When
you look at the file in the Finder/Explorer/Directory window (depending
on your operating system), that’s the part that you see. Those last three
characters (after the period) is called the file extension. It identifies the
encoding of the file. You may not see the extension depending on the settings
you have. But, if you show the detail view (top right iconic button on the file
chooser) you will see the file types. Look for files of type “JPEG Image”.

Files that have an extension of “.jpg” or a type of “JPEG Image” are JPEG
files. They contain pictures. (To be picky, they contain data that can be inter-
preted to be a representation of a picture – but that’s close enough to “they contain
pictures.”) JPEG is a standard encoding (a representation) for any kind of image.
The other kind of media files that we’ll be using frequently are “.wav” files (Fig-
ure 3.13). The “.wav” extension means that these are WAV files. They contain
sounds. WAV is a standard encoding for sounds. There are many other kinds of
extensions for files, and there are even many other kinds of media extensions. For
example, there are also GIF (“.gif”) files for images and AIFF (“.aif” or “.aiff”)
files for sounds. We’ll stick to JPEG and WAV in this text, just to avoid too much
complexity.

3.6.2 Showing a Picture

So now we know how to get a complete file name: Path and base name. This
doesn’t mean that we have the file itself loaded into memory. To get the file into
memory, we have to tell Java how to interpret this file. We know that JPEG files
are pictures, but we have to tell Java explicitly to read the file and make a Picture
object from it (an object of the Picture class).

The way we create and initialize new objects in Java is to ask the class to
create a new object using new ClassName (parameterList). The class contains
the description of the data each object of the class needs to have so it is the thing

“main”
2005/9/6
page 67

i

i

i

i

i

i

i

i

Section 3.6 Working with Media 67

Click here to see the file types

Click here to open the selected file

Click here to select a file

FIGURE 3.13: File chooser with media types identified

that knows how to create objects of that class. You can think of a class as a factory
for making objects of that class. So, to create a new object of the Picture class
from a file name use new Picture(fileName). The fileName is the name of a file
as a string. We know how to get a file name using FileChooser.pickAFile().

> System.out.println(new Picture(FileChooser.pickAFile()));
Picture, filename
c:\intro-prog-java\mediasources\beach-smaller.jpg height 360 width
480

The result from System.out.println suggests that we did in fact make a
Picture object, from a given filename and with a given height and width. Success!
Oh, you wanted to actually see the picture? We’ll need another method! The
method to show the picture is named show().

You ask a Picture object to show itself using the method show(). It may
seem strange to say that a picture knows how to show itself but in object-oriented
programming we treat objects as intelligent beings that know how to do the things
that we would expect an object to be able to do, or that someone would want to
do to it. We typically show pictures, so in object-oriented programming Picture
objects know how to show themselves (make themselves visible).

3.6.3 Variable Substitution

We can now pick a file, make a picture, and show it in a couple of different ways.

• We can do it all at once because the result from one method can be used in the
next method: new Picture(FileChooser.pickAFile()).show(). That’s

“main”
2005/9/6
page 68

i

i

i

i

i

i

i

i

68 Chapter 3 Introduction to Programming

what we see in figure 3.14. This code will first invoke the pickAFile() class
method of the class FileChooser because it is inside the parentheses. The
pickAFile() method will return the name of the selected file as a string.
Next it will create a new Picture object with the selected file name. And
finally it will ask the created Picture object to show itself.

FIGURE 3.14: Picking, making, and showing a picture, using the result of each
method in the next method. The picture used is beach-smaller.jpg.

• The second way is to name each of the pieces by declaring variables. To de-
clare a variable (a name for data) use type name; or type name=expression ;.

“main”
2005/9/6
page 69

i

i

i

i

i

i

i

i

Section 3.6 Working with Media 69

'

&

$

%

Making it Work Tip: Types in Java
A type in Java can be any of the predefined primitive types
(char, byte, int, short, long, float, double, or boolean)
or the name of a class. Java is not a completely object-
oriented language in that the primitive types are not ob-
jects.
Why are there so many primitive types? The answer has to
do with how many bits you want to use to represent a value.
The more bits you use the larger the number that you can
store. We will only use int, float, double, and boolean in
this book. The type int is for integer numbers and takes
up 32 bits. The type float is for floating point numbers
and takes up 32 bits. The type double is for floating point
numbers and takes up 64 bits. The type boolean is for
things that are just true or false so a boolean value could
be stored in just 1 bit. However, how much space a boolean
takes isn’t specified in the Java language specifications (it
depends on the virtual machine). Java uses primitive types
to speed calculations.
A class name used as a type can be either a class defined as
part of the Java language like (String, JFrame, or Buffered-
Image) or a class that you or someone else created (like the
Picture class we created).

Try the following in the interactions pane. Pick a file name that ends in “.jpg”.

> String fileName = FileChooser.pickAFile();
> Picture pictureObj = new Picture(fileName);
> pictureObj.show();

As you can see we can name the file that we get from FileChooser.pickAFile()
by using (String fileName =). This says that the variable named fileName will
be of type String (will refer to an object of the String class) and that the String
object that it will refer to will be returned from FileChooser.pickAFile(). In a
similar fashion we can create a variable named pictureObj that will refer to an ob-
ject of the Picture class that we get from creating a new Picture object with the
fileName using Picture pictureObj = new Picture(fileName). We can then
ask that Picture object to show itself by sending it the show() message using

“main”
2005/9/6
page 70

i

i

i

i

i

i

i

i

70 Chapter 3 Introduction to Programming

pictureObj.show(). That’s what we see in figure 3.15.
'

&

$

%

Making it Work Tip: Java Conventions
By convention all class names in Java begin with an up-
percase letter, all variable and method names begin with
a lowercase letter. This will help you tell the difference
between a class name and a variable or method name. So,
Picture is a class name since it starts with a uppercase
letter and pictureObj is a variable name since it starts
with a lowercase letter. If a name has several words in it
the convention is to uppercase the first letter of each ad-
ditional word like pickAFile(). A convention is the usual
way of doing something which means that the compiler
won’t care if you don’t do it this way but other program-
mers will tar and feather you because it will make your
programs harder to understand.

Debugging Tip: Method names must be followed
by parentheses!
In Java all methods have to have parentheses after the
method name both when you declare the method and when
you invoke it. You can’t leave off the parentheses even if
the method doesn’t take any parameters. So, you must
type pictureObj.show() not pictureObj.show.

If you try pictureObj.show(), you’ll notice that there is no output from this
method. Methods in Java don’t have to return a value, unlike real mathematical
functions. A method may just do something (like display a picture).

3.6.4 Object references

When the type of a variable is int or double or boolean we call that a primitive
variable. As you have seen when a primitive variable is declared space is reserved
to represent that variable’s value and the name is used to find the address of that
reserved space. If the type is int then 32 bits of space (4 bytes) is reserved. If the
type is double then 64 bits of space (8 bytes) is reserved.

When the type of a variable is the name of a class (like String) then this
is called an object variable or object reference. Unlike primitive variables, object
variables do not reserve space for the value of the variable. How could they? How
much space do you need for an object? How about an object of the class String?
How about an object of the class Picture? The amount of space you need for an
object depends on the number and types of fields (data) each object of that class
has.

Object variables (references) reserve space for a reference to an object of the
given class. A reference allows the computer to determine the address of the actual
object (it isn’t just the address of the object). If the object variable is declared but
not assigned to an object the reference is set to null which means that it doesn’t

‘‘main’’
2005/9/6
page 71

i

i

i

i

i

i

i

i

Section 3.6 Working with Media 71

FIGURE 3.15: Picking, making, and showing a picture, when naming the pieces.
The picture shown is tammy.jpg. Tammy is one of the computer science graduate
students at Georgia Tech.

refer to any object yet.

3.6.5 Playing a Sound

We can replicate this entire process with sounds.

• We still use FileChooser.pickAFile() to find the file we want and get its
file name.

• We use new Sound(fileName) to make a Sound object using the passed
fileName as the file to read the sound information from.

• We will use play() to play the sound. The method play() is an object
method (invoked on a Sound object). It plays the sound one time. It doesn’t
return anything.

Here are the same steps we saw previously with pictures:

> System.out.println(FileChooser.pickAFile());
C:\intro-prog-java\mediasources\croak.wav
> System.out.println(new Sound(FileChooser.pickAFile()));

‘‘main’’
2005/9/6
page 72

i

i

i

i

i

i

i

i

72 Chapter 3 Introduction to Programming

Sound file: croak.wav length: 17616
> new Sound(FileChooser.pickAFile()).play();

The FileChooser.pickAFile(); allows you to pick a file with a file chooser
and the System.out.println that is around this displays the full file name that was
picked. The code System.out.println(new Sound(FileChooser.pickAFile()));
also allows you to pick a file, then it creates a sound object from the full file name,
and finally it displays information about the sound object: the file name, and the
length of the sound. We’ll explain what the length of the sound means in chap-
ter 8. The code new Sound(FileChooser.pickAFile()).play(); has you pick a
file name, creates the sound object using that file name, and tells that sound object
to play.

Please do try this on your own, using WAV files that you have on your own
computer, that you make yourself, or that came on your CD. (We talk more about
where to get the media and how to create it in future chapters.)

3.6.6 Naming your Media (and other Values)

The code new Sound(FileChooser.pickAFile()).play() looks awfully compli-
cated and long to type. You may be wondering if there are ways to simplify it. We
can actually do it just the way that mathematicians have for centuries: We name
the pieces! The results from methods (functions) can be named, and these names
can be used as the inputs to other methods.

> String fileName = FileChooser.pickAFile();
> Sound soundObj = new Sound(fileName);
> soundObj.play();

3.6.7 Naming the Result of a Method

We can assign names to the results of methods (functions). If we name the result
from FileChooser.pickAFile(), each time we print the name, we get the same
result. We don’t have to re-run FileChooser.pickAFile(). Naming code in order
to re-execute it is what we’re doing when we define methods (functions), which
comes up in Section 3.5.

> String fileName = FileChooser.pickAFile();
> System.out.println(fileName);
C:\intro-prog-java\mediasources\beach-smaller.jpg
> System.out.println(fileName);
C:\intro-prog-java\mediasources\beach-smaller.jpg

Notice that we named the String returned from FileChooser.pickAFile.
We can use that name many times and each time it will have the same value (until
we change it).

In the below example, we declare variables (assign names) for the file name
(a String object) and the Picture object.

> String myFileName = FileChooser.pickAFile();

‘‘main’’
2005/9/6
page 73

i

i

i

i

i

i

i

i

Section 3.6 Working with Media 73

> System.out.println(myFileName);
C:\intro-prog-java\mediasources\katie.jpg
> Picture myPicture = new Picture(myFileName);
> System.out.println(myPicture);
Picture, filename C:\intro-prog-java\mediasources\katie.jpg height
360 width 381

Notice that the algebraic notions of subsitution and evaluation work here as
well. Executing the code:
Picture myPicture = new Picture(myFileName);
causes the exact same picture to be created as if we had executed:
Picture myPicture = new Picture(FileChooser.pickAFile());1, because we
set myFileName to be equal to the result of FileChooser.pickAFile(). The values
get substituted for the names when the expression is evaluated. The code new
Picture(myFileName) is an expression which, at evaluation time, gets expanded
into:
new Picture ("C:\intro-prog-java\mediasources\katie.jpg")
because C:\intro-prog-java\mediasources\katie.jpg is the name of the file
that was picked when FileChooser.pickAFile() was evaluated and the returned
value was named myFileName.

We can also replace the method method invocations (“function calls”) with
the value returned. FileChooser.pickAFile() returns a String object—a bunch
of characters enclosed inside of double quotes. We can make the last example work
like this, too.'

&

$

%

Common Bug: Backslashes and Slashes
You have seen the names of files dis-
played with backslashes in them, such as
C:\intro-prog-java\mediasources\beach.jpg. How-
ever, when you create an object of the String class in
Java you might not want to use backslashes because they
are used to create special characters in strings like tab or
newline. You can use slashes ’/’ instead as a path sep-
arator C:/intro-prog-java/mediasources/beach.jpg.
Java can still figure out the path name when you
use slashes. You can still use backslashes in the
full path name, but you need to double each one
C:\\intro-prog-java\\mediasources\\beach.jpg.

> String myFileName =
"C:/intro-prog-java/mediasources/katie.jpg";
> System.out.println(myFileName);
C:/intro-prog-java/mediasources/katie.jpg
> Picture myPicture = new Picture(myFileName);
> System.out.println(myPicture);
Picture, filename C:/intro-prog-java/mediasources/katie.jpg height

1Assuming, of course, that you picked the same file.

“main”
2005/9/6
page 74

i

i

i

i

i

i

i

i

74 Chapter 3 Introduction to Programming

360 width 381

Or even substitute for the name.

> Picture aPicture = new
Picture("C:/intro-prog-java/mediasources/katie.jpg");
> System.out.println(aPicture);
Picture, filename C:/intro-prog-java/mediasources/katie.jpg height
360 width 381

Computer Science Idea: We can substitute names,
values, and methods.
We can substitute a value, a name assigned to that value
(the variable name), and the method returning that value
interchangeably. The computer cares about the values, not
if it comes from a string, a name (a variable), or a method
(function) call.

We call statements to the computer that are telling it to do things commands.
System.out.println(aPicture); is a command. So is String myFileName =
FileChooser.pickAFile();, and aPicture.show(;). These are more than ex-
pressions: They’re telling the computer to do something.

3.7 CONCEPTS SUMMARY

This chapter introduced many concepts: invoking object and class methods, creat-
ing objects, and how to create new methods.

3.7.1 Invoking Object Methods

You must invoke an object method on an object.
objectReference.methodName(parameterList);
Here is an example of invoking an object method:

> turtle1.turnLeft();

The object that the method is invoked on will be implicitly passed to the
method and can be referred to using the keyword this inside of the method. Object
methods usually work with the data in the current object.

3.7.2 Invoking Class Methods

You can invoke a class method using the name of the class.
ClassName.methodName(parameterList);
Here is an example of invoking a class method:

> System.out.println(Math.abs(-3));
3

Class methods are used for general methods like absolute value. Class methods
do not have access to object data.

“main”
2005/9/6
page 75

i

i

i

i

i

i

i

i

Section 3.7 Concepts Summary 75

3.7.3 Creating Objects

To create an object ask the class to create and initialize a new object. This is also
called creating an instance of a class or instantiating an object.

new ClassName(parameterList)

Here is an example of creating an object of the class World:

> World worldObj = new World();

3.7.4 Creating new Methods

To create a method in a class, open the class definition file ClassName.java, and
put the method before the closing curly brace at the end of the file.

To define a method use:

public returnType methodName(parameterLi s t)
{

// s ta tements in the body o f the method
}

If the method doesn’t return a value use the keyword “void” as the return
type. Each parameter in the parameter list has a type and name. Parameters are
separated by commas. Method and parameter names start with a lowercase letter,
but the first letter of each additional word is capitalized.

Here is an example method in the Turtle class:

/∗∗
∗ Method to draw a square wi th a width and he i g h t
∗ o f 30
∗/

public void drawSquare ()
{

this . turnRight () ;
this . forward (3 0) ;
this . turnRight () ;
this . forward (3 0) ;
this . turnRight () ;
this . forward (3 0) ;
this . turnRight () ;
this . forward (3 0) ;

}

OBJECTS AND METHODS SUMMARY

In this chapter we talk about several kinds of encodings of data (or objects).

“main”
2005/9/6
page 76

i

i

i

i

i

i

i

i

76 Chapter 3 Introduction to Programming

Pictures objects of our Picture class Pictures are encodings of images,
typically coming from a JPEG
file.

Sounds objects of our Sound class Sounds are encodings of sounds,
typically coming from a WAV file.

Strings Java String object e.g., ”Hello!” A sequence of characters (includ-
ing spaces, punctuation, etc.) de-
limited on either end with a dou-
ble quote character.

Turtles objects of our Turtle class Turtles can move forward, turn
left, turn right, turn by a speci-
fied angle, and leave a trail.

Worlds objects of our World class Worlds can hold objects such as
objects of the Turtle class.

Here are the methods introduced in this chapter:

“main”
2005/9/6
page 77

i

i

i

i

i

i

i

i

Section 3.7 Concepts Summary 77

Character.getNumericValue(Character character) Returns the equivalent numeric
value in Unicode for the input
character.

FileChooser.pickAFile() Lets the user pick a file and re-
turns the complete path name as
a string.

Math.abs(int number) Takes a number and returns the
absolute value of it.

show() Shows the Picture object that it
is invoked on. No return value.

play() Plays the sound object (object of
the Sound class) that it is invoked
on.

forward(int numberOfSteps) Asks the Turtle object that it is
invoked on to move forward by
the passed number of steps. No
return value.

setPenDown(boolean value) Asks the Turtle object that it
is invoked on to set the pen up
or down depending on the passed
value. If you pass in false for
value the pen is lifted and no
trail will be drawn when the tur-
tle moves. If you pass in true the
pen will be put down and the trail
will be drawn.

hide() Asks the Turtle object that it is
invoked on to stop showing itself.
No return value.

moveTo(int x, int y) Asks the Turtle object that it is
invoked on to move to the speci-
fied x and y location. No return
value.

penDown() Asks the Turtle object that it is
invoked on to put down the pen
and draw the trail of future move-
ments. No return value.

penUp() Asks the Turtle object that it is
invoked on to pick up the pen so
you don’t see the trail of future
movements. No return value.

show() Asks the Turtle object that it is
invoked on to show (draw) itself.
No return value.

turn(int angle) Asks the Turtle object that it is
invoked on to turn by the speci-
fied angle. A negative angle will
turn that much to the left and a
positive angle will turn that much
to the right. No return value.

turnLeft() Asks the Turtle object that it is
invoked on to turn left 90 degrees.
No return value.

turnRight() Asks the Turtle object that it is
invoked on to turn right 90 de-
grees. No return value.

‘‘main’’

2005/9/6

page 78

i

i

i

i

i

i

i

i

78 Chapter 3 Introduction to Programming

PROBLEMS

3.1. Some computer science concept questions:

• What is a file?

• What is an operating system?

• What does a compile do?

• What does method visibility mean?

• What is a classpath?

• What is a wrapper class?

• What is a hard disk?

• What is a method?

• What creates new objects?

• What does “pass by value” mean?

• What is a primitive variable?

• What is an object variable?

3.2. Test your understanding of Java with the following:

• What does pictureObj.show() do?

• What does soundObj.play() do?

• What does FileChooser.pickAFile() do?

• What does turtle1.turnLeft() do?

3.3. Test your understanding of Java with the following:

• What does turtle1.forward() do?

• What does turtle1.turn(-45) do?

• What does turtle1.turn(45) do?

• What does turtle1.penUp() do?

• What does turtle1.hide() do?

3.4. How do you create new objects in Java? How do you create a World object? How
do you create a Turtle object?

3.5. Which of the following are class methods and which are object methods? How
can you tell which are which?

• Math.abs(-3);

• soundObj.play();

• FileChooser.pickAFile();

• pictureObj.show();

• ColorChooser.pickAColor();

• turtle1.turnLeft();

3.6. What does this do? System.out.println(new Picture());

3.7. How many and what kind of variables (primitive or object) are created in the
code below?
> String fileName = FileChooser.pickAFile();

> Picture p1 = new Picture(fileName);

> p1.show();

“main”
2005/9/6
page 79

i

i

i

i

i

i

i

i

Section 3.7 Concepts Summary 79

3.8. How many and what kind of variables (primitive or object) are created in the
code below?
> World worldObj = new World();

> Turtle turtle1 = new Turtle(worldObj);

> turtle1.forward(30);

> Turtle turtle2 = new Turtle(worldObj);

> turtle2.turnRight();

> turtle2.forward(30);

3.9. How many and what kind of variables (primitive or object) are created in the
code below?
> double cost = 19.20;

> double percentOff = 0.4;

> double salePrice = cost * (1.0 - percentOff);

3.10. We evaluated the expression FileChooser.pickAFile() when we wanted to in-
voke the method named pickAFile(). But what does this do? Open the
FileChooser class and find the method declaration.

3.11. Write a method for Turtle to draw a rectangle. Pass in the width and height for
the rectangle.

3.12. Write a method for Turtle to draw a hexagon. Pass in the length of the sides.
3.13. Write a method for Turtle to draw a pentagon. Pass in the length of the sides.
3.14. Write a method for Turtle to draw an equilateral triangle. Pass in the length of

the sides.
3.15. Create a World object and a Turtle object and use the Turtle object to draw a

star.
3.16. Create a World object and a Turtle object and use the Turtle object to draw

an arrow.
3.17. Create a World object and a Turtle object and use the Turtle object to draw a

pyramid.
3.18. Create a World object and a Turtle object and use the Turtle object to draw a

flower.
*3.19. Create a World object and a Turtle object and use the Turtle object to draw a

house.
*3.20. Create a World object and a Turtle object and use the Turtle object to draw

your first name.

TO DIG DEEPER

The best (deepest, most material, most elegant) computer science textbook is Struc-
ture and Interpretation of Computer Programs [2], by Abelson, Sussman, and Suss-
man. It’s a hard book to get through, though. Somewhat easier, but in the same
spirit is the new book How to Design Programs [9].

Neither of these books are really aimed at students who want to program
because it’s fun or because they have something small that they want to do. They’re
really aimed at future professional software developers. The best books aimed at
the less hardcore user are by Brian Harvey. His book Simply Scheme uses the
same programming language as the earlier two, Scheme, but is more approachable.
My favorite of this class of books, though, is Brian’s three volume set Computer
Science Logo Style [18] which combine good computer science with creative and fun
projects.

“main”
2005/9/6
page 80

i

i

i

i

i

i

i

i

“main”
2005/9/6
page 81

i

i

i

i

i

i

i

i

P A R T T W O

PICTURES
Chapter 4 Modifying Pictures using Loops

Chapter 5 Modifying Pixels in a Matrix

Chapter 6 Conditionally Modifying Pixels

Chapter 7 Drawing

81

“main”
2005/9/6
page 82

i

i

i

i

i

i

i

i

C H A P T E R 4

Modifying Pictures using Loops

4.1 HOW PICTURES ARE ENCODED

4.2 MANIPULATING PICTURES

4.3 CHANGING COLOR VALUES

4.4 CONCEPTS SUMMARY

Chapter Learning Objectives
The media learning goals for this chapter are:

• To understand how images are digitized by taking advantage of limits in
human vision.

• To identify different models for color, including RGB, the most common one
for computers.

• To manipulate color values in pictures, like increasing or decreasing red values.

• To convert a color picture to grayscale, using more than one method.

• To convert a color picture to its negative representation.

The computer science goals for this chapter are:

• To introduce arrays.

• To write object methods.

• To do iteration with while and for loops.

• To introduce comments.

• To understand the scope of a variable name.

• To introduce breaking a method into smaller methods.

4.1 HOW PICTURES ARE ENCODED

Pictures (images, graphics) are an important part of any media communication.
In this chapter, we discuss how pictures are represented on a computer (mostly as
bitmap images—each dot or pixel is represented separately) and how they can be
manipulated.

Pictures are two-dimensional arrays of pixels (which is short for picture ele-
ment) . In this section, each of those terms will be described.

82

“main”
2005/9/6
page 83

i

i

i

i

i

i

i

i

Section 4.1 How Pictures are Encoded 83

For our purposes, a picture is an image stored in a JPEG file. JPEG is
an international standard for how to store images with high quality but in little
space. JPEG is a lossy compression format. That means that it is compressed ,
made smaller, but not with 100% of the quality of the original format. Typically,
though, what gets thrown away is stuff that you don’t see or don’t notice anyway.
For most purposes, a JPEG image works fine.

If we want to write programs to manipulate JPEG images we need to under-
stand how they are stored and displayed. To do this we need to understand arrays,
matrices, pixels, and color.

An array is a sequence of elements, each with an index number associated
with it. The first element in an array is at index 0, the second at index 1, the third
at index 2, and so on. The last element of the array will always be at the length of
the array minus one. An array with 5 elements will have its last element at index
4.

It may sound strange to say that the first element of an array is at index 0 but
the index is based on the distance from the beginning of the array to the element.
Since the first item of the array is at the beginning of the array the distance is 0.
Why is the index based on the distance? Array values are stored one after the other
in memory. This makes it easy to find any element of the array by multiplying the
size of each element by the index and adding it to the address of the beginning of
the array. If you are looking for the element at index 3 in an array and the size of
each element is 4 bytes long and the array starts at memory location 26 then the
3rd element is at (3 * 4 + 26 = 12 + 26 = 38).

59 39 16 10 -1

0 1 2 3 4

...

FIGURE 4.1: A depiction of the first five elements in an array

Every time you join a line (queue) of people you are in something like an
array. All you usually care about is how far you are from the front of the line. If
you are at the front of the line then that is index 0 (you are next). If you are the
second one in line then you are at index 1 (there is one person in front of you). If
you are the third person in line then you are at index 2 (there are two people in
front of you).

Arrays are a great way to store lots of data of the same type. You wouldn’t
want to create a different variable for every pixel in a picture when there are hun-
dreds of thousands of pixels in a picture. Instead you use an array of pixels. You
still need a way to refer to a particular pixel, so we use an index for that. You
can access elements of an array in Java using arrayName[index]. For example, to
access the first element in an array variable named pixels use pixels[0]. To access
the second element use pixels[1]. To access the third element use pixels[2].
You can get the number of items in an array using arrayName.length. So, to

“main”
2005/9/6
page 84

i

i

i

i

i

i

i

i

84 Chapter 4 Modifying Pictures using Loops

access the last element in the array use arrayName[arrayName.length - 1].
To declare an array in Java you specify the type and then use open and close

square brackets followed by a name for the array.

> double[] grades;
> System.out.println(grades);
null

or you could have specified the square brackets after the variable name:

> double grades[];
> System.out.println(grades);
null

The above code declares an array of doubles with the name grades. Notice
though that this just declared an object reference and set it to null. It didn’t create
the array. In Java you can create an array and specify the values for it at the same
time:

> double[] gradeArray = {80, 90.5, 88, 92, 94.5};
> System.out.println(gradeArray.length);
5
> System.out.println(gradeArray[0]);
80.0
> System.out.println(gradeArray[4]);
94.5

'

&

$

%

Making it Work Tip: Using dot notation for public
fields
Notice that there are no parentheses following
arrayName.length. This is because length is not a
method but a public field (data). Public fields can be
accessed using dot notation objectName.fieldName .
Methods always have parenthesis after the method
name even if there are no input parameters, such as
FileChooser.pickAFile().

A two-dimensional array is a matrix . A matrix is a collection of elements
arranged in both a horizontal and vertical sequence. For one dimensional arrays
you would talk about an element at index i, that is array[i]. For two-dimensional
arrays you can talk about an element at row r and column c, that is, matrix[r][c].
This is called row-major order .

Have you ever played the game BattleshipTM? If you have then you had to
specify both the row and column of your guess (B-3) This means row B and column
3 (Figure 4.2). Have you ever gone to a play? Usually your ticket has a row and
seat number. These are both examples of row-major two-dimensional arrays.

Another way to specify a location in a two-dimensional array is column-major
order which specifies the column first and then the row: matrix[c][r]. This is

“main”
2005/9/6
page 85

i

i

i

i

i

i

i

i

Section 4.1 How Pictures are Encoded 85

FIGURE 4.2: The top left corner of a battleship guess board with a miss at B-3.

how we normally talk about pictures by using an x for the horiztonal location and
a y for the vertical location such as matrix[x][y]. Picture data is represented as
a column-major two-dimensional array.

Java actually creates multi-dimensional arrays as arrays of arrays. When you
have a two-dimensional array the first index is the location in the outer array and
the second is the location in the inner array. You can either think of the outer array
as being the rows or the outer array as being the columns. So, Java isn’t row-major
or column-major, but you will create and work with your arrays in either row-major
or column-major fashion. Just be sure to be consistent.

0

1

0 1 2 3

0 1 2 3

0

1

FIGURE 4.3: Picturing a 2-d array as row-major or column-major

In Figure 4.4, you see an example matrix. Using column-major order for the
coordinates (0, 0) (horizontal, vertical), you’ll find the matrix element whose value
is 15. The element at(1, 1) is 7, (2, 1) is 43, and (3, 1) is 23. We will often refer to
these coordinates as (x, y) ((horizontal, vertical).

What’s stored at each element in the picture is a pixel . The word “pixel” is
short for “picture element.” It’s literally a dot, and the overall picture is made up
of lots of these dots. Have you ever taken a magnifying glass to pictures in the
newspaper or magazines, or to a television or even your own computer monitor?
(Figure 4.5 was generated by capturing as an image the top left part of the DrJava
window and then magnifying it 600%. It’s made up of many, many dots. When

“main”
2005/9/6
page 86

i

i

i

i

i

i

i

i

86 Chapter 4 Modifying Pictures using Loops

FIGURE 4.4: An example matrix (two-dimensional array) of numbers

you look at the picture in the magazine or on the television, it doesn’t look like it’s
broken up into millions of discrete spots, but it is.

FIGURE 4.5: Upper left corner of DrJava window with part magnified 600%

You can get a similar view of individual pixels using the picture explorer,
which is discussed later in this chapter. The picture explorer allows you to zoom a
picture up to 500% so that each individual pixel is visible (Figure 4.6).

Our human sensor apparatus can’t distinguish (without magnification or other
special equipment) the small bits in the whole. Humans have low visual acuity—we
don’t see as much detail as, say, an eagle. We actually have more than one kind
of vision system in use in our brain and our eyes. Our system for processing color
is different than our system for processing black-and-white (or luminance). We
actually pick up luminance detail better with the sides of our eyes than the center
of our eye. That’s an evolutionary advantage since it allows you to pick out the
sabertooth sneaking up on you from the side.

That lack of resolution in human vision is what makes it possible to digi-
tize pictures. Animals that perceive greater details than humans (e.g., eagles or
cats) may actually see the individual pixels. We break up the picture into smaller
elements (pixels), but there are enough of them and they are small enough that
the picture doesn’t look choppy when viewed from a normal viewing distance. If
you can see the effects of the digitization (e.g., lines have sharp edges, you see little
rectangles in some spots), we call that pixelization—the effect when the digitization

“main”
2005/9/6
page 87

i

i

i

i

i

i

i

i

Section 4.1 How Pictures are Encoded 87

FIGURE 4.6: Image shown in the picture explorer: 100% image on left and 500% on
right (close-up of the branch over the mountain)

process becomes obvious.
Picture encoding is actually more complex than sound encoding. A sound

is inherently linear—it progresses forward in time. It can be represented using a
one-dimensional array. A picture has two dimensions, a width and a height.

4.1.1 Color Representations

Visible light in continuous—visible light is any wavelength between 370 and 730
nanometers (0.00000037 and 0.00000073 meters). But our perception of light is
limited by how our color sensors work. Our eyes have sensors that trigger (peak)
around 425 nanometers (blue), 550 nanometers (green), and 560 nanometers (red).
Our brain determines what color we ”see” based on the feedback from these three
sensors in our eyes. There are some animals with only two kinds of sensors, like
dogs. Those animals still do perceive color, but not the same colors nor in the same
way as humans do. One of the interesting implications of our limited visual sensory
apparatus is that we actually perceive two kinds of orange. There is a spectral
vision—a particular wavelength that is natural orange. There is also a mixture of
red and yellow that hits our color sensors just right that we perceive as the same
orange.

Based on how we perceive color, as long as we encode what hits our three
kinds of color sensors, we’re recording our human perception of color. Thus, we can
encode each pixel as a triplet of numbers. The first number represents the amount
of red in the pixel. The second is the amount of green, and the third is the amount
of blue. We can make up any human-visible color by combining red, green, and
blue light (Figure 4.7). Combining all three gives us pure white. Turning off all
three gives us black. We call this the RGB color model .

There are other models for defining and encoding colors besides the RGB color
model. There’s the HSV color model which encodes Hue, Saturation, and Value
(sometimes also called the HSB color model for Hue, Saturation, and Brightness).
The nice thing about the HSV model is that some notions, like making a color

“main”
2005/9/6
page 88

i

i

i

i

i

i

i

i

88 Chapter 4 Modifying Pictures using Loops

FIGURE 4.7: Merging red, green, and blue to make new colors

“lighter” or “darker” map cleanly to it, e.g., you simply change the saturation
(Figure 4.8). Another model is the CMYK color model , which encodes Cyan,
Magenta, Yellow, and blacK (“B” could be confused with Blue). The CMYK model
is what printers use—those are the inks they combine to make colors. However, the
four elements means more to encode on a computer, so it’s less popular for media
computation. RGB is the most popular model on computers.

FIGURE 4.8: Picking colors using the HSB color model

Each color component (sometimes called a channel) in a pixel is typically
represented with a single byte, eight bits. Eight bits can represent 256 patterns
(28): 0000000, 00000001, up through 11111111. We typically use these patterns to
represent the values 0 to 255. Each pixel, then, uses 24 bits to represent colors.
That means that there are 224 possible patterns of 0’s and 1’s in those 24 bits. That
means that the standard encoding for color using the RGB model can represent
16,777,216 colors. We can actually perceive more than 16 million colors, but it
turns out that it just doesn’t matter. Humans have no technology that comes even
close to being able to replicate the whole color space that we can see. We do have

“main”
2005/9/6
page 89

i

i

i

i

i

i

i

i

Section 4.1 How Pictures are Encoded 89

devices that can represent 16 million distinct colors, but those 16 million colors
don’t cover the entire space of color (nor luminance) that we can perceive. So, the
24 bit RGB model is adequate until technology advances.

There are computer models that use more bits per pixel. For example, there
are 32 bit models which use the extra 8 bits to represent transparency—how much
of the color “below” the given image should be blended with this color? These
additional 8 bits are sometimes called the alpha channel . There are other models
that actually use more than 8 bits for the red, green, and blue channels, but they
are uncommon.

We actually perceive borders of objects, motion, and depth through a separate
vision system. We perceive color through one system, and luminance (how light/-
dark things are) through another system. Luminance is not actually the amount
of light, but our perception of the amount of light. We can measure the amount of
light (e.g., the number of photons reflected off the color) and show that a red and a
blue spot each are reflecting the same amount of light, but we’ll perceive the blue as
darker. Our sense of luminance is based on comparisons with the surroundings—the
optical illusion in Figure 4.9 highlights how we perceive gray levels. The two end
quarters are actually the same level of gray, but because the two mid quarters end
in a sharp contrast of lightness and darkness, we perceive that one end is darker
than the other.

FIGURE 4.9: The ends of this figure are the same colors of gray, but the middle two
quarters contrast sharply so the left looks darker than the right

Most tools for allowing users to pick out colors let the users specify the color
as RGB components. The Macintosh offers RGB sliders in its basic color picker
(Figure 4.10). The color chooser in Java offers a similar set of sliders (Figure 4.11).

As mentioned a triplet of (0, 0, 0) (red, green, blue components) is black,
and (255, 255, 255) is white. (255, 0, 0) is pure red, but (100, 0, 0) is red, too—just
darker. (0, 100, 0) is a dark green, and (0, 0, 100) is a dark blue.

When the red component is the same as the green and as the blue, the resul-
tant color is gray. (50, 50, 50) would be a fairly dark gray, and (150, 150, 150) is a
lighter gray.

The Figure 4.12 is a representation of pixel RGB triplets in a matrix repre-
sentation. In column-major order the pixel at (1, 0) has color (30, 30, 255) which
means that it has a red value of 30, a green value of 30, and a blue value of 255—it’s
a mostly blue color, but not pure blue. Pixel at (2, 1) has pure green but also more
red and blue ((150, 255, 150)), so it’s a fairly light green.

Images on disk and even in computer memory are usually stored in some kind

“main”
2005/9/6
page 90

i

i

i

i

i

i

i

i

90 Chapter 4 Modifying Pictures using Loops

FIGURE 4.10: The Macintosh OS X RGB color picker

FIGURE 4.11: Picking a color using RGB sliders from Java

of compressed form. The amount of memory needed to represent every pixel of even
small images is pretty large (Table 4.1). A fairly small image of 320 pixels wide by
240 pixels high, with 24-bits per pixel, takes up 230, 400 bytes–that’s roughly 230
kilobytes (1000 bytes) or 1/4 megabyte (million bytes). A computer monitor with
1024 pixels across and 768 pixels vertically with 32-bits per pixel takes up over 3

“main”
2005/9/6
page 91

i

i

i

i

i

i

i

i

Section 4.2 Manipulating Pictures 91

FIGURE 4.12: RGB triplets in a matrix representation

TABLE 4.1: Number of bytes needed to store pixels at various sizes and formats

320x240 image 640x480 1024x768
24-bit color 230, 400 bytes 921, 600 bytes 2, 359, 296 bytes
32-bit color 307, 200 bytes 1, 228, 800 bytes 3, 145, 728 bytes

megabytes just to represent the screen.

Computer Science Idea: Kilobyte (kB) versus
Kibibyte (Kib or K or KB)
The term kilobyte has caused problems because it has been
interpreted differently by different groups. Computer sci-
entists have used it to mean 2 to the 10th power which is
1024 bytes. Telecommunications engineers have used it to
mean 1000 bytes. The International Electrotechnical Com-
mission (IEC) decreed in 1998 to call 1,024 bytes a kibibyte
(KiB) and 1,000 bytes a kilobyte. Similarly a mebibtye is
defined to be 2 raised to the 20th power and a megabyte is
1,000,000 bytes (one million bytes). A gibitype is defined
to be 2 raised to the 30th power and a gigabtye is defined
to be 1,000,000,000 (one billion bytes).

4.2 MANIPULATING PICTURES

We manipulate a picture in DrJava by making a picture object out of a JPEG file,
then changing the pixels in that picture. We change the pixels by changing the color
associated with the pixel—by manipulating the red, green, and blue components.

We make a picture using new Picture(fileName). We make the picture
appear with the method show(). We can also explore a picture with the method

“main”
2005/9/6
page 92

i

i

i

i

i

i

i

i

92 Chapter 4 Modifying Pictures using Loops

explore(). These are both object methods so they must be called on an object of
the class that understands the method. This means that show() and explore()
must be called on a Picture object (object of the Picture class) using dot notation
as in pictureObject.show().

> String fileName = FileChooser.pickAFile();
> System.out.println(fileName);
c:\intro-prog-java\mediasources\caterpillar.jpg
> Picture pictureObject = new Picture(fileName);
> pictureObject.show();
> System.out.println(pictureObject);
Picture, filename c:\intro-prog-java\mediasources\caterpillar.jpg
height 150 width 329

What new Picture(fileName) does is to scoop up all the bytes in the input
filename, bring them in to memory, reformat them slightly, and place a sign on
them “This is a picture object!” When you execute Picture pictureObject =
new Picture(fileName), you are saying “The name pictureObject is referring
to a Picture object created from the contents of the file.”

Picture objects know their width and their height. You can query them with
the methods getWidth() and getHeight().

> System.out.println(pictureObject.getWidth());
329
> System.out.println(pictureObject.getHeight());
150

We can get any particular pixel from a picture using getPixel(x,y)where x
and y are the coordinates of the pixel desired. This returns an object of the class
Pixel which knows the picture it is from and the x and y position of the pixel
in that picture. The x coordinate starts at 0 at the top left of the picture and
increases horizontally. The y coordinate starts at 0 at the top left of the picture
and increases vertically. We can also get a one-dimensional array containing all the
pixels in the picture using the method getPixels(). This just grabs all the pixels
in the first column from top to bottom and then all the pixels in the second column
from top to bottom and so on till it has all of the pixels.

> Pixel pixelObject = pictureObject.getPixel(0,0);
> System.out.println(pixelObject);
Pixel red=252 green=254 blue=251
> Pixel[] pixelArray=pictureObject.getPixels();
> System.out.println(pixelArray[0]);
Pixel red=252 green=254 blue=251

Pixels know where they came from. You can ask them their x and y coordi-
nates with getX() and getY().

> System.out.println(pixelObject.getX());
0

“main”
2005/9/6
page 93

i

i

i

i

i

i

i

i

Section 4.2 Manipulating Pictures 93

> System.out.println(pixelObject.getY());
0

Each pixel object knows how to get the red value getRed() and set the red
value setRed(redValue). (Green and blue work similarly.)

> System.out.println(pixelObject.getRed());
252
> pixelObject.setRed(0);
> System.out.println(pixelObject.getRed());
0

You can ask a pixel object for its color with getColor(), and you can ask the
pixel object to set the color with setColor(color). Color objects (objects of the
class Color in package java.awt) know their red, green, and blue components. You
can also create new Color objects with
new Color(redValue,greenValue,blueValue)
(the color values must be between 0 and 255). The Color class also has several
colors predefined that you can use. If you need a color object that represents the
color black you can use Color.black or Color.BLACK, for yellow use Color.yellow
or Color.YELLOW. Other colors that are predefined are: Color.blue, Color.green,
Color.red, Color.gray, Color.orange, Color.pink, Color.cyan, Color.magenta, and
Color.white (or use all capitals for the color names). Notice that this is accessing
fields on the Color class, not invoking class methods (no parentheses). Public class

“main”
2005/9/6
page 94

i

i

i

i

i

i

i

i

94 Chapter 4 Modifying Pictures using Loops

variables (fields) can be accessed using ClassName.fieldName .
'

&

$

%

Making it Work Tip: Importing Classes from Pack-
ages
Color is a Java class in the package java.awt. A pack-
age is a group of related classes. Java uses packages to
group classes that you need for a particular purpose. To
use classes in packages other than java.lang (which con-
tains System and Math) you will need to import them.
Importing a class or all classes in a package allows you
to use the name of a class without fully qualifying it. To
fully qualify a name use the package name followed by a
period (dot) and the class name. The fully qualified name
for the Color class is java.awt.Color. You can always
use the fully qualified name instead of importing but peo-
ple don’t usually want to type that much. To import all
classes in the package java.awt use import java.awt.*;.
To import just the Color class from the package java.awt
use import java.awt.Color;. Importing doesn’t make
your class larger, it is just used to determine what class
you mean.

Debugging Tip: Undefined Class Error
If you get the message “Error: Undefined class Color”
it means that you didn’t import the class Color. You
must either import classes that are in packages other than
java.lang or fully qualify them.

> import java.awt.Color;
> Color colorObj=pixelObject.getColor();
> System.out.println(colorObj);
java.awt.Color[r=0,g=254,b=251]
> Color newColorObj=new Color(0,100,0);
> System.out.println(newColorObj);
java.awt.Color[r=0,g=100,b=0]
> pixelObject.setColor(newColorObj);
> System.out.println(pixelObject.getColor());
java.awt.Color[r=0,g=100,b=0]

If you change the color of a pixel, the picture that the pixel is from does get
changed. However you won’t see the change until the picture repaints.

> System.out.println(pictureObject.getPixel(0,0));
Pixel red=0 green=100 blue=0

“main”
2005/9/6
page 95

i

i

i

i

i

i

i

i

Section 4.2 Manipulating Pictures 95

'

&

$

%

Common Bug: Not seeing changes in the picture
If you show your picture, and then change the
pixels, you might be wondering, “Where are the
changes?!?” Picture displays don’t automatically up-
date. If you ask the Picture object to repaint using
pictureObject.repaint(), the display of the Picture
object will update. Asking the picture to show itself again
pictureObject.show() will also repaint it.

You can automatically get a darker or lighter color from a Color object with
colorObj.darker() or colorObj.brighter(). (Remember that this was easy in
HSV, but not so easy in RGB. These methods do it for you.)

> Color testColorObj = new Color(168,131,105);
> System.out.println(testColorObj);
java.awt.Color[r=168,g=131,b=105]
> testColorObj = testColorObj.darker();
> System.out.println(testColorObj);
java.awt.Color[r=117,g=91,b=73]
> testColorObj = testColorObj.brighter();
> System.out.println(testColorObj);
java.awt.Color[r=167,g=130,b=104]

Notice that even though we darken the color and then brighten it the final
color doesn’t exactly match the original color. This is due to rounding errors. A
rounding error is when calculations are done in floating point but the answer is
stored in an integer. The floating point result can’t fit in the type of the result
(integer) and so some of the detail is lost.

You can also get a color using ColorChooser.pickAColor(), which gives you
a variety of ways of picking a color. ColorChooser is a class that we have created to
make it easy for you to pick colors using the Java class javax.swing.JColorChooser.

> import java.awt.Color;
> Color pickedColorObj = ColorChooser.pickAColor();
> System.out.println(pickedColorObj);
java.awt.Color[r=51,g=255,b=102]

When you have finished manipulating a picture, you can write it out to a file
with write(fileName).

> pictureObject.write("newPicture.jpg");

“main”
2005/9/6
page 96

i

i

i

i

i

i

i

i

96 Chapter 4 Modifying Pictures using Loops

Â

Á

¿

À

Common Bug: End with .jpg
Be sure to end your filename with “.jpg” in order to get
your operating system to recognize it as a JPEG file.

'

&

$

%

Common Bug: Saving a file quickly—and how to
find it again!
What if you don’t know the whole path to a directory of
your choosing? You don’t have to specify anything more
than the base name. The problem is finding the file again!
In what directory did it get saved? This is a pretty simple
bug to resolve. The default directory (the one you get if
you don’t specify a path) is wherever DrJava is.

We don’t have to write new methods to manipulate pictures. We can do it
from the command area using the methods (functions) just described. Please reset
the interactions pane by clicking the Reset button at the top of DrJava before you
do the following.

> import java.awt.Color;
> String fName = "C:/intro-prog-java/mediasources/caterpillar.jpg";
> Picture picture = new Picture(fName);
> picture.show();
> picture.getPixel(10,100).setColor(Color.black);
> picture.getPixel(11,100).setColor(Color.black);
> picture.getPixel(12,100).setColor(Color.black);
> picture.getPixel(13,100).setColor(Color.black);
> picture.getPixel(14,100).setColor(Color.black);
> picture.getPixel(15,100).setColor(Color.black);
> picture.getPixel(16,100).setColor(Color.black);
> picture.getPixel(17,100).setColor(Color.black);
> picture.getPixel(18,100).setColor(Color.black);
> picture.getPixel(19,100).setColor(Color.black);
> picture.repaint();
> picture.explore();

'

&

$

%

Making it Work Tip: Reuse the previous line in
DrJava
You can use the up arrow on the keyboard to bring up
previous lines you have typed in the interactions pane in
DrJava. You can then use the left arrow key to get to
a character to correct or change and then execute it by
pressing the ’Enter’ key.

The result showing a small black line on the left side below the middle of the

“main”
2005/9/6
page 97

i

i

i

i

i

i

i

i

Section 4.2 Manipulating Pictures 97

leaf appears in Figure 4.13. The black line is 100 pixels down, and the pixels 10
though 19 from the left edge have been turned black.

FIGURE 4.13: Directly modifying the pixel colors via commands: Note the small
black line on the left under the line across the leaf

4.2.1 Exploring Pictures

On your CD, you will find the MediaTools application with documentation for
how to get it started. You can also open a picture explorer in DrJava. Both the
MediaTools application and the picture explorer will let you get pixel information
from a picture. You can see the picture explorer in Figure 4.14 and the MediaTools
application appears in Figure 4.15. Both of these will display the x, y, red, green,
and blue values for a pixel. They will also both let you zoom in or out.

FIGURE 4.14: Exploring the caterpillar with the line

The picture explorer can be opened on a Picture object. Picture p = new
Picture(FileChooser.pickAFile()); will allow you to define a Picture object
and name it p. You can open a picture explorer on the picture using p.explore().
The picture explorer will make a copy of the current picture and show it. The
copy will not be affected by any changes you make to the picture.

The picture explorer allows you to zoom at various levels of magnification, by
choosing one in the Zoom menu. As you move your cursor around in the picture,
press down with the mouse button. You’ll be shown the (x, y) (horizontal, vertical)
coordinates of the pixel your mouse cursor is currently over, and the red, green,
and blue values at that pixel. You can use the next and previous buttons to change

“main”
2005/9/6
page 98

i

i

i

i

i

i

i

i

98 Chapter 4 Modifying Pictures using Loops

the pixel that you want to examine. You can also type in the x and y values and
press ’Enter’ to see the pixel information for a particular pixel.

The MediaTools application works from files on the disk. If you want to check
out a file before loading into DrJava, use the MediaTools application. Click on the
Picture Tools box in MediaTools, and the tools will open. Use the Open button
to bring up a file selection box—you click on directories you want to explore on the
left, and images you want on the right, then click OK. When the image appears,
you have several different tools available. Move your cursor over the picture and
press down with the mouse button.

• The red, green, and blue values will be displayed for the pixel you’re pointing
at. This is useful when you want to get a sense of how the colors in your
picture map to numeric red, green, and blue values. It’s also helpful if you’re
going to be doing some computation on the pixels and want to check the
values.

• The x and y position will be displayed for the pixel you’re pointing at. This
is useful when you want to figure out regions of the screen, e.g., if you want to
process only part of the picture. If you know the range of x and y coordinates
where you want to process, you can tune your program to reach just those
sections.

• Finally, a magnifier is available to let you see the pixels magnified. (The
magnifier can be clicked and dragged around.)

FIGURE 4.15: Using the MediaTools image exploration tools on barbara.jpg

4.3 CHANGING COLOR VALUES

The easiest thing to do with pictures is to change the color values of their pixels
by changing the red, green, and blue components. You can get radically different

“main”
2005/9/6
page 99

i

i

i

i

i

i

i

i

Section 4.3 Changing color values 99

effects by simply tweaking those values. Many of Adobe Photoshop’s filters do just
what we’re going to be doing in this section.

The way that we’re going to be manipulating colors is by computing a per-
centage of the original color. If we want 50% of the amount of red in the picture,
we’re going to set the red channel to 0.50 times whatever it is right now. If we want
to increase the red by 25%, we’re going to set the red to 1.25 times whatever it is
right now. Recall that the asterisk (*) is the operator for multiplication in Java.

4.3.1 Using a For-Each Looop

We know that we can use the getPixels() method to get an array of Pixel objects
from a Picture object. We can use the getRed() method to get the red value from
a Pixel object, then we can multiply it by 0.5 to decrease the red value, and then
we can use setRed() to set the red value of a Pixel object.

We will need to cast back to integer after we multiply the red value by 0.5.
Remember that if the computer sees you using a double value it assumes that the
result should be a double. However, pixel color values must be integers. We could
write the code to change the first three pixels like this:

> String fName = "C:/intro-prog-java/mediasources/caterpillar.jpg";
> Picture pict = new Picture(fName);
> pict.show();
> Pixel[] pixelArray = pict.getPixels();
> Pixel pixelObj = pixelArray[0];
> int red = pixelObj.getRed();
> red = (int) (red * 0.5);
> pixelObj.setRed(red);
> pixelObj = pixelArray[1];
> red = pixelObj.getRed();
> red = (int) (red * 0.5);
> pixelObj.setRed(red);
> pixelObj = pixelArray[2];
> red = pixelObj.getRed();
> red = (int) (red * 0.5);
> pixelObj.setRed(red);
> pict.explore();

This only changes the first three pixels. We don’t want to write out state-
ments like this to change all of the pixels in the array even for a small picture.
We need some way to repeat the statements that get the red value, change it, and
then set the red value for each pixel in the array. As of Java 5.0 (1.5) we can do
that using a for-each loop. A loop is a way to repeat a statement or a block of
statements. The syntax for a for-each loop is

for (Type variableName : array)

You can read this as ”first declare a variable that will be used in the body of
the loop” then ”for each element in the array execute the body of the loop.” The

“main”
2005/9/6
page 100

i

i

i

i

i

i

i

i

100 Chapter 4 Modifying Pictures using Loops

body of the loop can be either one statement or a series of statements inside of an
open curly brace ’{’ and a close curly brace ’}’. The statements in the body of the
loop are indented to show that they are part of the loop. A method that will loop
through all the pixels in the current picture and set the red value in each to half
the original value is:

public void decreaseRed ()
{

Pixe l [] p ixe lArray = this . g e tP i x e l s () ;
int value = 0 ;

// loop through a l l the p i x e l s in the array
for (P ixe l p ixe lObj : p ixe lArray)
{

// ge t the red va lue
value = pixe lObj . getRed () ;

// decrease the red va lue by 50% (1/2)
value = (int) (va lue ∗ 0 . 5) ;

// s e t the red va lue o f the curren t p i x e l to the new va lue
pixe lObj . setRed (value) ;

}
}

If you are using Java 5.0 (1.5) or above add the decreaseRed() method to the
Picture.java file before the last closing curly brace ’}’. Then click the Compile
All button in DrJava to compile the file. You can try this method out by typing
the following in the interactions pane.

> String fName = "C:/intro-prog-java/mediasources/caterpillar.jpg";
> Picture pict = new Picture(fName);
> pict.explore();
> pict.decreaseRed();
> pict.explore();

You can compare the original picture with the changed picture. Use the
picture explorers to check that the amount of red was decreased.

When you execute pict.decreaseRed() the Java runtime checks the Picture
class to see if it has a decreaseRed() method. The Picture class does have this
method so it will execute that method and implicitly pass in the Picture object
the method was invoked on. The keyword this is used to refer to the object the
method was invoked on (the one referred to by the variable pict).

The first time through the loop the pixelObj will refer to the first element
of the array (the one at index 0). The second time through the loop the pixelObj
will refer to the second element of the array (the one at index 1). The last time
through the loop the pixelObj will refer to the last element of the array (the one
at index (length - 1)).

For-each loops are very useful for looping through each of the elements in
an array. If you are using Java 1.4 you can’t use a for-each loop. You can use a

“main”
2005/9/6
page 101

i

i

i

i

i

i

i

i

Section 4.3 Changing color values 101

while loop instead. Even if you are using Java 5.0 while loops can help you solve
problems that for-each loops can’t solve.

4.3.2 Using While Loops

A while loop executes a statement (command) or group of statements in a block
(inside open and close curly braces). A while loop continues executing until a
continuation test is false. When the continuation test is false execution continues
with the statement following the while loop.

The syntax for a while loop is:

while (t e s t)
{

/∗∗ commands to be done go here ∗/
}

Let’s talk through the pieces here.

• First comes the required Java keyword while.

• Next we have a required opening parenthesis

• Next is the continuation test. While this test is true the loop will continue
to be executed. When this test is false the loop will finish and the statement
following the body of the loop will be executed.

• Next is the required closing parenthesis.

• Usually this is followed by a block of commands to be executed each time
the expression following the while keyword is true. The block of commands
is enclosed by curly braces. This is called the body of the loop. If there is
only one command to be executed you may leave off the curly braces but you
should still indent the command to show it is in the body of the while loop.

Tell someone to clap their hands 12 times. Did they do it right? How do you
know? In order to tell if they did it right you would have to count each time they
clapped and when they stopped clapping your count would be 12 if they did it right.
A loop often needs a counter to count the number of times you want something
done and an expression that stops when that count is reached. You wouldn’t want
to declare the count variable inside the while loop because you want it to change
each time through the loop. Typically you declare the count variable just before
the while loop and then increment it just before the end of the block of commands
you want to repeat.

“main”
2005/9/6
page 102

i

i

i

i

i

i

i

i

102 Chapter 4 Modifying Pictures using Loops

Statement(s)

while (expression)

true

false

Statement(s)

declare and
init loop
variable(s)

change loop
variable(s)

FIGURE 4.16: Flowchart of a while loop

Computer Science Idea: Flowcharts
Figure 4.16 shows the flowchart of a while loop. A
flowchart is a visual representation of the execution of a
method or function. It shows the order in which statements
are executed and branches or conditional execution. Nor-
mal statements are shown in rectangles. Tests are shown in
diamonds and have a true branch which is executed when
the test is true and a false branch that is executed when
the test is false. A flowchart can help you understand what
a method is doing.

So, a typical while loop will look like the following code.

int count = 0 ;
while (count < t a r g e t)
{

// commands to be done i n s i d e loop
count = count + 1 ;

}
What if you want to write out the same sentence 5 times. You know how

to print out a string using System.out.println("some string"); So, put this in

‘‘main’’
2005/9/6
page 103

i

i

i

i

i

i

i

i

Section 4.3 Changing color values 103

the body of the loop. Start the count at 0 and increment it each time after the
string is printed. When the count is 5 the string will have been printed 5 times so
stop the loop.

> int count = 0;
> while (count < 5)
{
System.out.println("This is a test.");
count = count + 1;

}
This is a test.
This is a test.
This is a test.
This is a test.
This is a test.

Debugging Tip: Stopping an Infinite Loop
If you forget to increment the count in the body of the
while loop, or if you close the body of the while loop
before the count is incremented you will have an infinite
loop. An infinite loop is one that will never stop. You can
tell that you are in an infinite loop in this case because
many more than 5 copies of ”This is a test.” will be printed.
To stop an infinite loop click on the Reset button near
the top of the DrJava window.

What if we want to change the color of all the pixels in a picture? Picture
objects understand the method getPixels() which returns a one dimensional array
of pixel objects. Even though the pixels are really in a two-dimensional array (a
matrix) getPixels() puts the pixels in a one-dimensional array to make them easy
to process if we just want to process all the pixels. We can get a pixel at a position
in the array using pixelArray[index] with the index starting at 0 and changing
each time through the loop by one until it is equal to the length of the array of
pixels. Instead of calling the variable “count” we will call it “index” since that is
what we are using it for. It doesn’t matter to the computer but it makes the code
easier for people to understand.

Here is the while loop that simply sets each pixel’s color to black in a picture.

> import java.awt.Color;
> String fName = "C:/intro-prog-java/mediasources/caterpillar.jpg";
> Picture pict = new Picture(fName);
> pict.show();
> Pixel[] pixelArray = pict.getPixels();
> Pixel pixel = null;
> int index = 0;
> while (index < pixelArray.length)
{

pixel = pixelArray[index];

“main”
2005/9/6
page 104

i

i

i

i

i

i

i

i

104 Chapter 4 Modifying Pictures using Loops

pixel.setColor(Color.black);
index++;

}
> pict.repaint();

Let’s talk through this code.

• We will be using the Color class so we need to either use the fully qualified
name (java.awt.Color) or import the Color class using:
import java.awt.Color;.

• Next we declare a variable with the name fileName to refer to the string
object that has a particular file name stored in it:
C:/intro-prog-java/mediasources/caterpillar.jpg.

• The variable pict is created and refers to the new Picture object created
from the picture information in the file named by the variable fileName.

• We tell the Picture object to show (display) itself using pict.show();.

• Next we declare a variable pixelArray that references an array of Pixel ob-
jects (Pixel[]). We get the array of Pixel objects by asking the Picture
object for them using the getPixels() method.

• We declare an object variable, Pixel pixel, that will refer to a pixel object
but initialize it to null to show that it isn’t referring to any pixel object yet.

• We declare a primitive variable index and initialize its value to 0.

• Next we have the while loop. First we test if the value of index is less than
the length of the array of pixels with while (index < pixelArray.length).
While it is, we set the variable pixel to refer to the pixel object at the current
value of index in the array of pixel objects. Next we set the color of that
pixel to the color black. Finally, we increment the variable index. Eventually
the value of the variable index will equal the length of the array of pixels and
then execution will continue after the body of the loop. Remember that in
an array of 5 items the valid indexes are 0-4 so when the index is equal to the
length of the array you need to stop the loop.

• The statement after the body of the while loop will ask the Picture object
pict to repaint so that we can see the color change.

Debugging Tip: Loops and Variable Declarations
Declare any variables that you will need before you start
the loop. “While” loops typically need some sort of counter
or index declared outside the loop but changed inside the
loop. If you forgot to change the counter or index you will
end up with a loop that never stops. This is called an
infinite loop. Use the Reset button to stop if your code
is in an infinite loop.

Now that we see how to get the computer to do thousands of commands

“main”
2005/9/6
page 105

i

i

i

i

i

i

i

i

Section 4.3 Changing color values 105

without writing thousands of individual lines, let’s do something useful with this.

4.3.3 Increasing/Decreasing Red (Green, Blue)

A common desire when working with digital pictures is to shift the redness (or
greenness or blueness—but most often, redness) of a picture. You might shift it
higher to “warm” the picture, or to reduce it to “cool” the picture or deal with
overly-red digital cameras.

The method below decreases the amount of red by 50% in the current picture.

Program 5: Decrease the amount of red in a picture by 50%

/∗∗
∗ Method to decrease the red by h a l f in the
∗ curren t p i c t u r e
∗/

public void decreaseRed ()
{

Pixe l [] p ixe lArray = this . g e tP i x e l s () ;
P ixe l p i x e l = null ;
int value = 0 ;
int index = 0 ;

// loop through a l l the p i x e l s
while (index < pixe lArray . l ength)
{

// ge t the current p i x e l
p i x e l = pixe lArray [index] ;

// ge t the va lue
value = p i x e l . getRed () ;

// decrease the red va lue by 50% (1/2)
value = (int) (va lue ∗ 0 . 5) ;

// s e t the red va lue o f the curren t p i x e l to the new va lue
p i x e l . setRed (value) ;

// increment the index
index = index + 1 ;

}
}

Go ahead and type the above into your DrJava definitions pane before the last
curly brace in the Picture.java file. Click Compile All to get DrJava to compile
the new method. Why do we have to compile the file before we can use the new
method? Computers don’t understand the Java source code directly. We must
compile it which translates the class definition from something people can read and

‘‘main’’
2005/9/6
page 106

i

i

i

i

i

i

i

i

106 Chapter 4 Modifying Pictures using Loops

understand into something a computer can read and understand.'

&

$

%

Common Bug: Methods with the same name
If you added the method decreaseRed with a for-each loop
in it to your Picture.java source code you will get an er-
ror when you add this decreaseRed method and compile.
You can’t have two methods with the same name and pa-
rameter list in a class. Just rename the first decreaseRed
method to decreaseRedForEach and compile again.

Unlike some other computer languages Java doesn’t compile into machine
code which is the language for the machine it is running on. When we compile Java
source code we compile it into a language for a virtual machine which is a machine
that doesn’t necessarily exist.

When we successfully compile a ClassName.java file the compiler outputs a
ClassName.class file which contains the instructions that a Java virtual machine
can understand. If our compile is not successful we will get error messages that
explain what is wrong. We have to fix the errors and compile again before we can
try out our new method.

When we execute a Java class the Java virtual machine will read the compiled
code and map the instructions for the virtual machine to the machine it is currently
executing on. This allows you to compile Java programs on one type of computer
and run them on another without having to recompile.'

&

$

%

Making it Work Tip: Comments in Java
You may notice that there are some interesting characters
in the reduceRed method. The ’/**’ and ’//’ are com-
ments in Java. Comments are descriptions of what your
code is doing. Use comments to make the code easier to
read and understand (not only for yourself but also for
others). There are actually three kinds of comments in
Java. The ’//’ starts a comment and tells the computer to
ignore everything else till the end of the current line. You
can use ’/*’ followed at some point by ’*/’ for a multi-line
comment. The ’/**’ followed at some point by ’*/’ creates
a JavaDoc comment. JavaDoc is a utility that pulls the
JavaDoc comments from your class files and creates hy-
perlinked documentation from them. All of the Java class
files written by Sun have JavaDoc comments in them and
that is how the API documentation was created.

This program works on a Picture object—the one that we’ll use to get the
pixels from. To create a Picture object, we pass in the filename. After we ask
the picture to decreaseRed(), we’ll want to repaint the picture to see the effect.
Therefore, the decreaseRed method can be used like this:

> String fName = "C:/intro-prog-java/mediasources/caterpillar.jpg";
> Picture picture = new Picture(fName);

“main”
2005/9/6
page 107

i

i

i

i

i

i

i

i

Section 4.3 Changing color values 107

FIGURE 4.17: The original picture (left) and red-decreased version (right)

> picture.show();
> picture.decreaseRed();
> picture.repaint();

'

&

$

%

Common Bug: Patience: loops can take a long time
The most common bug with this kind of code is to give up
and quit because you don’t think the loop is working. It
might take a full minute (or two!) for some of the manip-
ulations we’ll do—especially if your source image is large.

The original picture and its red-decreased version appear in Figure 4.17. 50%
is obviously a lot of red to reduce! The picture looks like it was taken through a
blue filter.

“main”
2005/9/6
page 108

i

i

i

i

i

i

i

i

108 Chapter 4 Modifying Pictures using Loops

Computer Science Idea: Changing memory doesn’t
change the file
If you create another Picture object from the same
file will you get the original picture or the picture
with red decreased? You will get the original pic-
ture. The Picture object picture was created by read-
ing the file data into memory. The change to the
Picture object was done in memory, but the file wasn’t
changed. If you want to save your changes write them
out to a file using the method pictObj.write(String
fileName); where pictObj is the name of the Picture
object and fileName is the full path name of the
file. So to save the changed Picture object above use
picture.write("c:/caterpillarChanged.jpg");.

Tracing the program: How did that work?.

Computer Science Idea: The most important skill
is tracing
The most important skill that you can develop in program-
ming is the ability to trace your program. This is also
called stepping or walking through your program. To trace
your program is to walk through it, line-by-line, and figure
out what happens. Looking at a program, can you predict
what it’s going to do? You should be able to by thinking
through what it does.

Let’s trace the method to decrease red and see how it worked. We want to
start tracing at the point where we just called decreaseRed()

> String fileN = "C:/intro-prog-java/mediasources/caterpillar.jpg";
> Picture picture = new Picture(fileN);
> picture.show();
> picture.decreaseRed();

What happens now? picture.decreaseRed() really means invoking the
decreaseRed method which you have just added to the Picture.java file on the
Picture object referred to by the variable picture. The picture object is implicitly
passed to the decreaseRed method and can be referenced by the keyword this.
What does “implicitly passed” mean? It means that even though decreaseRed
doesn’t have any parameters listed it is passed the Picture object it was invoked
on. So, picture.decreaseRed() is like decreaseRed(Picture this). All object
methods (methods without the keyword static in them) are implicitly passed the
object that they are invoked on and that object can be referred to as this.

The first line we execute in Program 5 (page 105)is Pixel[] pixelArray =
this.getPixels(). Let’s break this down.

“main”
2005/9/6
page 109

i

i

i

i

i

i

i

i

Section 4.3 Changing color values 109

• The Pixel[] pixelArray is a declaration of a variable pixelArray that ref-
erences an array of Pixel objects. The ’=’ means that the variable pixelArray
will be initialized to the result of the right side expression which is a call to the
method this.getPixels() which returns a one-dimensional array of Pixel
objects in the current Picture object.

• The this is a keyword that represents the current object. Since the method
declaration doesn’t have the keyword static in it this is an object method.
Object methods are always implicitly passed the current object (the object
the method was invoked on). In this case the method decreaseRed() was
invoked by picture.decreaseRed(); so the Picture object referenced by
the variable picture is the current object. We could leave off the this and
get the same result. If you don’t reference any object when invoking a method
the compiler will assume you mean the current object (referenced by the this
keyword).

• The this.getPixels() invokes the method getPixels() on the current ob-
ject. This method returns a one-dimensional array of Pixel objects which
are the pixels in the current Picture object.

So at the end of the first line we have a variable pixelArray that refers to an
array of Pixel objects. The Pixel objects came from the Picture object which
was referred to as picture in the interaction pane and as this in the method
decreaseRed().

Next is a declaration of a couple of variables that we will need in the for
loop. We will need something to represent the current Pixel object so we declare
a variable pixel of type Pixel by Pixel pixel =. We start it off referring to
nothing by using the defined value null. We also will need a variable to hold the
current red value and we declare that as int value = 0;. We initialize the variable
value to be 0. Finally we declare a variable to be the index into the array and the
value that changes in the loop int index = 0;. Remember that array elements
are indexed starting with 0 and ending at the length of the array minus one.

Variables that you declare inside methods are not automatically initialized for
you so you should initialize them when you declare them.

“main”
2005/9/6
page 110

i

i

i

i

i

i

i

i

110 Chapter 4 Modifying Pictures using Loops

this picture
getPixels()

Pixel
r=252
g=254
b=251

Pixel
r=253
g=255
b=254

Pixel
r=254
g=254
b=254

...

pixelArray

index = 0,
value = 0,
pixel = null

Computer Science Idea: Scope
The names inside a method like pixel and value are com-
pletely different than the names in the interactions pane or
any other method. We say that they have a different scope.
The scope of a variable is the area in which the variable is
known. The variables that we declare inside of a method
are only known from where they are declared until the end
of the method. Variables declared in the interactions pane
are known in the interactions pane until it is reset or until
you exit DrJava.

Next comes the loop while (index < pixelArray.length). This tests if
the value of the variable index is less than the length of the array of pixels referred
to by pixelArray. If the test is true the body of the loop will be executed. The
body of the loop is all the code between the open and close curly braces following
the test. If the test is false, execution continues after the body of the loop.

In the body of the loop we have pixel = pixelArray[index];. This will
set the pixel variable to point to a Pixel object in the array of pixels with an
index equal to the current value of index. Since index is initialized to 0 before the
loop the first time through this loop the pixel variable will point to the first Pixel
object in the array.

“main”
2005/9/6
page 111

i

i

i

i

i

i

i

i

Section 4.3 Changing color values 111

this picture
getPixels()

Pixel
r=252
g=254
b=251

Pixel
r=253
g=255
b=254

Pixel
r=254
g=254
b=254

...

pixelArray

index = 0,
value = 0,
pixel =

Next in the body of the loop is value = pixel.getRed();. This sets the
variable value to the amount of red in the current pixel. Remember that the
amount of red can vary from a minimum of 0 to a maximum of 255.

this picture
getPixels()

Pixel
r=252
g=254
b=251

Pixel
r=253
g=255
b=254

Pixel
r=254
g=254
b=254

...

pixelArray

index = 0,
value = 252,
pixel =

Next in the body of the loop is value = (int) (value * 0.5);. This sets
the variable value to the integer amount that you get from multiplying the current
contents of value by 0.5. The (int) is a cast to integer so that the compiler doesn’t
complain about losing precision since we are storing a floating point number in

“main”
2005/9/6
page 112

i

i

i

i

i

i

i

i

112 Chapter 4 Modifying Pictures using Loops

an integer number. Any numbers after the decimal point will be discarded. We
do this because colors are represented as integers. The (int) (value * 0.5) is
needed because the variable value is declared of type int and yet the calculation
of (value * 0.5) contains a floating point number and so will automatically be
done in floating point. However, a floating point result (say of 1.5) won’t fit into
a variable of type int. So, the compiler won’t let us do this without telling it that
we really want it to by including the (int). This is called casting and is required
whenever a larger value is being placed into a smaller variable. So if the result of
a multiplication has a fractional part that fractional part will just be thrown away
so that the result can fit in an int.

this picture
getPixels()

Pixel
r=252
g=254
b=251

Pixel
r=253
g=255
b=254

Pixel
r=254
g=254
b=254

...

pixelArray

index = 0,
value = 126,
pixel =

The next step in the body of the loop is pixel.setRed(value);. This changes
the amount of red in the current pixel to be the same as what is stored in variable
value. The current pixel is the first one so we see that the red value has changed
from 252 to 126 after this line of code is executed.

“main”
2005/9/6
page 113

i

i

i

i

i

i

i

i

Section 4.3 Changing color values 113

this picture
getPixels()

Pixel
r=126
g=254
b=251

Pixel
r=253
g=255
b=254

Pixel
r=254
g=254
b=254

...

pixelArray

index = 0,
value = 126,
pixel =

After the statements in the body of the loop are executed the index = index
+ 1; will be executed which will add one to the current value of index. Since index
was initialized to 0 this will result in index holding the value 1.

this picture
getPixels()

Pixel
r=126
g=254
b=251

Pixel
r=253
g=255
b=254

Pixel
r=254
g=254
b=254

...

pixelArray

index = 1,
value = 126,
pixel =

What happens next is very important. The loop starts over again. The
continuation test will again check that the value in variable index is less than the
length of the array of pixels and since the value of index is less than the length
of the array, the statements in the body of the loop will be executed again. The

“main”
2005/9/6
page 114

i

i

i

i

i

i

i

i

114 Chapter 4 Modifying Pictures using Loops

variable pixel will be set to the pixel object in the array of pixels at index 1. This
is the second Pixel object in the array pixelArray.

this picture
getPixels()

Pixel
r=126
g=254
b=251

Pixel
r=253
g=255
b=254

Pixel
r=254
g=254
b=254

...

pixelArray

index = 1,
value = 126,
pixel =

The variable value will be set to the red amount in the current pixel referred
to by the variable pixel, which is 253.

this picture
getPixels()

Pixel
r=126
g=254
b=251

Pixel
r=253
g=255
b=254

Pixel
r=254
g=254
b=254

...

pixelArray

index = 1,
value = 253,
pixel =

The variable value will be set to the result of casting to integer the result of
multiplying the amount in value by 0.5. This results in (253 * 0.5) = 126.5 and
after we drop the digits after the decimal this is 126. We drop the digits after the

“main”
2005/9/6
page 115

i

i

i

i

i

i

i

i

Section 4.3 Changing color values 115

decimal point because of the cast to the type int (integer). We cast to integer
because colors are represented as integer values from 0 to 255.

this picture
getPixels()

Pixel
r=126
g=254
b=251

Pixel
r=253
g=255
b=254

Pixel
r=254
g=254
b=254

...

pixelArray

index = 1,
value = 126,
pixel =

The red value in the current pixel is set to the same amount as what is stored
in value. So the value of red in the second pixel changes from 253 to 126.

this picture
getPixels()

Pixel
r=126
g=254
b=251

Pixel
r=126
g=255
b=254

Pixel
r=254
g=254
b=254

...

pixelArray

index = 1,
value = 126,
pixel =

The variable index is set to the result of adding 1 to its current value. This
adds 1 to 1 resulting in 2.

“main”
2005/9/6
page 116

i

i

i

i

i

i

i

i

116 Chapter 4 Modifying Pictures using Loops

this picture
getPixels()

Pixel
r=126
g=254
b=251

Pixel
r=126
g=255
b=254

Pixel
r=254
g=254
b=254

...

pixelArray

index = 2,
value = 126,
pixel =

At the end of the loop body we go back to the continuation test. The test
will be evaluated and if the result is true the commands in the loop body will be
executed again. If the continuation test evaluates to false execution will continue
with the first statement after the body of the loop.

Eventually, we get Figure 4.17 (and at Figure 4.18). We keep going through
all the pixels in the sequence and changing all the red values.

Testing the program: Did that really work?.
How do we know that that really worked? Sure, something happened to the

picture, but did we really decrease the red? By 50%?'

&

$

%

Making it Work Tip: Don’t just trust your pro-
grams!
It’s easy to mislead yourself that your programs worked.
After all, you told the computer to do a particular thing,
you shouldn’t be surprised if the computer did what you
wanted. But computers are really stupid—they can’t fig-
ure out what you want. They only do what you actually
tell them to do. It’s pretty easy to get it almost right.
Actually check.

We can check it several ways. One way is with the picture explorer. Create
two Picture objects: Picture p = new Picture(FileChooser.pickAFile());
and Picture p2 = new Picture(FileChooser.pickAFile()); and pick the same
picture each time. Decrease red in one of them. Then open a picture explorer on
each of the Picture objects using p.explore(); and p2.explore();.

We can also use the methods that we know in the Interactions pane to check

“main”
2005/9/6
page 117

i

i

i

i

i

i

i

i

Section 4.3 Changing color values 117

FIGURE 4.18: Using the picture explorer to convince ourselves that the red was
decreased

the red values of individual pixels.

> String fName = "C:/intro-prog-java/mediasources/caterpillar.jpg";
> Picture pict = new Picture(fName);
> Pixel pixel = pict.getPixel(0,0);
> System.out.println(pixel);
Pixel red=252 green=254 blue=251
> pict.decreaseRed();
> Pixel newPixel = pict.getPixel(0,0);
> System.out.println(newPixel);
Pixel red=126 green=254 blue=251
> System.out.println(252 * 0.5);
126.0

Increasing red.
Let’s increase the red in the picture now. If multiplying the red component

by 0.5 decreased it, multiplying it by something over 1.0 should increase it. I’m
going to apply the increase to the exact same picture, to see if we can reduce the
blue (Figure 4.19).

Program 6: Increase the red component by 30%

/∗∗
∗ Method to inc rea se the amount o f red by 30%
∗/

public void increaseRed ()
{

Pixe l [] p ixe lArray = this . g e tP i x e l s () ;
P ixe l p i x e l = null ;
int value = 0 ;
int index = 0 ;

‘‘main’’
2005/9/6
page 118

i

i

i

i

i

i

i

i

118 Chapter 4 Modifying Pictures using Loops

// loop through a l l the p i x e l s
while (index < pixe lArray . l ength)
{

// ge t the current p i x e l
p i x e l = pixe lArray [index] ;

// ge t the va lue
value = p i x e l . getRed () ;

// change the va lue to 1 .3 t imes what i t was
value = (int) (va lue ∗ 1 . 3) ;

// s e t the red va lue to 1 .3 t imes what i t was
p i x e l . setRed (value) ;

// increment the index
index++;

}
}

This method works much the same way as the method decreaseRed. We set
up some variables that we will need such as the array of pixel objects, the current
pixel, the current value, and the current index. We loop through all the pixels in
the array of pixels and change the red value for each pixel to 1.3 times its original
value.'

&

$

%

Making it Work Tip: Shortcuts for Increment and
Decrement
Adding one or subtracting one from a current value is
something that is done frequently in programs. Program-
mers have to do lots of typing so they try to reduce the
amount of typing that they have to do for things they do
frequently. Notice the index++; in the increase red pro-
gram. This has the same result as index = index + 1;
and can also be written as ++index;. You can also use
index--; or --index; which will have the same result as
index = index - 1;. Be careful of using this when you
are also assigning the result to a variable. If you do int
x = index++; x will be assigned the original value of in-
dex and then index will be incremented. If you do int x
= ++index; first index will be incremented and then the
value assigned to x.

Compile the new method increaseRed and first use decreaseRed and then
increaseRed on the same picture. Explore the picture objects to check that
increaseRed worked. Remember that the method explore makes a copy of the
picture and allows you to check the color values of individual pixels.

“main”
2005/9/6
page 119

i

i

i

i

i

i

i

i

Section 4.3 Changing color values 119

FIGURE 4.19: Overly blue (left) and red increased by 30% (right)

> String fName = "C:/intro-prog-java/mediasources/caterpillar.jpg";
> Picture picture = new Picture(fName);
> picture.decreaseRed();
> picture.explore();
> picture.increaseRed();
> picture.explore();

We can even get rid of a color completely. The method below erases the blue
component from a picture by setting the blue value to 0 in all pixels(Figure 4.20).

Program 7: Clear the blue component from a picture

/∗∗
∗ Method to c l e a r the b l u e from the p i c t u r e (s e t
∗ the b l u e to 0 f o r a l l p i x e l s)
∗/

public void c l e a rB lue ()
{

Pixe l [] p ixe lArray = this . g e tP i x e l s () ;
P ixe l p i x e l = null ;
int index = 0 ;

// loop through a l l the p i x e l s
while (index < pixe lArray . l ength)
{

// ge t the current p i x e l
p i x e l = pixe lArray [index] ;

// s e t the b l u e on the p i x e l to 0
p i x e l . s e tBlue (0) ;

// increment index
index++;

“main”
2005/9/6
page 120

i

i

i

i

i

i

i

i

120 Chapter 4 Modifying Pictures using Loops

FIGURE 4.20: Original (left) and blue erased (right)

}
}

Compile the new method clearBlue and invoke it on a Picture object. Ex-
plore the picture object to check that all the blue values are indeed 0.

> String fName = "C:/intro-prog-java/mediasources/caterpillar.jpg";
> Picture picture = new Picture(fName);
> picture.explore();
> picture.clearBlue();
> picture.explore();

This method is also similar to the decreaseRed and increaseRed methods
except that we don’t need to get out the current blue value since we are simply
setting all the blue values to 0.

4.3.4 Creating a Sunset

We can certainly do more than one color manipulation at once. Mark wanted to
try to generate a sunset out of a beach scene. His first attempt was to increase the
red, but that doesn’t always work. Some of the red values in a given picture are
pretty high. If you go past 255 for a channel value it will keep the value at 255.

His second thought was that maybe what happens in a sunset is that there is
less blue and green, thus emphasizing the red, without actually increasing it. Here
was the program that we wrote for that:

Program 8: Making a sunset

/∗∗
∗ Method to s imu la t e a sunse t by decreas ing the green
∗ and b l u e
∗/

public void makeSunset ()

“main”
2005/9/6
page 121

i

i

i

i

i

i

i

i

Section 4.3 Changing color values 121

{
Pixe l [] p ixe lArray = this . g e tP i x e l s () ;
P ixe l p i x e l = null ;
int value = 0 ;
int i = 0 ;

// loop through a l l the p i x e l s
while (i < pixe lArray . l ength)
{

// ge t the current p i x e l
p i x e l = pixe lArray [i] ;

// change the b l u e va lue
value = p i x e l . getBlue () ;
p i x e l . s e tBlue ((int) (va lue ∗ 0 . 7)) ;

// change the green va lue
value = p i x e l . getGreen () ;
p i x e l . setGreen ((int) (va lue ∗ 0 . 7)) ;

// increment the index
i++;

}
}

'

&

$

%

Making it Work Tip: Using short variable names
for loop counters
Notice that instead of using index as the counter for the
loop we are using i. Again, programmers like to reduce
the amount of typing and so the simple variable name i
is commonly used to represent the counter or index for a
loop.

Compile the new method makeSunset and invoke it on a Picture object.
Explore the picture object to check that the blue and green values have been de-
creased.

> String fName = "C:/intro-prog-java/mediasources/beach-smaller.jpg";
> Picture picture = new Picture(fName);
> picture.explore();
> picture.makeSunset();
> picture.explore();

What we see happening in Program 8 (page 120) is that we’re changing both
the blue and green channels—reducing each by 30%. The effect works pretty well,
as seen in Figure 4.21.

“main”
2005/9/6
page 122

i

i

i

i

i

i

i

i

122 Chapter 4 Modifying Pictures using Loops

FIGURE 4.21: Original beach scene (left) and at (fake) sunset (right)

4.3.5 Making Sense of Methods

You probably have lots of questions about methods at this point. Why did we write
these methods in this way? How is that we’re reusing variable names like pixel in
every method? Are there other ways to write these methods? Is there such a thing
as a better or worse method?

Since we’re always picking a file (or typing in a filename) then making a pic-
ture, before calling one of our picture manipulation methods, and then showing or
repainting the picture, it’s a natural question why we’re not building those in. Why
doesn’t every method have String fileName = FileChooser.pickAFile(); and
new Picture(fileName); in it?

We actually want to write the methods to make them more general and
reusable. We want our methods to do one and only one thing, so that we can
use the method again in a new context where we need that one thing done. An ex-
ample might make that clearer. Consider the program to make a sunset (Program 8
(page 120)). That works by reducing the green and blue, each by 30%. What if
we rewrote that method so that it called two smaller methods that just did the
two pieces of the manipulation? We’d end up with something like Program 9
(page 122).

Program 9: Making a sunset as three methods

/∗∗
∗ Method to decrease the green in the p i c t u r e by 30%
∗/

public void decreaseGreen ()
{

Pixe l [] p ixe lArray = this . g e tP i x e l s () ;
P ixe l p i x e l = null ;
int value = 0 ;

“main”
2005/9/6
page 123

i

i

i

i

i

i

i

i

Section 4.3 Changing color values 123

int i = 0 ;

// loop through a l l the p i x e l s in the array
while (i < pixe lArray . l ength)
{

// ge t the current p i x e l
p i x e l = pixe lArray [i] ;

// ge t the va lue
value = p i x e l . getGreen () ;

// s e t the green va lue to 70% of what i t was
p i x e l . setGreen ((int) (va lue ∗ 0 . 7)) ;

// increment the index
i++;

}
}

/∗∗
∗ Method to decrease the b l u e in the p i c t u r e by 30%
∗/

public void decreaseBlue ()
{

Pixe l [] p ixe lArray = this . g e tP i x e l s () ;
P ixe l p i x e l = null ;
int value = 0 ;
int i = 0 ;

// loop through a l l the p i x e l s in the array
while (i < pixe lArray . l ength)
{

// ge t the current p i x e l
p i x e l = pixe lArray [i] ;

// ge t the va lue
value = p i x e l . getBlue () ;

// s e t the b l u e va lue to 70% of what i t was
p i x e l . s e tBlue ((int) (va lue ∗ 0 . 7)) ;

}
}

/∗∗
∗ Method to make a p i c t u r e l ook l i k e i t was taken at sunse t
∗ by reduc ing the b l u e and green to make i t l ook more red
∗/

public void makeSunset2 ()
{

decreaseGreen () ;
decreaseBlue () ;

“main”
2005/9/6
page 124

i

i

i

i

i

i

i

i

124 Chapter 4 Modifying Pictures using Loops

}

The first thing to note is that this actually does work. makeSunset2()
does the same thing here as in the previous method. It’s perfectly okay to have
one method (makeSunset2() in this case) use other methods in the same class
(decreaseBlue() and decreaseGreen()). You use makeSunset2() just as you
had before. It’s the same algorithm (it tells the computer to do the same thing),
but with different methods. The earlier program did everything in one method,
and this one does it in three. In fact, you can also use decreaseBlue() and
decreaseGreen() by themselves too—make a picture in the Command Area and
invoke either method on the Picture object. They work just like decreaseRed().

What’s different is that the method makeSunset2() is much simpler to read.
That’s very important.

Computer Science Idea: Programs are for people.
Computers don’t care about how a program looks. Pro-
grams are written to communicate with people. Making
programs easy to read and understand means that they
are more easily changed and reused, and they more effec-
tively communicate process to other humans.

What if we had written decreaseBlue() and decreaseGreen() so that each
asked you to pick a file and created the picture before changing the color. We
would be asked to pick a file twice—once in each method. Because we wrote these
methods to only decrease the blue and decrease the green (“one and only one
thing”) in the implicitly passed Picture object, we can use them in new methods
like makeSunset()

There is an issue that the new makeSunset2() will take twice as long to finish
as the original makeSunset(), since every pixel gets changed twice. We address that
issue in chapter 15 on speed and complexity. The important issue is still to write
the code readably first, and worry about efficiency later. However, this could also
be handled by a method that changes each color by some passed in amount. This
would be a very general and reusable method.

Now, let’s say that we asked you to pick a picture and created the picture in
makeSunset2() before calling the other methods. The methods decreaseBlue()
and decreaseGreen() are completely flexible and reusable again. But the method
makeSunset2() is now less flexible and reusable. Is that a big deal? No, not if
you only care about having the ability to give a sunset look to a single picked
picture. But what if you later want to build a movie with a few hundred frames of
Picture objects, to each of which you want to add a sunset look? Do you really
want to pick out each of those few hundred frames? Or would you rather write
a method to go through each of the frames (which we’ll learn how to do in a few
chapters) and invoke makeSunset2() on each Picture object. That’s why we make
methods general and reusable—you never know when you’re going to want to use

“main”
2005/9/6
page 125

i

i

i

i

i

i

i

i

Section 4.3 Changing color values 125

that method again, in a larger context.
'

&

$

%

Making it Work Tip: Don’t start by trying to write
applications
There’s a tendency for new programmers to want to write
complete applications that a non-technical user can use.
You might want to write a makeSunset() application that
goes out and fetches a picture for a user and generates a
sunset for them. Building good user interfaces that anyone
can use is hard work. Start out more slowly. It’s hard
enough to make a method that just does something to a
picture. You can work on user interfaces later.

Even larger methods, like makeSunset(), do “one and only one thing.” The
method makeSunset() makes a sunset-looking picture. It does that by decreasing
green and decreasing blue. It calls two other methods to do that. What we end
up with is a hierarchy of goals—the “one and only one thing” that is being done.
makeSunset() does its one thing, by asking two other methods to do their one thing.
We call this hierarchical decomposition (breaking down a problem into smaller parts,
and then breaking down those smaller parts until you get something that you
can easily program), and it’s very powerful for creating complex programs out of
pieces that you understand. This is also called top down refinement or problem
decomposition.

4.3.6 Variable Name Scope

Names in methods are completely separate from names in the interactions pane and
also from names in other methods. We say that they have different scope. Scope
is the area where a name is known by the computer. Variables declared inside of
a method have method scope and only apply inside that method. That is why we
can use the same variable names in several methods. Variables declared inside the
Interactions Pane are known inside the Interactions Pane until it is reset. This is
why you get Error: Redefinition of ’picture’ when you declare a variable
that is already declared in the Interactions Pane.

The only way to get any data (pictures, sounds, filenames, numbers) from the
interactions pane into a method is by passing it in as input to the method. Within
the method, you can use any names you want–names that you first define within
the method (like pixel in the last example) or names that you use to stand for
the input data (like fileName) only exist while the method is running. When the
method is done, those variable names literally do not exist anymore.

This is really an advantage. Earlier, we said that naming is very important
to computer scientists: We name everything, from data to methods to classes. But
if each name could mean one and only one thing ever, we’d run out of names. In
natural language, words mean different things in different contexts (e.g., “What do
you mean?” and “You are being mean!”). A method is a different context—names
can mean something different than they do outside of that method.

Sometimes, you will compute something inside a method that you want to

“main”
2005/9/6
page 126

i

i

i

i

i

i

i

i

126 Chapter 4 Modifying Pictures using Loops

return to the interactions pane or to a calling method. We’ve already seen methods
that output a value, like FileChooser.pickAFile() which outputs a filename. If
you created a Picture object using new Picture(fileName) inside a method, you
should return it so that it can be used. You can do that by using the return
keyword.

The name that you give to a method’s input can be thought of as a placeholder .
Whenever the placeholder appears, imagine the input data appearing instead. So,
in a method like:

Program 10: General change red by a passed amount

/∗∗
∗ Method to change the red by an amount
∗ @param amount the amount to change the red by
∗/

public void changeRed (double amount)
{

Pixe l [] p ixe lArray = this . g e tP i x e l s () ;
P ixe l p i x e l = null ;
int value = 0 ;
int i = 0 ;

// loop through a l l the p i x e l s
while (i < pixe lArray . l ength)
{

// ge t the current p i x e l
p i x e l = pixe lArray [i] ;

// ge t the va lue
value = p i x e l . getRed () ;

/∗ s e t the red va lue to the o r i g i n a l va lue
∗ t imes the passed amount
∗/
p i x e l . setRed ((int) (va lue ∗ amount)) ;

// increment i
i++;

}
}

When you call (invoke) the method changeRed with a specific amount such
as picture.changeRed(0.7); it will decrease the red by 30%. In the method
changeRed the input parameter amount is set to 0.7. This is similar to declaring a
variable inside the method like this double amount = 0.7;. Just like any variable
declared in the method the parameter amount is known inside the method. It has
method scope.

Call changeRed with an amount less than one to decrease the amount of red

“main”
2005/9/6
page 127

i

i

i

i

i

i

i

i

Section 4.3 Changing color values 127

in a picture. Call changeRed with an amount greater than one to increase the
amount of red in a picture. Remember that the amount of red must be between 0
and 255. If you try to set the amount of red less than 0 it will be set to 0. If you
try to set the amount of red greater than 255 it will be set to 255.

We’ve talked about different ways of writing the same method—some better,
some worse. There are others that are pretty much equivalent, and others that are
much better. Let’s consider a few more ways that we can write methods.

We can pass in more than one input at a time. Consider the following:

Program 11: Change all pixel colors by the passed amounts

/∗∗
∗ Method to change the co l o r o f each p i x e l in the p i c t u r e
∗ o b j e c t by passed in amounts .
∗ @param redAmount the amount to change the red va lue
∗ @param greenAmount the amount to change the green va lue
∗ @param blueAmount the amount to change the b l u e va lue
∗/

public void changeColors (double redAmount ,
double greenAmount ,
double blueAmount)

{
Pixe l [] p ixe lArray = this . g e tP i x e l s () ;
P ixe l p i x e l = null ;
int value = 0 ;
int i = 0 ;

// loop through a l l the p i x e l s
while (i < pixe lArray . l ength)
{

// ge t the current p i x e l
p i x e l = pixe lArray [i] ;

// change the red va lue
value = p i x e l . getRed () ;
p i x e l . setRed ((int) (redAmount ∗ value)) ;

// change the green va lue
value = p i x e l . getGreen () ;
p i x e l . setGreen ((int) (greenAmount ∗ value)) ;

// change the b l u e va lue
value = p i x e l . getBlue () ;
p i x e l . s e tBlue ((int) (blueAmount ∗ value)) ;

// increment i
i++;

}

“main”
2005/9/6
page 128

i

i

i

i

i

i

i

i

128 Chapter 4 Modifying Pictures using Loops

}

We could use this method as shown below:

> String fName = "C:/intro-prog-java/mediasources/beach-smaller.jpg";
> Picture picture = new Picture(fName);
> picture.changeColors(1.0,0.7,0.7);
> picture.show();

The above code would have the same result as makeSunset(). It keeps the
red values the same and decreases the green and blue values 30%. That’s a pretty
useful and powerful method.

Recall seeing in Program 7 (page 119) this code:

/∗∗
∗ Method to c l e a r the b l u e from the p i c t u r e (s e t
∗ the b l u e to 0 f o r a l l p i x e l s)
∗/

public void c l e a rB lue ()
{

Pixe l [] p ixe lArray = this . g e tP i x e l s () ;
P ixe l p i x e l = null ;
int index = 0 ;

// loop through a l l the p i x e l s
while (index < pixe lArray . l ength)
{

// ge t the current p i x e l
p i x e l = pixe lArray [index] ;

// s e t the b l u e on the p i x e l to 0
p i x e l . s e tBlue (0) ;

// increment index
index++;

}
}

We could also write that same algorithm like this:

/∗∗
∗ Method to c l e a r the b l u e from the p i c t u r e (s e t
∗ the b l u e to 0 f o r a l l p i x e l s)
∗/

public void c l ea rB lue2 ()
{

Pixe l [] p ixe lArray = this . g e tP i x e l s () ;
int i = 0 ;

// loop through a l l the p i x e l s
while (i < pixe lArray . l ength)
{

“main”
2005/9/6
page 129

i

i

i

i

i

i

i

i

Section 4.3 Changing color values 129

pixe lArray [i] . s e tBlue (0) ;
i++;

}
}

It’s important to note that this method achieves the exact same thing as the
earlier method did. Both set the blue channel of all pixels to zero. An advantage of
the second method is that it is shorter and doesn’t require a variable declaration for
a pixel. However, it may be harder for someone to understand. A shorter method
isn’t necessarily better.

4.3.7 Using a For Loop

You may have had the problem that you forgot to declare the index variable before
you tried to use it in your while loop. You may also have had the problem of
forgetting to increment the index variable before the end of the loop body. This
happens often enough that another kind of loop is usually used when you want to
loop a set number of times. It is called a for loop.

A for loop executes a command or group of commands in a block. A for loop
allows for declaration and/or initialization of variables before the loop body is first
executed. A for loop continues executing the loop body while the continuation
test is true. After the end of the body of the loop and before the continuation test
one or more variables can be changed.

The syntax for a for loop is:

for (i n i t i a l i z a t i o n area ; cont inuat i on t e s t ; change area)
{

/∗ commands in body o f the loop ∗/
}

Let’s talk through the pieces here.

• First comes the required Java keyword for.

• Next we have a required opening parenthesis

• Next is the initialization area. You can declare and initialize variables here.
For example, you can have int i=0 which declares a variable i of the primitive
type int and initializes it to 0. You can initialize more than one variable here
by separating the initializations with commas. You are not required to have
any initializations here.

• Next comes the required semicolon.

• Next is the continuation test. This holds an expression that returns true or
false. When this expression is true the loop will continue to be executed.
When this test is false the loop will finish and the statement following the
body of the loop will be executed.

• Next comes the required semicolon.

“main”
2005/9/6
page 130

i

i

i

i

i

i

i

i

130 Chapter 4 Modifying Pictures using Loops

• Next is the change area. Here you usually increment or decrement variables,
such as i++ to increment i. The statements in the change area actually take
place after each execution of the body of the loop.

• Next is the required closing parenthesis.

If you just want to execute one statement (command) in the body of the loop
it can just follow on the next line. It is normally indented to show that it is part
of the for loop. If you want to execute more than one statement in the body of
the for loop you will need to enclose the statements in a block (a set of open and
close curly braces).'

&

$

%

Common Bug: Change Loop Variable in One
Place!
When you specify how to change the loop variables in the
change area of the for loop this will actually happen at the
end of the body of the loop. So don’t also change the loop
variables in the loop or you will change them twice and
probably not get the desired results.

Statement(s)

for (expression)

true

false

Statement(s)

declare and
init loop
variable(s)

change loop
variable(s)

for(int i=0;
 i < pixelArray.length();
 i++)

FIGURE 4.22: Flowchart of a for loop

Compare the flowchart (Figure 4.22) for a for loop with the flowchart for a
while loop (Figure 4.16). They look the same because for loops and while loops
execute in the same way even though the code looks different. Any code can be
written using either. The syntax of the for loop just makes it easier to remember
to declare a variable for use in the loop and to change it each time through the
loop since all of that is written at the same time that you write the test. To change

“main”
2005/9/6
page 131

i

i

i

i

i

i

i

i

Section 4.3 Changing color values 131

clearBlue() to use a for loop simply move the declaration and initialization of
the index variable i to be done in the initialization area and the increment of i to
be done in the change area.

Program 12: Another clear blue method

/∗∗
∗ Method to c l e a r the b l u e from the p i c t u r e (s e t
∗ the b l u e to 0 f o r a l l p i x e l s)
∗/

public void c l ea rB lue3 ()
{

Pixe l [] p ixe lArray = this . g e tP i x e l s () ;

// loop through a l l the p i x e l s
for (int i =0; i < pixe lArray . l ength ; i++)

p ixe lArray [i] . s e tBlue (0) ;
}

4.3.8 Lightening and Darkening

To lighten or darken a picture is pretty simple. It’s the same pattern as we saw
previously, but instead of changing a color component, you change the overall color.
Here’s lightening and then darkening as methods. Figure 4.23 shows the lighter and
darker versions of the original picture seen earlier.

Program 13: Lighten the picture

/∗∗
∗ Method to l i g h t e n the c o l o r s in the p i c t u r e
∗/

public void l i g h t e n ()
{

Pixe l [] p ixe lArray = this . g e tP i x e l s () ;
Color c o l o r = null ;
P ixe l p i x e l = null ;

// loop through a l l the p i x e l s
for (int i = 0 ; i < pixe lArray . l ength ; i++)
{

// ge t the current p i x e l
p i x e l = pixe lArray [i] ;

// ge t the current co l o r
c o l o r = p i x e l . getColor () ;

“main”
2005/9/6
page 132

i

i

i

i

i

i

i

i

132 Chapter 4 Modifying Pictures using Loops

// ge t a l i g h t e r co l o r
c o l o r = co l o r . b r i gh t e r () ;

// s e t the p i x e l c o l o r to the l i g h t e r co l o r
p i x e l . s e tCo lo r (c o l o r) ;

}
}

Program 14: Darken the picture

/∗∗
∗ Method to darken the co l o r in the p i c t u r e
∗/

public void darken ()
{

Pixe l [] p ixe lArray = this . g e tP i x e l s () ;
Color c o l o r = null ;
P ixe l p i x e l = null ;

// loop through a l l the p i x e l s
for (int i = 0 ; i < pixe lArray . l ength ; i++)
{

// ge t the current p i x e l
p i x e l = pixe lArray [i] ;

// ge t the current co l o r
c o l o r = p i x e l . getColor () ;

// ge t a darker co l o r
c o l o r = co l o r . darker () ;

// s e t the p i x e l c o l o r to the darker co l o r
p i x e l . s e tCo lo r (c o l o r) ;

}
}

4.3.9 Creating a Negative

Creating a negative image of a picture is much easier than you might think at first.
Let’s think it through. What we want is the opposite of each of the current values
for red, green, and blue. It’s easiest to understand at the extremes. If we have a
red component of 0, we want 255 instead. If we have 255, we want the negative to
have a zero.

Now let’s consider the middle ground. If the red component is slightly red
(say, 50), we want something that is almost completely red—where the “almost”
is the same amount of redness in the original picture. We want the maximum red
(255), but 50 less than that. We want a red component of 255 − 50 = 205. In

“main”
2005/9/6
page 133

i

i

i

i

i

i

i

i

Section 4.3 Changing color values 133

FIGURE 4.23: Original picture, lightened picture, and darkened picture

general, the negative should be 255 − original. We need to compute the negative
of each of the red, green, and blue components, then create a new negative color,
and set the pixel to the negative color.

Here’s the program that does it, and you can see even from the grayscale
image that it really does work (Figure 4.24).

Program 15: Create the negative of the original picture

/∗∗
∗ Method to negate the p i c t u r e
∗/

public void negate ()
{

Pixe l [] p ixe lArray = this . g e tP i x e l s () ;
P ixe l p i x e l = null ;
int redValue , blueValue , greenValue = 0 ;

// loop through a l l the p i x e l s
for (int i = 0 ; i < pixe lArray . l ength ; i++)
{

// ge t the current p i x e l
p i x e l = pixe lArray [i] ;

// ge t the current red , green , and b l u e va l u e s
redValue = p i x e l . getRed () ;
greenValue = p i x e l . getGreen () ;
blueValue = p i x e l . getBlue () ;

// s e t the p i x e l ’ s c o l o r to the new co l o r
p i x e l . s e tCo lo r (new Color (255 − redValue ,

255 − greenValue ,
255 − blueValue)) ;

}
}

“main”
2005/9/6
page 134

i

i

i

i

i

i

i

i

134 Chapter 4 Modifying Pictures using Loops

FIGURE 4.24: Negative of the image

4.3.10 Converting to Grayscale

Converting to grayscale is a fun program. It’s short, not hard to understand, and
yet has such a nice visual effect. It’s a really nice example of what one can do easily
yet powerfully by manipulating pixel color values.

Recall that the resultant color is gray whenever the red component, green
component, and blue component have the same value. That means that our RGB
encoding supports 256 levels of gray from, (0, 0, 0) (black) to (1, 1, 1) through
(100, 100, 100) and finally (255, 255, 255). The tricky part is figuring out what
the replicated value should be.

What we want is a sense of the intensity of the color. It turns out that it’s
pretty easy to compute: We average the three component colors. Since there are
three components, the formula for intensity is:

(red+green+blue)
3

This leads us to the following simple program and Figure 4.25.

Program 16: Convert to grayscale

/∗∗
∗ Method to change the p i c t u r e to gray s c a l e
∗/

public void g ray s c a l e ()
{

Pixe l [] p ixe lArray = this . g e tP i x e l s () ;
P ixe l p i x e l = null ;
int i n t e n s i t y = 0 ;

// loop through a l l the p i x e l s
for (int i = 0 ; i < pixe lArray . l ength ; i++)
{

“main”
2005/9/6
page 135

i

i

i

i

i

i

i

i

Section 4.3 Changing color values 135

FIGURE 4.25: Color picture converted to grayscale

// ge t the current p i x e l
p i x e l = pixe lArray [i] ;

// compute the i n t e n s i t y o f the p i x e l (average va lue)
i n t e n s i t y = (int) ((p i x e l . getRed () + p i x e l . getGreen () +

p i x e l . getBlue ()) / 3) ;

// s e t the p i x e l c o l o r to the new co l o r
p i x e l . s e tCo lo r (new Color (i n t en s i t y , i n t en s i t y , i n t e n s i t y)) ;

}
}

This is an overly simply notion of grayscale. Below is a program that takes
into account how the human eye perceives luminance. Remember that we consider
blue to be darker than red, even if there’s the same amount of light reflected off.
So, we weight blue lower, and red more, when computing the average.

Program 17: Convert to grayscale with more careful control of luminance

/∗∗
∗ Method to change the p i c t u r e to gray s c a l e wi th luminance
∗/

public void grayscaleWithLuminance ()
{

Pixe l [] p ixe lArray = this . g e tP i x e l s () ;
P ixe l p i x e l = null ;
int luminance = 0 ;
double redValue = 0 ;
double greenValue = 0 ;
double blueValue = 0 ;

“main”
2005/9/6
page 136

i

i

i

i

i

i

i

i

136 Chapter 4 Modifying Pictures using Loops

// loop through a l l the p i x e l s
for (int i = 0 ; i < pixe lArray . l ength ; i++)
{

// ge t the current p i x e l
p i x e l = pixe lArray [i] ;

// ge t the co r r e c t ed red , green , and b l u e va l u e s
redValue = p i x e l . getRed () ∗ 0 . 2 9 9 ;
greenValue = p i x e l . getGreen () ∗ 0 . 5 8 7 ;
blueValue = p i x e l . getBlue () ∗ 0 . 1 1 4 ;

// compute the i n t e n s i t y o f the p i x e l (average va lue)
luminance = (int) (redValue + greenValue + blueValue) ;

// s e t the p i x e l c o l o r to the new co l o r
p i x e l . s e tCo lo r (new Color (luminance , luminance , luminance)) ;

}
}

4.4 CONCEPTS SUMMARY

In this chapter we have introduced arrays, while loops, for loops, and comments.

4.4.1 Arrays

Arrays are used to store many pieces of data of the same type. They allow you to
quickly access a particular item in the array using an index. If you couldn’t use an
array, you would have to create a separate variable name for each piece of data.

To declare a variable that refers to an array use the type followed by open ’[’
and close ’]’ square brackets and then the variable name.

Pixe l [] p ixe lArray ;

This declares an array of Pixel objects. The value stored at each position in
the array is a reference to a Pixel object.

Arrays are objects and you can find out how large an array by getting it’s
length.

i < pixe lArray . l ength

Notice that this isn’t a method call (there are no parentheses). This accesses
a public read-only field.

You can get an element of the array using arrayReference[index]. Where
the index values can range from 0 to arrayReference.length-1.

p i x e l = pixe lArray [i] ;

4.4.2 Loops

Loops are used to execute a block of statements while a boolean expression is true.
Most loops have variables that change during the loop which eventually cause the

“main”
2005/9/6
page 137

i

i

i

i

i

i

i

i

Section 4.4 Concepts Summary 137

boolean expression to be false and the loop to stop. Loops that never stop are
called infinite loops.

We introduced two types of loops in this chapter: while and for. The while
loop is usually used when you don’t know how many times a loop needs to execute
and the for loop is usually used when you do know how many times the loop will
execute. We introduced the while loop first because it is easier for beginners to
understand.

The while loop has the keyword while followed by a boolean expression and
then a block of statements between an open and close curly brace. If the boolean
expression is true the body of the loop will be executed. If the boolean expression is
false execution will continue after the body of the loop (after the close curly brace).
If you just want to execute one statement in the body of the loop then you don’t
need the open and close curly braces, but you should indent the statement.

while (boolean exp r e s s i on)
{

statement1 ;
statement2 ;
. . .

}
If you use a while loop to execute a block of statements a set number of times

you will need to declare a variable before the while and that variable will need to
be changed in the body of the loop. You may also need to declare other variables
that you use in the loop before the while. Don’t declare variables inside the loop
because you will use more memory that way.

int index = 0 ;

// loop through a l l the p i x e l s
while (index < pixe lArray . l ength)
{

// ge t the current p i x e l
p i x e l = pixe lArray [index] ;

// do something to the p i x e l

// increment the index
index++;

}
The for loop does the same thing as a while loop but it lets you declare the

variables that you need for the loop, specify the boolean expression to test, and
specify how to change the loop variables all in one place. This means you are less
likely to forget to do each of these things.

// loop through a l l the p i x e l s
for (int index = 0 ; index < pixe lArray . l ength ; index++)
{

// ge t the current p i x e l
p i x e l = pixe lArray [index] ;

“main”
2005/9/6
page 138

i

i

i

i

i

i

i

i

138 Chapter 4 Modifying Pictures using Loops

// do something to the p i x e l

}

4.4.3 Comments

Comments are text that the programmer adds to the code to explain the code. The
compiler ignores the comments when it translates the code into a form that the
computer understands.

There are several types of comments in Java. To tell the compiler to ignore
all text till the end of the current line use //.

// ge t the current p i x e l
p i x e l = pixe lArray [index] ;

To tell the compiler to ignore several lines use a starting /* and ending */.

/∗ s e t the red va lue to the o r i g i n a l va lue
∗ t imes the passed amount
∗/

p i x e l . setRed ((int) (va lue ∗ amount)) ;

To put special comments in that can be parsed out by the javadoc utility to
make html documentation use a starting /** followed by an ending */.

/∗∗
∗ Method to change the red by an amount
∗ @param amount the amount to change the red by
∗/

OBJECTS AND METHODS SUMMARY

In this chapter, we talk about several kinds of encodings of data (or objects).

Color An object that holds red, green, and blue values,
each between 0 and 255.

Picture Pictures are encodings of images, typically coming
from a JPEG file or a bitmap (.bmp) file.

Pixel A pixel is a dot in a Picture object. It has a
color (red, green, and blue) and an (x, y) position
associated with it. It remembers its own Picture
object so that a change to the pixel changes the
real dot in the picture.

Picture methods

“main”
2005/9/6
page 139

i

i

i

i

i

i

i

i

Section 4.4 Concepts Summary 139

getHeight() This method returns the height of the Picture
object in pixels.

getPixel(int x, int y) This method takes an x position and a y position
(two numbers), and returns the Pixel object at
that location in the Picture object it is invoked
on.

getPixels() Returns a one-dimensional array of Pixel objects
in the Picture object it is invoked on.

getWidth() This method returns the width of the Picture ob-
ject in pixels.

writePictureTo(String fileName) This method takes a file name (a string) as input,
then writes the Picture object to the file as a
JPEG. (Be sure to end the filename in “.jpg” or
“.bmp” for the operating system to understand it
well.)

Pixel methods

getColor() Returns the Color object for the
Pixel object.

getRed(), getGreen(), getBlue() Each method returns the value
(between 0 and 255) of the
amount of redness, greenness,
and blueness (respectively) in the
Pixel object.

getX(), getY() This method returns the x or y
(respectively) position of where
that Pixel object is in the pic-
ture.

setColor(Color color) This method takes a Color object
and sets the color for the Pixel
object.

setRed(int value), setGreen(int value), setBlue(int value) Each method takes a value (be-
tween 0 and 255) and sets the red-
ness, greenness, or blueness (re-
spectively) of the Pixel object to
the given value.

Color methods

new Color(int red,int green,int blue) Takes three inputs: the red, green, and blue values
(in that order), then creates and returns a Color
object.

darker(),brighter() The methods return a slightly darker or lighter
(respectively) version of the Color object.

ColorChooser methods

“main”
2005/9/6
page 140

i

i

i

i

i

i

i

i

140 Chapter 4 Modifying Pictures using Loops

ColorChooser.pickAColor() Displays a window with ways to pick a color. Find
the color you want, and the method will return the
Color object that you picked.

There are a bunch of constants that are useful in this chapter. These are vari-
ables with pre-defined values. These values are colors: Color.black, Color.white,
Color.blue, Color.red, Color.green, Color.gray, Color.darkGray, Color.pink,
Color.yellow, Color.orange, Color.lightGray, Color.magenta, Color.cyan.
Notice that these are not method calls but are class variables (fields) so they can
be accessed using ClassName.fieldName .

PROBLEMS

4.1. What is meant by each of the following?

• Pixel

• Kilobyte

• RGB

• Loop

• HSV

• Flowchart

• Infinite loop

• Variable scope

• Array

• Matrix

• JPEG

• Column-major order

• Pixelization

• Luminance

4.2. Why don’t we see red, green, and blue spots at each position in our picture?
4.3. Why is the maximum value of any color channel 255?
4.4. The color encoding we’re using is “RGB”. What does that mean, in terms of the

amount of memory required to represent color? Is there a limit to the number
of colors that we can represent? Can we represent enough colors in RGB?

4.5. Program 5 (page 105) is obviously too much color reduction. Write a version that
only decreases the red by 10%, and one that reduces red by 20%. Which seems
to be more useful? Note that you can always repeatedly reduce the redness in a
picture, but you don’t want to have to do it too many times, either.

4.6. Each of the below is equivalent to Program 6 (page 117). Test them and convince
yourself that they are equivalent. Which do you prefer and why?

/∗∗
∗ Method to inc rea se the amount o f red by 1.3
∗/

public void increaseRed2 ()
{

Pixe l [] p ixe lArray = this . g e tP i x e l s () ;
int value = 0 ;

“main”
2005/9/6
page 141

i

i

i

i

i

i

i

i

Section 4.4 Concepts Summary 141

// loop through a l l the p i x e l s
for (int i = 0 ; i < pixe lArray . l ength ; i++)
{

// s e t the red va lue to 1.3 t imes what i t was
value = pixe lArray [i] . getRed () ;
p ixe lArray [i] . setRed ((int) (va lue ∗ 1 . 3)) ;

}
}

/∗∗
∗ Method to inc rea se the amount o f red by 1.3
∗/

public void increaseRed3 ()
{

Pixe l [] p ixe lArray = this . g e tP i x e l s () ;
P ixe l p i x e l = null ;
int red = 0 ;
int green = 0 ;
int blue = 0 ;
int newRed = 0 ;

// loop through a l l the p i x e l s
for (int i = 0 ; i < pixe lArray . l ength ; i++)
{

// ge t the curren t p i x e l
p i x e l = pixe lArray [i] ;

// ge t the co l o r va l u e s
red = p i x e l . getRed () ;
green = p i x e l . getGreen () ;
b lue = p i x e l . getBlue () ;

// c a l c u l a t e the new red va lue
newRed = (int) (red ∗ 1 . 3) ;

// s e t the p i x e l c o l o r to the new co l o r
p i x e l . s e tCo lo r (new Color (newRed , green , b lue)) ;

}
}

4.7. Change any of the methods that used a while loop to use a for loop. Compile
and run the changed method and make sure it still works.

4.8. Change a variable name in any of the given methods. Make sure you change all
instances of the variable name to the new name. Compile and run the changed
method and make sure it still works.

4.9. Write new methods like Program 7 (page 119) to clear red and green. For
each of these, which would be the most useful in actual practice? How about
combinations of these?

4.10. Write a method to keep just the blue color. This means to set all the green and
red values to zero. Write a method to keep just the red color. Write a method
to keep just the green color.

“main”
2005/9/6
page 142

i

i

i

i

i

i

i

i

142 Chapter 4 Modifying Pictures using Loops

4.11. Write a new method to maximize blue (i.e., setting it to 255) instead of clearing
it use Program 7 (page 119) as a starting point. Is this useful? Would the red
or green versions be useful?

4.12. Write a method that modifies the red, green, and blue values of a picture by
different amounts. Try it out on different pictures to see if you get any nice
results.

4.13. How do we get the height from a Picture object?
4.14. How do we get the width from a Picture object?
4.15. How many pixels are in a picture with a width of 200 and a height of 100?
4.16. How many pixels are in a picture with a width of 640 and a height of 480?
4.17. How do you get an array of Pixel objects from a Picture object?
4.18. How do you get the red value from a Pixel object?
4.19. How do you set the red value in a Pixel object?
4.20. There is more than one way to compute the right grayscale value for a color

value. The simple method that we use in Program 16 (page 134) may not be
what your grayscale printer uses when printing a color picture. Compare the
color (relatively unconverted by the printer) grayscale image using our simple
algorithm in with what your printer produces when you print the image. How
do the two pictures differ?

TO DIG DEEPER

A wonderful new book on how vision works, and how artists have learned to ma-
nipulate it, is Vision and art: The biology of Seeing by Margaret Livingstone [21].

