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ABSTRACT 

We discuss the contribution of phonon interactions in 
determining the upper limit of f.Q product in 
micromechanical resonators. There is a perception in the 
MEMS community that the maximum f.Q product of a 
microresonator is limited to a “frequency-independent 
constant” determined by the material properties of the 
resonator [1].  In this paper, we discuss that for frequencies 
higher than τωτ 1= , where τ is the phonon relaxation 
time, the f.Q product is no longer constant but a linear 
function of frequency. This makes it possible to reach very 
high Qs in GHz micromechanical resonators. Moreover, 
we show that <100> is the preferred crystalline orientation 
for obtaining very high Q in bulk-acoustic-mode silicon 
resonators above ~750 MHz, while <110> is the preferred 
direction for achieving high-Q at lower frequencies.   
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INTRODUCTION 

Several dissipative mechanisms limit the Q of an 
electromechanical resonator [1], [2], [3]. Among those, 
some can be suppressed and even eliminated through 
proper design (e.g. clamping loss [3]).  However, some 
energy dissipation mechanisms are intrinsic to the 
resonating material.  The “intrinsic Q” of a resonator is 
defined as 

 

Q = 2π Energy stored
Energy dissipated per cycle of oscillation

.           (1) 

 

For an acoustic wave propagating in solids, the sound 
abortion coefficient, )(ωα , defined as [4] 
 

α(ω) = 1
2

Mean energy dissipated
 Energy flux in the wave

                                 (2) 

 

is a measurable quantity and describes the variation in the 
wave amplitude with propagation distance.  Therefore, by 
definition Q and )(ωα  are related through  
 

aV
Q

)(2
2

ωα
ωπ= ,                                                            (3) 

 

where Va is the wave velocity and ω  is the angular 
resonance frequency.  

A figure of merit for micromechanical resonators is 
the f.Q product.  Using (3), we have 
 

aV
Qf

)(2
.

2

ωα
ω

= .                                                             (4) 

 

The fundamental intrinsic dissipation mechanisms 
limiting the f.Q product of resonators consist of 
thermoelastic, phonon-electron, and phonon-phonon 
interactions (see Table 1).  Among these, the phonon-
phonon dissipation is the dominant intrinsic loss 
mechanism in semiconducting and insulating resonators at 
room temperature.  In this paper, we focus on the phonon-
phonon dissipations and show that at room temperature, 
f.Q of a micromechanical resonator due to this intrinsic 
dissipation mechanism is frequency dependent.  
 
DISSIPATION DUE TO PHONON-PHONON 
INTERACTIONS 

Two different approaches have been taken to describe 
the physics of ultrasonic attenuation due to the interaction 
of an acoustic wave with thermal phonons:  

(a) In the approach that was first introduced by 
Akheiser [5], the sound wave is regarded as a macroscopic 
strain field in the crystal.  Since the frequency of thermal 
phonons depends on the strain, the thermal equilibrium is 
disturbed [2], leading to ballistic transport of phonons 
between hot and cold regions (as opposed to the diffusive 
transport of heat in the thermoelastic dissipation).  The 
process of restoring the thermal equilibrium to the phonon 
gas is accompanied by dissipation of energy from the 
acoustic wave. The response of the phonon system to the 
acoustic wave is calculated by means of the phonon 
Boltzmann equation [6].  

(b) An alternative approach was given by Landau and 
Rumer [7].  Here, the acoustic wave is regarded as a 
parallel beam of low-energy phonons.  Because of an-
harmonic terms in the Hamiltonian of the crystal, 
interactions between different modes are possible and the 
rate at which the acoustic phonons are scattered is 
calculated by the perturbation theory [8].  

Both approaches are valid based on some assumptions 
on wavelength of the propagating acoustic wave as well as 
the life time of thermal phonons (which depends on 
the temperature of the acoustic material).  In this paper, we 
focus on the nature of the acoustic attenuation at room 
temperature (300 ºK) and only consider the frequency 
dependency of the phonon-phonon dissipations.  
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Table 1. Simplified expressions for α(ω) and f.Q (ω: acoustic angular frequency, ρ: density, Va: acoustic velocity, κ: thermal 
conductivity, β: thermal expansion coefficient, σ: electrical conductivity, me: electron mass, εF: Fermi energy, e: electron charge, Cv: 
volumetric heat capacity, T: absolute temperature, γ: Grüneisen parameter, h: Planck constant, and K: Boltzmann constant).  

 Thermoelastic Dissipation Phonon-electron Dissipation Phonon-phonon Dissipation 
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Remarks Negligible in semiconductor 
with proper design. Dominant 

intrinsic source of loss in 
metals. 

Negligible in insulators and 
doping dependent in 

semiconductors at room 
temperature. 

Dominant intrinsic loss in semiconductors and 
insulators.  

 
Akheiser Regime  

If the acoustic wavelength (λ) is considerably larger 
than the mean free path of phonons (ω<<1/τ), we can 
assume that the acoustic wave is interacting with the whole 
ensemble of thermal phonons. Therefore, locally changing 
the phonon frequencies and perturbing the phonon 
distribution function away from its equilibrium Planck 
form. This range (ω<<1/τ) is known as the Akheiser 
regime. 

In Akheiser regime, the wave equation can be 
formulated based on the modified Hooke’s law, proposed 
by Zener [9], and the second law of Newton as follows: 
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where cR and cU are the relaxed and un-relaxed elastic 
stiffness constants, η  is the effective viscosity of the 
acoustic material, and V is the velocity.  Assuming a plane 
wave solution )( kztjeV −= ω and considering the acoustic 
absorption, we have: )(ωαχ jk −= . In all practical cases 

)(ωα  is very small compared to χ  and ω [10].  Therefore: 
  

,a
R Vc
==

ρχ
ω

                                                                
(6) 

 

α(ω) = ω
2 ⋅η ⋅ (cU − cR )
2 ⋅Va ⋅ cU ⋅ cR

                                             

   (7) 

For longitudinal acoustic waves in Akheiser regime, 
the acoustic attenuation is proportional to ω2, hence the 

f.QPhP product is constant (see Eq. 4).  For transverse 
waves in the Akheiser range, )(ωα  is theoretically 
proportional to ω1.75 [11].  Therefore, f.QPhP has a slight 
frequency dependency (f.QPhP∝ ω0.25).  A dependence of 
this kind has been observed in many crystals [11], and may 
be due to the presence of impurities, which heavily 
influences the attenuation in transverse acoustic wave but 
may only slightly affect the longitudinal waves [12]. 
 
Landau-Rumer Regime 

When λ is less than the phonon mean free path, the 
acoustic quanta interact with individual lattice phonons. In 
the Landau-Rumer regime ( hKT<<<< ωτ1 ), acoustic 
attenuation is mainly due to three-phonon interactions and 
can be shown to be linearly proportional to ω  (Table 1) 
[7].  Therefore, the f.Q product will not be constant but 
increases linearly with ω (Table 1). 

 
Landau-Rumer Effect at Room Temperature 

The transition from Akheiser to Landau-Rumer regime 
occurs at ωτ=1/τ, which can be estimated as   
 

κ
ωτ n

VC Dv

3

2
=         (

333
213

tlD VVV
+= ),                                     (8) 

where VD, Vl,, and Vt are the mean Debye, longitudinal and 
transverse velocities, respectively. We define n as a 
correction factor, which is close to 1 for transverse waves. 
The reason for this is that for transverse sound waves τ is 
usually assumed to be close to the thermal relaxation time 
τC.  For longitudinal waves, the direct interaction with 
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thermal phonons is forbidden and therefore, τ becomes 
greater (n is close to 2).   

The condition of ω>>1/τ is easier met at low 
temperatures as τ increases rapidly with falling 
temperature [12].  At room temperature, for most 
semiconductors, ωτ occurs in the GHz range (1-20 GHz) 
[13].  Interestingly, for acoustic wave propagating in 
<100> orientation of silicon, τ is an order of magnitude 
larger than that of the other directions.  This has been 
experimentally verified in [12], where the value of τ was 
extracted from the kink in the measured frequency-
dependent acoustic attenuation curve.  The significance of 
this effect is pronounced at frequencies above 

τπω ττ
12 == f , where f.QPhP increases with frequency 

(Fig. 1).  For silicon in <100> direction, τf is ~700 MHz. 
To understand the reason for relatively large phonon 

relaxation time of longitudinal waves propagating in 
<100> direction in silicon, one has to consider the an-
harmonic phonon decay model of Landau and Rumer to 
account for only the types of phonon collisions that are 
allowed by the crystalline anisotropy [4], [14].  In <100> 
direction in silicon, out of all allowed interactions, only 
those with transverse phonons contribute to absorption (or 
acoustic attenuation).  The absorption of the longitudinal 
acoustic wave in <110> direction, on the other hand, is 
governed by its interaction with longitudinal thermal 
phonons only [12].  Hence, the relaxation time of thermal 
phonons depends on its interaction with transverse 
phonons in <100> direction, and with longitudinal 
phonons in <110> direction.  The life time of transverse 
thermal phonons decreases less rapidly with increasing 
temperature (Fig. 2).  Therefore, at room temperature, τ in 
<100> direction in silicon remains larger, while in other 
direction, τ is decreased significantly. 

 

f.Q
 (H

z) 

 
     Frequency (Hz) 

Figure 1.  Comparison of f.QPhP for acoustic wave propagating 
in different crystallographic directions in silicon. The value of 

τω ( τωτ
1= ) is extracted from the data forτ presented in [15]. 

To demonstrate the significance of phonon-phonon 
interactions on limiting the f.Q of a semiconducting or 
insulating micromechanical resonator, the f.QPhP of <100> 
silicon is compared with that of diamond, AlN, quartz, and 
SiC (shown in Fig. 3). At f  > 3 GHz, f.Q of <100> Si 
becomes comparable to that of SiC, which makes the 
realization of ultra-high-frequency high-Q resonators in 
silicon possible.   

The equation for ωτ (8) also suggests that high thermal 
conductivity materials such as diamond experience the 
Landau-Rumer effect at low frequencies.  The measured 
data for )(ωα  of diamond [16] as well as the analytical 
calculation of ωτ presented in [17] support this statement 
(see Fig. 3).  Table 2 provides material constants for 
commonly used acoustic materials. 

 

 
Temperature (ºK) 

Figure 2.  Temperature dependence of the acoustic phonon 
relaxation time (1) longitudinal in <100> and (2) longitudinal 
in <110> (figure reproduced from Reference [12]).  
 

f.Q
 (H

z) 

  
           Frequency (Hz) 

Figure 3.  Comparison of f.QPhP of <100> Si with SiC, AlN, 
Quartz, and diamond. The highest f.Q product reported for Si 
and diamond resonators is presented in [18] and [19]. 
Reference [16] is from measured data for )(ωα  at 1 GHz.  
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Table 2.  Intrinsic properties of some materials commonly used as micromechanical resonators.  )(ωα  is the measured value for 
longitudinal. Vl is the velocity of the longitudinal wave. 

 Vl (ms-1)  )(ωα  @ 1GHz (m-1) β (μK-1) κ (Wm-1k-1) Cv (Jcm-3k-1) 

6H-SiC 13300 4.6 2.77 360 2.215 

Si(100) 8500 69 2.57  130 1.631 

Si(111) 9300 85 2.57  130 1.631 

Si(110) 9100 83 2.57 130 1.613 

Diamond 18000 6.9 1.05 2000 1.782 

Quartz (C-axis) 5720 34.48 7.64  9.5  1.881 

AlN 10970 200 2.56 162 1.938 
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