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Abstract
We introduce a new codification scheme for efficient computation of measures in semantic networks. The scheme is particularly useful
for fast computation of semantic associations between words and implementation of an informational retrieval operator for efficient
search in semantic spaces. Other applications may also be possible.

1. Introduction
Research in natural language processing focuses

more and more on developing robust technologies, to
be deployed on unseen texts and produce summaries,
answer questions, or perform other tasks. Such ap-
proaches rely on lexical resources to extract informa-
tion about word senses, and relate different senses to
each other. Lexical resources that can support robust
working paradigms must have broad coverage in terms
of vocabulary, and a high degree of connectivity. From
the point of view of the systems that use these re-
sources, bigger is better. The broader the coverage the
resource provides, the higher the chances that the words
encountered in unseen texts are found in the resource.
The higher the degree of connectivity, the better the
chances of finding connections between words.

When large and highly interconnected electronic
lexical resources have become available, like WordNet,
Roget’s Thesaurus, Longman’s Dictionary of Contem-
porary English, the systems using them encountered a
computational problem. The same attributes that make
a resource desirable, size and connectivity, have a neg-
ative influence on processing times. It is computation-
ally more expensive to find a node in a larger resource,
and to find paths between nodes in a resource with a
large number of connections.

In order to be able to have the cake and eat it too, we
must find an appropriate encoding for lexical resources
that can reduce computation times, while allowing the
resources to grow. We propose such an encoding in
Section 3.. We show in Section 4. that computations of
various measures in the encoded resource become prac-
tically instantaneous and these codes have important
practical applications in information retrieval. More-
over, computation times will not scale up with the size
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of the resource, as it happens with usual algorithms
which require traversal of the resource. While the en-
coding we propose can be implemented on any resource
with a Directed Acyclic Graph (DAG) structure, in this
paper we focus our case study on WordNet.

2. Using Resources

WordNet (Miller, 1995) is one of the most fre-
quently used resources in the Natural Language Pro-
cessing (NLP) community, for a variety of tasks –
word-sense disambiguation (WSD), information re-
trieval (IR), question answering, and others. The most
exploited links from the ones WordNet provides are
the hyponym-hypernym (IS-A) links. They are used
for the computation of various semantic distance met-
rics (see (Budanitsky and Hirst, 2001) for an overview
of measures for semantic distance) for word sense dis-
ambiguation tasks, for generalization/specialization of
concepts for information retrieval (Mihalcea, 2002),
question answering, and others.

The most commonly used metrics computed using
WordNet are depth, distance between synsets and most
specific common subsumer. The problems in computa-
tion appear because of multiple inheritance, which will
cause a system to traverse at least part of the network.
For computation of depth, a system will have to find all
possible paths to the top-most level and find the shortest
one. To find whether two synsets are connected, and to
find a path that connects them, one must explore many
links in the network.

Previous encodings of WordNet have been inspired
by the Dewey Decimal code scheme used by librari-
ans (Mihalcea, 2002). While this encoding facilitates
the computation of depth and the use of semantic wild-
cards for IR, it does not handle multiple inheritance in
a computationally advantageous manner.



3. WordNet as an Ordered Set
Focusing on the IS-A links between Word-

Net synsets gives us a view of WordNet as an ordered
set. An ordered set is a set of elements (in our case
synsets), and a partial order – a reflexive, antisymmet-
ric and transitive relation, which needs not hold for ev-
ery pair of elements in the set (Rival, 1996). Properties
and theories of ordered sets are mostly explored with
mathematical tools. The idea for encoding an order set
comes from Chibbani, 2003), who proposes a codifica-
tion scheme to facilitate the computational exploration
of issues specific to ordered sets.

Our purpose is to provide an efficient encoding of
the IS-A structure of WordNet. The encoding process
is driven by two goals: each synset should be uniquely
identified, and the code for each synset should give us
information about the entire structure above the synset,
with which the synset it connected.

According to these goals, each synset will be as-
signed a code which consists of the combined codes of
its parents and a unique identifier. The unique identifier
will allow us to find easily all synsets which have as
an ancestor a given synset. Combining the codes of the
parent nodes will give each synset a code that abstracts
the entire WordNet structure above it, i.e. that covers
all synsets which are ancestors of the current synset. In
this way, the code assigned to a synset contains the en-
tire chain of information from a general concept down
to a specific concept.

We perform the encoding in layers, starting with
the most general concepts (the supremums1 in our
ordered set), and then assign a code to a child synset
using the codes of the parent synsets and a unique
number (represented in base 36 – 10 digits and 26
letters – to obtain a more compressed representation).
For example2:�

person, individual � has two parents:�
life form, organism � and

�
causal agent, cause �

Both these last synsets have the same parent:
�

entity, physical thing � . We start by encoding the most
general synset:�

entity, physical thing ��� 1

We encode synsets on each layer, by compound-
ing the parents’ codes and adding a unique number:�

life form, organism ��� 1.23�
causal agent, cause ��� 1.3�

person, individual � � (1.2+1.3).4 or
1.(2+3).4

1A supremum is an element from an ordered set such that
there is no other element greater than it is, relative to the order
in the set

2Throughout the paper, due to space limitations, only the
first two concepts in any given synset are listed

3The dot links codes on subsequent levels in the hierarchy

Our codification scheme was designed specifically for
multiple inheritance. Alternative paths corresponding
to each parent are joined by a plus sign.

4. Applications
This section outlines applications of the new encod-

ing scheme for computation of semantic associations
between words, and the implementation of an IR oper-
ator for efficient search in semantic spaces. Other ap-
plications may also be possible.

4.1. Computing Measures

The purpose of the encoding we propose for Word-
Net is to allow for faster computation of measures
frequently used by NLP applications that rely on
semantic networks.

Computing depth. The new WordNet codifi-
cation enables the computation of depth of a node
within the network without effectively traversing it, but
only through simple and efficient Perl functions applied
on the encoding of the node itself. Alternative paths
(“plus expressions”) are replaced by a min function,
stepping on a following level (dots) with a +, and each
level (number in base 36) with 1. For example:�

accessory, accoutrement � has the code:
6.(o+1k).j3.(1g0.23u+s7).4eu.6l6

Following the description above, the following
expression is constructed (using pattern matching and
substitution in Perl):
6. ( o+1k ).j3. ( 1g0.23u+s7 ).4eu.6l6
1+min(1, 1 ) + 1 +min( 1 + 1 , 1 ) + 1 + 1

This expression is practically instantaneously obtained
and computed, to give us the depth of the synset. Under
the new encoding, the running time of the function
that computes the depth of the node becomes O(1),
compared to the original running time of O(L), where L
is the length of the path from the node in consideration
to the top of the hierarchy.

Finding the Most Specific Common Subsumer
(MSCS). The MSCS of two nodes can be simply
found by identifying the last unique number that
two codes share. This operation can be efficiently
performed via pattern matching. For example:�

accessory, accoutrement � with code
6.(o+1k).j3.(1g0.23u+s7).4eu.6l6�

merchandise � with code
6.(o+1k).j3.1g0.291

The MSCS is identified using one matching oper-
ation as 1g0 without performing any traversal steps
across the network, as with traditional encoding. The
identifier 1g0 uniquely determines the corresponding
synset

�
commodity, goods � .



Semantic distance. We can find the distance
between two synsets in WordNet by finding the MSCS,
and then computing the distance between each synset
and the common ancestor synset in a similar manner as
depth. For the synsets

�
accessory, accoutrement � and�

merchandise � above, we have identified the MSCS
as the synset identified by the code 1g0. In order to
compute the semantic distance between the synsets

�
accessory, accoutrement � and

�
merchandise � , we

compute the distance from each synset to the MSCS:
23u.4eu.6l6 and 291. This is performed in a man-
ner similar to the computation of depth. A solution for
more complex situations, in which the synsets do not
share an MSCS or an alternative path which does not
contain the MSCS is shorter is currently under research.

Apart from fast computation of various measures,
this encoding allows us to perform structural analysis
on WordNet. We can detect loops, or other unwanted
configurations in the resource.

4.2. Semantic Wildcard

The new encoding scheme enables efficient
searches in semantic spaces for IR applications.

Keywords in a query are often used with “generic”
meanings and are intended as representatives for cate-
gories of objects. Foxes eat hens can match Animals eat
meat. With current indexing and retrieval techniques
this is not possible, unless both animal and meat are
expanded with their subsumed concepts, which may be-
come a tedious process. For this particular example,
WordNet defines 7,980 concepts more specific than an-
imal, and there are 199 entries that inherit from meat.
We end up with more than 1,500,000 (7,980 x 199)
queries to cover the entire range of possibilities. If
boolean queries are allowed and the OR operator is
available, a query with 8,179 (7,980 + 199) terms can
be used. None of these solutions seems acceptable and
this is why none of them have been used so far.

The semantic wildcard (Mihalcea, 2002), an infor-
mation retrieval operator denoted with #, acts similarly
to the lexical wildcard, but at semantic levels, enabling
the retrieval of subsumed concepts. For instance, a
search for animal# will match any concept that is of
type animal (dog, cat, etc.), going beyond the explicit
knowledge in texts.

4.2.1. Semantic-based Information Retrieval
The improved semantic based IR system used in

these experiments contains the same main components
as any other retrieval system.

Question/Query Processing
In this stage we perform a simple tokenization and part
of speech tagging of the user question, followed by col-
location identification and lemmatization. Depending
on the notation employed by the user, three keyword
types are identified.

1. Words with a semantic wildcard, denoted with #.

2. Words to be searched by their WordNet code, de-
noted with @ (synonymy marker).

3. Words with no special notation, to be sought in the
index in their given form.

By default, we assume a # assigned to the answer
type word, and no other notation for the rest of the
words. All words that are denoted with # or @ are
passed on to a word sense disambiguation component
that solves their semantic ambiguity. If this step is
skipped, the words are by default assigned sense one in
WordNet, with reasonable precision (over 75% as mea-
sured on large sense annotated corpora). The results
reported in this paper are based on an implementation
that considers this second alternative.

For keyword identification, we use a heuristic-based
algorithm, which selects, in this order: all proper nouns
and quoted words, all nouns, all adjectives in superla-
tive form, all numbers (cardinals).

The answer type word is also important, since it de-
notes the type of information sought (is it a country,
animal, fish, etc.). We use an approach that selects the
answer type as the head of the first noun phrase. If the
answer detected is of a generic type, such as person, lo-
cation, organization, we replace it with the correspond-
ing named entity tag. Otherwise, the answer type word
is assigned a # semantic wildcard. The answer type
selection process is invoked only if there is no word a
priori denoted with #.

The final query format consists of: words assigned
with a semantic wildcard #, which are now represented
by code*; words with a synonymy marker that are re-
placed with their code (allowing the retrieval of syn-
onyms in addition to the word itself); all other words
are replaced with their baseform.

Document Processing
Documents are processed following similar steps to
question processing. First, the text is tokenized and
part of speech tagged. We have an additional compo-
nent that involves named entity recognition. Next, we
identify compound words, apply a disambiguation al-
gorithm or, alternatively, assign to each word its default
sense from WordNet. Finally we assign to each noun
its corresponding WordNet code. At this stage, we also
identify paragraphs and store them as one paragraph per
line. This helps improving efficiency during paragraph
retrieval.

Indexing and Retrieval
The indexing process is similar to traditional IR sys-
tems. A TF/IDF weight is assigned to each term. We
index complex terms, including their WordNet codes,
as well as named entity tags, when available. No
additional stemming or stop-words elimination is
performed. The retrieval system allows for flexible
searches, including regular expressions. Based on



WordNet codes, we have the capability of using the
semantic wildcard operator, in addition to the lexical
wildcard. Example:

�
animal � has the code 6.1s.dc

A search for any animal is expressed as animal#,
and internally translated into *.dc[+*)].# (*
matches any sequence of characters, # replaces one
numerical code, the part in square parenthesis is
optional.) The last number in a code uniquely identifies
a synset, and it will appear in the codes of all its
descendants. This will help identify the children of a
node, allowing to expand animal to all concepts of type
animal.

Data
For experiments with the semantic wildcard, we are us-
ing the L.A. Times collection, with more than 130,000
documents, adding up to 500MB of text. About
1,393 questions have been released during the TREC-
8, TREC-9 and TREC-10 Q&A TREC evaluation, with
associated relevance judgments. From these questions,
we select only the What type of questions, as being the
most ambiguous types of questions and the best candi-
dates for the semantic wildcard operator. Subsequently,
we identify those questions known to have an answer in
the L.A. Times collection, and out of these 75 questions
are randomly selected for further tests.

Evaluating Retrieval Effectiveness
IR systems are usually evaluated in terms of preci-
sion, recall, and F-measure. We also use the success
rate (Woods, 1997) to measure how many questions
are answered by the system. The success rate for a
question/query is 1 if relevant documents/answers are
found, 0 otherwise.

Experiments
To evaluate the effectiveness of the semantic wildcard,
we are running two experiments. One where key-
words are extracted as shown before, and queries are
run against the L.A. Times index. The goal of this ex-
periment is to simulate traditional keyword-based IR.
Ranking of documents is provided by a TF/IDF weight-
ing scheme.

A second experiment consists of a similar scheme,
but this time the semantic wildcard operator is enabled.
Moreover, a locality operator is enabled, which seeks
to identify relevant paragraphs in the text, as opposed
to entire documents. Example:

Question. What is the brightest star visible from Earth?
Relevant paragraph. In the year 296036 , Voyager 2
will make its closest approach to Sirius , the brightest
star visible from Earth .
Comments. The query formed in this case is star# AND
bright AND Earth. Only two answers are identified
by the system, and the one listed above, which is the
correct one, is ranked on the first position. Sirius is

defined in WordNet as a star, and consequently was
annotated as such in the text.

The F-measure obtained for the second experiment
(20%) is doubled compared with the first experiment
(9.2%), with increased precision and lower recall, as
expected. The success rate is determined as 77.3% for
the second experiment, compared with 66.0% obtained
for basic keyword-based retrieval.

5. Conclusions
The encoding we propose for WordNet allows us to

compute practically instantaneously various measures
of interest for several NLP applications. The process-
ing time does not scale up with the size of the resource,
as is the case with traditional methods. Another inter-
esting aspect is that this encoding allows us to explore
the structure of the resource, and identify undesirable
phenomena in an ontology, like loops for example. We
have identified and signaled such structural problems.

An added bonus of this encoding scheme is the use
of these codes for information retrieval with semantic
wildcards, which would not be possible without them.
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