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Abstract

Graphs are a powerful representation formalism that can be applied to a variety of aspects

related to language processing. We provide an overview of how Natural Language Processing

problems have been projected into the graph framework, focusing in particular on graph

construction – a crucial step in modeling the data to emphasize the phenomena targeted.

1 Introduction

Graphs are ubiquitous in Natural Language Processing (NLP). They are relatively

obvious when imagining words in a lexical resource or concepts in a knowledge

network, or even words within a sentence that are connected to each other through

what is formalized as syntactic relations. They are less obvious, however still there,

when thinking about correcting typos, sentiment analysis, machine translation,

figuring out the structure of a document or language generation.

Graphs are a powerful representation formalism. In language, this is probably most

apparent in graph-based representations of words’ meanings through their relations

with other words (Quillian 1968), which has resulted in WordNet (Fellbaum 1998)

– a semantic network that after more than 20 years is still heavily used for a variety

of tasks (word sense disambiguation, semantic similarity, question answering, and

others). Interestingly, some tasks are concerned with updating or expanding it, proof

of the usefulness of this representation for capturing lexical semantics, or connecting

it to the numerous resources that have joined it lately in the NLP resource box, as

can be seen in Open Linked Data1 – a large graph connecting information from

various resources.

∗ This material is based in part upon work supported by the National Science Foundation
CAREER award #0747340. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the views
of the National Science Foundation.

1 linkeddata.org
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The standard graphs – consisting of a set of nodes and edges that connect

pairs of nodes – have quickly grown into more powerful representations such as

heterogeneous graphs, hypergraphs, graphs with multi-layered edges, to fit more and

more complex problems or data, and to support computational approaches.

With a proper choice of nodes and edge drawing criteria and weighing, graphs can

be extremely useful for revealing regularities and patterns in the data, allowing us

to bypass the bottleneck of data annotations. Graph formalisms have been adopted

as an unsupervised learning approach to numerous problems – such as language

identification, part-of-speech (POS) induction, or word sense induction – and also

in semi-supervised settings, where a small set of annotated seed examples are used

together with the graph structure to spread their annotations throughout the graph.

Graphs’ appeal is also enhanced by the fact that using them as a representation

method can reveal characteristics and be useful for human inspection, and thus

provide insights and ideas for automatic methods.

All is not perfect in the world of graphs, however. Many graph-based algorithms

are NP-hard, and do not scale to current data sizes. As a well-studied field in

mathematics, there are proofs that the graph problems encountered converge, or

have a solution. Finding it computationally is another issue altogether, and scalability

is an important attribute for algorithms, as they have to process larger and larger

amounts of data. There are also problems that pertain specifically to computational

approaches in NLP – for example, streaming graphs – graphs that change (some of

them very fast) in time, like the graphs built from social media, where the networks

representing the users, their tweets and the relations between them change rapidly.

This all shows that graph construction is a critical issue – its structure must

correctly model the data such that it will allow not only to solve the target NLP

problem, but to solve it in a computationally acceptable manner (finite, and as

reduced as possible, use of computation time and memory).

In this paper, we aim to present a broad overview of the status of graphs in NLP.

We will focus in particular on the graph representations adopted, and show how

the NLP task was mapped onto a graph-based problem. To cover as many different

approaches as possible, we will not go into details that are not strictly connected

to graphs. The included references are all available for exploring in more detail the

approaches that the readers find most interesting.

Note that we focus on core NLP tasks, and will not delve into research topics

that do not have a major NLP component (for example link prediction in social

networks). We do not include descriptions of resources represented as graphs (e.g.,

WordNet, conceptual graphs). We also do not include graph methods used in

sequence analysis, such as HMMs and related frameworks.

2 Notations and definitions

A graph G = (V , E) is a structure consisting of a set of vertices (or nodes) V = {vi|i =

1, n}, some of which are connected through a set of edges E = {(vi, vj)|vi, vj ∈ V }.
In a weighted graph Gw = (V , E,W ), edges have associated a weight or cost wij:
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W = {wij |wij is the weight/cost associated with edge (vi, vj), wi,j ∈ R}. Edges can be

directed or undirected.

Depending on the NLP application, the nodes and edges may represent a variety of

language-related units and links. Vertices can represent text units of various sizes and

characteristics, e.g., words, collocations, word senses, sentences or even documents.

Edges can encode relationships like co-occurrence (two words appearing together

in a text unit), collocation (two words appearing next to each other or separated

by a function word), syntactic structure (e.g., the parent and child in a syntactic

dependency), lexical similarity (e.g., cosine between the vector representations of two

sentences).

In a heterogeneous graph the vertices may correspond to different types of entities,

and the edges to different types of links between vertices of the same or different

type: V = V1 ∪V2 ∪ · · · ∪Vt, where each Vi is the set of nodes representing one type

of entity.

An example of a heterogeneous graph is a graph consisting of articles, their

authors and bibliographic references. Edges between authors could correspond to co-

authorship/collaboration, citation, edges between authors and their papers represent

authorship, and links between two papers could represent citation/reference relations.

A hypergraph expands the notion of graph by having edges – called hyperedges –

that cover an arbitrary number of vertices: E = {E1, . . . , Em} with Ek ⊆ V , ∀k = 1, m.

When |Ek| = 2, ∀k = 1, m the hypergraph is a standard graph (Gallo et al. 1993).

The incidence matrix A(n × m) = [aik] of a hypergraph associates each row i with

vertex vi and each column k with hyperedge Ek . aik = 1 if vi ∈ Ek .

A directed hypergraph has directed hyperedges, which are represented as ordered

pairs Ek = (Xk, Yk), where Xk, Yk are disjoint subsets of vertices, possibly empty. Xk

is the head of Ek ( H(Ek) ), and Yk is the tail ( T (Ek) ). The incidence matrix of the

hypergraph can encode directionality:

aik =

⎧⎪⎪⎨
⎪⎪⎩

−1 if vi ∈ H(Ek)

1 if vi ∈ T (Ek)

0 otherwise

An example of a hypergraph in language is the grammar, where the nodes are

nonterminals and words, and each hyperedge corresponds to a grammatical rule,

with the left-hand side of the rule forming the head of the hyperedge, and the body

of the rule forming the tail.

3 Books and surveys

The most comprehensive book on the topic is Mihalcea and Radev (2011), which

gives an introduction to graph theory, and presents in detail algorithms particularly

relevant to various aspects of language processing, texts and linguistic knowledge as

networks, and the combination of the two leading to elegant solutions for inform-

ation retrieval, various problems related to lexical semantics (synonym detection,

word sense disambiguation, semantic class detection, semantic distance), syntax

(POS tagging, dependency parsing, prepositional phrase attachment), discourse
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(co-reference resolution), as well as high-end applications like summarization,

segmentation, machine translation.

Graphs and graph-based algorithms are particularly relevant for unsupervised

approaches to language tasks. Choosing what the vertices represent, what their

features are, and how edges between them should be drawn and weighted, leads

to uncovering salient regularities and structure in the language or corpora data

represented. Such formalisms are detailed in Biemann (2012), with emphasis on the

usefulness of the graph framework to tasks superficially very different: language

separation, POS tagging, word sense induction and word sense disambiguation. At

the bottom of all these varied tasks is the phenomenon of clustering, for which

the graph representation and algorithms are particularly appropriate. Chen and Ji

(2010) present a survey of clustering approaches useful for tasks in computational

linguistics.

Transforming a graph representation allows different characteristics of the data to

come into focus – for example imposing a certain threshold on the weights of edges

in a graph will change the topology of the structure, leading to different results in

clustering. Rossi et al. (2012) examine and categorize techniques for transforming

graph-based relational data – transformation of nodes/edges/features – to improve

statistical relational learning. Rossi et al. present a taxonomy for data representation

transformation in relational domains that incorporates link transformation and

node transformation as symmetric representation tasks. Relational representation

transformation is defined as any change to the space of links, nodes and/or features

used to represent the data. The particular transformation applied depends on the

application, and may lead to improving the accuracy, speed or complexity of the

final application – e.g., adding links between similar nodes may increase performance

in classification/clustering. Transformation tasks for both nodes and links include

(i) predicting their existence, (ii) predicting their label or type, (iii) estimating their

weight or importance, (iv) constructing their relevant features.

Some of the most used techniques in graph-based learning approaches include min-

cut (Blum and Chawla 2001), spectral graph transducer (Joachims 2003), random

walk-based approaches (Szummer and Jaakkola 2001), and label propagation (Zhu

and Ghahramani 2002). Label propagation in particular is frequently used: it is a

method of self-supervision, by allowing the labels of a small set of annotated data

to spread in consistent fashion (according to the underlying similarity method) to

unlabeled data.

4 Text structure, discourse, and generation

While traditionally we work with clean, edited text, the increasing amounts and the

appeal of data produced through social media (like Tweeter and Facebook) raises

the need for text normalization and typo correction to provide clean data to NLP

tools further down the processing chain. This section reviews a few approaches that

address this issue with graph-based methods.

Once a clean text is obtained, a potential next step is inducing its structure, to

detect semantically coherent segments. This structuring can further aid tasks such
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as summarization and alignment. The idea that a summary should consist of the

most semantically rich and representative sentences of a document has led to the

development of approaches that aim to detect simultaneously the keyphrases and the

most important sentences of a document/set of documents. Graph representations

can capture this duality, and bipartite or heterogeneous graphs have been used

to model both keyphrase and sentence nodes, and the relations between them.

Keyphrases are themselves a desired result, as they can contribute to document

classification or clustering.

Texts also have a discourse structure, whether they are a simple text or a multi-

party dialog. The set of entity mentions in the text and the coreference relations

between them can themselves be modeled through different graph representations,

either to make local decisions about a pair of entity mentions, or to induce clusters

representing coreference chains that group all mentions of an entity together.

4.1 Text normalization

The language of social media is very dynamic, and alternative spellings (and errors)

for words based on ad-hoc or customized abbreviations, phonetic substitutions

or slang language are continuously created. Text normalization could be used to

increase the performance of subsequent processing such as Machine Translation,

Text-to-Speech, Information Extraction. Hassan et al. (2013) proposed a method

that relies on a method similar to label propagation – from correct word forms

found in dictionaries – to alternative spellings. This approach relies on a bipartite

graph G = (W,C, E) which represents words W = {wi|i = 1, N} and contexts

C = {Cj |j = 1,M} which are n-gram patterns. Frequency-based weighted edges

connect words with the contexts in which they appear. The graph is built based on

social media noisy text, and a large clean corpus. Correct words are marked based

on frequency information from the clean corpus. These are the ‘correctly labeled’

words. Unlabeled nodes will adopt the ‘label’ (i.e., spelling) of the their closest

(highest ranking) labeled node based on a random walk in graph G.

Interaction with social media from portable devices like smartphones brings up

particular problems for languages with logographic scripts, like Chinese, as the

small screen cannot display the hundreds of available characters. The solution is the

usage of input method engines (IME) of which pinyin-to-Chinese conversion is a

core part. This manages the conversion from (Roman alphabet) letter sequences to

logograms (Chinese characters), but is prone to errors on two levels: (i) the sequence

of letters input has a typo – caused by limited familiarity with the language or

dialect, or mistake – and the system cannot produce the correct character, (ii) the

wrong Chinese character was selected for the correct input letters. Jia and Zhao

(2014) address these problems through a combination of two graph-based methods.

The first method is applied to a graph consisting of the linear sequence of letters

input by the user, and aims to produce legal syllables (as sequences of nodes) that

have a corresponding Chinese character using a dictionary. Each detected syllable

will form a new node, and it will be connected to other adjacent candidate syllables.

A new graph will be built based on the detected syllables candidates, plus syllables
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that are similar to these candidates based on a Levenshtein distance. The shortest

path that covers the string is taken as the best typo correction result. To determine

the correct mapping onto Chinese characters, an HMM is applied to the sequence

of typo-corrected syllables, as each syllable can be mapped onto different characters.

4.2 Text structure and summarization

Despite the fact that often when reading a text we intuitively detect functional

structures – an introduction, the elaboration/main content, a conclusion – texts

often have at most a structuring in terms of paragraphs that may or may not reflect

a shared topic of the sentences included.

Among the first to explore the structure of a text computationally through graph-

based methods, Salton et al. (1997) apply techniques previously used to determining

inter-document link to determine links between sentences or paragraphs within a

document. The weights of the edges are essentially similarity scores between the

nodes, filtered using a threshold value. The first aim of the work is to determine

the structure of a text as a sequence of coherent units. This emerges when edges

are further limited to connect nodes corresponding to sentences or paragraphs no

more than five positions away. Summarization is an extension of the analysis of the

text structure in terms of segments. They propose that this structure of segments

can be used to produce the generic summary of a text by selecting a subset of the

sentences/paragraphs that cover all the topics of the document. Three methods are

explored, based on the ‘bushiness’ of nodes – what current graph formalisms call the

degree of nodes. The best performing was the ‘bushy path’ method, that selected the

top k bushy nodes, where k is the targeted number of paragraphs in the summary.

Zha (2002) proposes a new graph representation of a document based on the

intuition that important terms and sentences should reinforce each other. Instead

of linking together sentences through an edge representing the similarity of the

two, Zha differentiates between sentences and keyphrases, and build an undirected

bipartite graph that captures the occurrence of keyphrases in sentences. The aim

is to score each node in this graph based on its links and the weights of these

links, and this score will be the ‘salience’ of the node. The scores of the nodes

are computed in a manner very similar to the HITS algorithm (Kleinberg 1999),

where the keyphrases and sentences are scored iteratively depending on each others’

scores until convergence. This approach determines a ranking of keyphrases (and

sentences) that can be used to describe the document. The next step is to leverage

this information to build a summary. The first operation is to cluster sentences. The

weight of an edge between two sentences depends on the number and weight of

the keyphrases they share. Recognizing that the order in which sentences appear is

important, the weight of the edge has an additional (fix) factor (α) which is added

when two sentences ‘are near-by’ or not. To cluster the sentences, spectral clustering

is applied to the incidence matrix of the sentence graph. This is used to produce

a hierarchical clustering of sentences. Depending on the level of summarization

(more detailed or more general), clusters at different levels can be used, and then

representative sentences selected from each cluster.
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SNo ID Text

1 d1s1 Iraqi Vice President Taha Yassin Ramadan announced today, Sunday,
that Iraq refuses to back down from its decision to stop cooperating
with disarmament inspectors before its demands are met.

2 d2s1 Iraqi Vice president Taha Yassin Ramadan announced today, Thursday,
that Iraq rejects cooperating with the United Nations except on the
issue of lifting the blockade imposed upon it since the year 1990.

3 d2s2 Ramadan told reporters in Baghdad that ”Iraq cannot deal positively
with whoever represents the Security Council unless there was a clear
stance on the issue of lifting the blockade off of it.

4 d2s3 Baghdad had decided late last October to completely cease cooperating
with the inspectors of the United Nations Special Commission
(UNSCOM), in charge of disarming Iraq’s weapons, and whose work
became very limited since the fifth of August, and announced it will not
resume its cooperation with the Commission even if it were subjected
to a military operation.

5 d3s1 The Russian Foreign Minister, Igor Ivanov, warned today, Wednesday
against using force against Iraq, which will destroy, according to
him, seven years of difficult diplomatic work and will complicate
the regional situation in the area.

6 d3s2 Ivanov contended that carrying out air strikes against Iraq, who refuses
to cooperate with the United Nations inspectors, “will end the
tremendous work achieved by the international group during the past
seven years and will complicate the situation in the region.”

7 d3s3 Nevertheless, Ivanov stressed that Baghdad must resume working
with the Special Commission in charge of disarming the Iraqi
weapons of mass destruction (UNSCOM).

8 d4s1 The Special Representative of the United Nations Secretary-General
in Baghdad, Prakash Shah, announced today, Wednesday, after
meeting with the Iraqi Deputy Prime Minister Tariq Aziz, that Iraq
refuses to back down from its decision to cut off cooperation with
the disarmament inspectors.

9 d5s1 British Prime Minister Tony Blair said today, Sunday, that the crisis
between the international community and Iraq “did not end” and that
Britain is still “ready, prepared, and able to strike Iraq.”

10 d5s2 In a gathering with the press held at the Prime Minister’s office,
Blair contended that the crisis with Iraq “will not end until Iraq has
absolutely and unconditionally respected its commitments” towards
the United Nations.

11 d5s3 A spokesman for Tony Blair had indicated that the British Prime
Minister gave permission to British Air Force Tornado planes stationed
in Kuwait to join the aerial bombardment against Iraq.

Fig. 1. A cluster of 11 related sentences.

In Erkan and Radev (2004) and Mihalcea and Tarau (2004), they take the idea of

graph-based summarization further by introducing the concept of lexical centrality.

Lexical centrality is a measure of importance of nodes in a graph formed by linking

semantically or lexically related sentences or documents. A random walk is then

executed on the graph and the nodes that are visited the most frequently are selected

as the summary of the input graph (which, in some cases, consists of information

from multiple documents). One should note however, that in order to avoid nodes

with duplicate or near duplicate content, the final decision about including a node

in the summary also depends on its maximal marginal relevance as defined in

Carbonell and Goldstein (1998). An example from Erkan and Radev (2004) is

shown in Figure 1. The input consists of eleven sentences from several news stories

on related topics. Figure 2 shows the resulting weighted graph.

To boost scores for the most relevant or important sentences, the sentence-based

graph representations for documents can be enhanced with additional information

such as relative position of sentences within a document (Wan 2008). Word-based

graph representations could include POS information, sentences in which they

occurred and position in these sentences. Ganesan, Zhai and Han (2010) use such

a representation, in which words are linked based on their sequence in the sentence

(adjacent words are connected with directed edges). Three properties of this graph

– redundancy; gapped subsequence; collapsible structure – are used to explore and
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Edge Weights:

[0.3,1.0]
[0.2,0.3)
[0.1,0.2)
[0.0,0.1)

d1s1

d5s3

d5s1

d3s3

d3s2

d3s1

d2s3

d2s1

d2s2
d5s2

d4s1

Fig. 2. Weighted cosine similarity graph for the cluster in Figure 1.

score subpaths that help generating abstractive summaries (as they have elements

of sentence fusion and compression based on the selected paths).

Zhu et al. (2013) formulate the informative-sentence problem in opinion sum-

marization as a community-leader detection problem, where a community consists

of a cluster of sentences towards the same aspect of an entity. The graph consists

of sentences linked by edges whose weight combines term similarity and adjective

orientation similarity. In this graph, an interactive process builds communities of

sentences and determines their leaders: a set of leaders is selected initially (from

the top nodes based on their degree, select a set of k nodes such that no two

are connected), then iteratively communities and leaders are updated in a manner

similar to link propagation: starting with the current set of leaders the communities

are determined (one per leader), and after generating the community, leaders are

reassigned based on ranking their in-community degree. After the process converges,

a set of informative sentences are selected from each community to generate the

summary.

A different approach to summarization is presented by Mani and Bloedorn (1997),

who start with the goal of building summaries from several documents. They build a

graph for each document, whose nodes are word instances at specific positions (such

that names and phrases spanning more than one word are formed by the respective

word instances). Words are weighted and filtered using tf-idf, and are connected

through several types of relations, presented in order of weight: same (linking
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different instances of the same word); coreference (link names or phrases that are

the same – names and phrases span more than one word/node); name (link nodes

that together form a name); phrase (link nodes that are part of the same phrase);

alpha (various lexical relations such as synonymy, hypernymy/hyponymy obtained

from an early version of WordNet); adj (adjacency – words that are adjacent in the

text, but filtering out intervening words). On this graph with weighted nodes and

edges, is applied a step of spreading activation. First, a set of words expressing a

topic of interest is selected. All nodes in the graph except those matching the topic

words receive a weight of 0. Starting from the selected topic words the spreading

activation will reassign weights to the nodes, based on the signal coming from

connected nodes, the weight of the edges, and a dampening effect caused by distance

from a starting node. After activation, segments are selected from the reweighted

graph. A segment can either consist of the set of nodes (and underlying text) within

a weight within a given delta from the peak values, or all nodes within a user-defined

distance in the text from a peak value.

Spreading activation for topic-driven summarization was also used by Nastase

(2008). The set of documents is used to build a graph in which open-class words

are nodes connected through dependency relations. In this graph, open words from

the topic and their related terms obtained from Wikipedia and WordNet are given a

starting weight which is then propagated using spreading activation to enhance the

weight of other related terms and the edges that connect them. The weighted nodes

and relations are used to score the sentences in which they appear, and the highest

scoring ones will form the summary.

Related to the problem of summarization is the issue of passage retrieval: given a

query in the form of a natural language question, return a set of passages from a set

of input documents that contain the answer. Otterbacher, Erkan and Radev (2005)

propose a solution that combines the sentence-based graph representation of Erkan

and Radev (2004) with biased random walk and implement a label propagation

method: the graph is seeded with known positive and negative examples and then

each node is labeled in proportion to the percentage of times a random walk on

the graph ends at that node. Given the presence of the initially labeled nodes, the

nodes with the highest score eventually are the ones that are both similar to the

seed nodes and are central to the document set. In other words, they are chosen as

the answer set by a mixture model that takes into account the known seeds (positive

or negative) and the lexical centrality score as in the previous section. The graph

consists of both sentences (paragraphs) and features (content words that appear in

these sentences). The graph is bipartite as a sentence can only link to a feature and

vice versa.

4.3 Discourse

Coreference resolution aims to group mentions of entities such that all mentions

in a group refer to the same entity. This problem can be cast into a graph-based

framework in various ways. For instance, Ng (2009) uses a graph formalism to

filter non-anaphoric mentions, as previous work has shown that eliminating isolated
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mentions (singletons) leads to better coreference resolution results. The solution

proposed partitions a graph in two parts corresponding to anaphoric and non-

anaphoric mentions. The graph’s nodes are the mentions discovered in the text,

plus two special nodes – s (source) and t (sink) – representing the two classes

(anaphoric/non-anaphoric). The graph is built in two steps. First, each mention

node n is connected to the s and t nodes through edges whose weights are a function

of the probability that n is anaphoric or not. In the next step, mention nodes ni
and nj are connected through an edge weighted by a similarity measure between ni
and nj , reflecting the probability that the two are coreferent. Partitioning this graph

in two is a minimum cut problem, which seeks to minimize the partition cost, i.e.,

the cost of ‘cut’ edges, where the nodes they link belong to the different subsets.

Training data is used to estimate probabilities and thresholds on these probabilities

for weighing/drawing the graph.

Other approaches aim to cluster the mentions based on connections between them.

(Nicolae and Nicolae 2006) build a graph whose vertices are mentions, connected

with edges whose weights are confidence values obtained from a coreference

classification model. This graph is then partitioned into clusters using a variation of

the min-cut algorithm that iteratively removes edges between subgraphs that have

low weights, and are thus interpreted as representing different entities.

Cai and Strube (2010) present a one-step coreference method that builds core-

ference chains directly by clustering nodes in a hypergraph. Hypergraph nodes are

mentions detected in the text, and the edges group nodes that can be connected

through relational features (e.g., alias – the mentions are aliases of each other:

proper names with partial match, full names and acronyms or organizations, etc.;

synonyms; etc.) The edges of the hypergraph correspond roughly to features used

in other coreference work. This hypergraph covering the mentions in the entire

document is split into sub-hypergraphs (i.e., clusters) by partitioning using two-way

recursive spectral clustering.

Local text coherence can also be cast into a graph framework. Occurrence of

entities in sentences can be viewed as a bipartite graph, and used to model local

coherence (Guinaudeau and Strube 2013). Links between entities and sentences can

encode grammatical information (e.g., entity is subject/object in the sentence), and

be weighted accordingly. This bipartite graph is used to generate sentence graphs,

where two sentences are connected if they have at least one entity in common.

Depending on how the weights of the graph are computed, several variants of

the sentence graphs are obtained. Compared to alternative approaches for sentence

ordering, summary coherence rating and readability assessment, the graph-based

approach is computationally lighter at state-of-the-art performance levels.

Another discourse problem is dialog analysis, of which disentanglement – determ-

ining to which conversation thread each utterance belongs to – is an essential step.

Elsner and Charniak (2010) approach this as a clustering problem on a graph. A

machine learning step is first used to predict probabilities for pairs of utterances

as belonging to the same conversation thread or not based on lexical, timing and

discourse-based features. The graph covering the conversation is then built, with a

node for each utterance, and edges between utterances having as weight a function
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of the probability score assigned by the classifier (the log odds). On this graph is

applied a greedy voting algorithm, adding an utterance j to an existing cluster based

on the weight of the edge between j and nodes in the existing cluster, or put it into

a new cluster if no weights greater than 0 exist.

4.4 Language generation

From the point of view of graphs, paraphrases can be seen as matching graphs –

there is a mapping between the graphs (as dependency graphs or syntactic trees)

corresponding to the paraphrases. Barzilay and Lee (2003) build word latices to find

commonalities within automatically derived groups of structurally similar sentences.

They then identify pairs of lattices from different corpora that are paraphrases

of each other – the identification process checks whether the lattices take similar

arguments; given an input sentence to be paraphrased, they match it to a lattice and

use a paraphrase from the matched lattice’s mate to generate an output sentence.

Konstas and Lapata (2012) generate descriptions of database records in natural

language. Given a corpus of database records and textual descriptions (for some of

them), they define a PCFG that captures the structure of the database and how it

can be rendered into natural language. This grammar, representing a set of trees,

is encoded as a weighted hypergraph. Generation is equivalent to finding the best

derivation tree in the hypergraph using Viterbi.

5 Syntax and tagging

Regarding syntax, we have identified two main directions – graphs used to rep-

resent the dependency relations between words, and graphs for representing the

grammar, used ultimately in generative contexts (in machine translation or language

generation).

Tagging involves assigning (one of the given) tags to words or expressions in

a collection. Approaches using graphs rely on the fact that they are useful for

providing a global view on the data and enforce coherence at the level of the entire

dataset. This characteristic is exploited to induce consistent labeling over a set of

nodes, either by clustering, propagating the tags starting from a small set of seeds,

or by obtaining features that capture a larger context of the targeted entity for

supervised learning.

5.1 Syntactic parsing

Dependency relations linking words in a sentence form a directed acyclic graph. This

view of the result of syntactic parsing can be used to cast the problem of dependency

parsing into searching for a maximum spanning tree (MST) in a directed graph that

covers the given sentence/text (Hirakawa 2001; McDonald et al. 2005): given a

directed graph G = (V , E), the MST problem is to find the highest scoring subgraph

of G that satisfies the tree constraint over the set of vertices V .

Graph literature provides various algorithms for determining the MST of a

directed graph. Choosing an algorithm depends on characteristics of the dependency



676 Nastase, Mihalcea, Radev

graph: for projective dependencies2 choose one based on the Eisner algorithm (Eisner

1996); for non-projective dependencies choose one based on Chi-Liu-Edmonds (Chu

and Liu 1965; Edmonds 1967).

Another important aspect is scoring the MST candidates. There are several

variations, based on the way the scoring of the tree is done: first-order – the score

of the tree is based on the scores of single edges; second-order – the score of the tree

is factored into the sum of adjacent edge-pair scores.

Graph-based models take into account the score for the entire structure, but

this score is computed based on local features of each edge, to make the parsing

tractable. Nivre and McDonald (2008), Zhang and Clark (2008) and Chen and Ji

(2010) show methods to improve the graph-based parsing by including additional

features, possibly produced by alternative parsing models. Nivre and McDonald

(2008) and Zhang and Clark (2008) use features produced by transition models –

learned by scoring transitions from one parser state to the next – which have a

complementary approach to parsing compared to the graph-based models – they

use local training, and greedy inference algorithms, while using richer features that

capture the history of parsing decisions. It is interesting to note that the transition-

based and the graph-based parsing have the same end states – the set of dependency

relations graphs that cover the input sentence – which they reach through different

search strategies. Combining features that guide the search strategies for the two

methods leads to improved results.

The definition of directed hyperarcs in terms of heads and tails matches the view

of grammatical rules – which have a head and a body, and therefore can be used to

encode (probabilistic) grammars (Klein and Manning 2001). Building a hypergraph

that encodes a grammar and an input, the paths in the hypergraph correspond to

parses of the given input. The shortest path will correspond to the best parse. Klein

and Manning (2001) present PCFG-specific solutions in the hypergraph framework,

including an approach that constructs the grammar hypergraph dynamically as

needed, and a Dijkstra’s algorithm style shortest path computation. Other solutions

were proposed by Huang and Chiang (2005) and Huang (2008), which can also be

integrated in the decoding step of phrase-based or syntax-based machine translation

(Huang and Chiang 2007), where grammar rules are combined with language models.

5.2 Tagging

Using graph methods for tagging relies on the intuition that similar entities should

have the same tag. The nodes in these graph will represent words or phrases

(depending on the type of targets and their tags), and the edges will be drawn and

weighted based on a similarity metric between the nodes.

Watanabe, Asahara and Matsumoto (2007) aim to tag named entities in Wikipedia.

A graph structure covers linked anchor texts of hyperlinks in structured portions

in Wikipedia articles – in particular lists and tables. A CRF variation is used to

categorize nodes in the graph as one of twelve Named Entity types. Three types of

2 A word and its descendants form a contiguous substring of the sentence.
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links are defined between anchor texts, based on their relationships in the structured

portions of the text – siblings, cousins, relatives. These relations define three types

of cliques. The potential function for cliques is introduced to define conditional

probability distribution over CRFs (over label set y given observations x). These

potential functions are expressed in terms of features that capture co-occurrences

between labels. Experiments show that a configuration using cousin and relative

relations leads to the best results (also compared to a non-graph method – i.e.,

unconnected nodes).

Subramanya, Petrov and Pereira (2010) tag words with POS information through

a label-propagation algorithm that builds upon a word similarity graph and the

assumption that words that are similar have the same POS. The similarity graph

is used during the training of a CRF to smooth the state posteriors on the

target domain. Local sequence contexts (n-grams) are graph vertices, exploiting

the empirical observation that the POS of a word occurrence is mostly determined

by its local context. For each n-gram they extract a set of context features, whose

values are the pointwise mutual information between the n-gram and its features. The

similarity function between graph nodes is the cosine distance between the pointwise

mutual information vectors representing each node. The neighbors of a node are

used as features for the CRF, thus embedding larger contextual information in the

model. CRFs cannot enforce directly constraints that similar n-grams appearing in

different contexts should have similar POS tags. The graphs are used to discover

new features, to propagate adjustments to the weights of known features, and to

train the CRF in a semi-supervised manner.

Bollegala, Matsuo and Ishizuka (2008) detect aliases based on a word (anchor text)

co-occurrence graph in which they compute node rankings, combined using SVMs.

The nodes consist of words that appear in anchor texts, which are linked through an

edge if the anchor texts in which they appear point to the same URL. The association

strength between a name and a candidate alias is computed using several measures

(link frequency – the number of different URLs in which the name and candidate

co-occur), tf-idf (to downrank high frequency words), log-likelihood ratio, chi-

squared measure, pointwise mutual information and hypergeometric distribution),

also considering the importance of each URL target.

6 Semantics

Within the area of lexical and text semantics, the most common representation is a

graph having words as nodes. The way edges are drawn and weighted varies much,

depending on the task. They may represented directed/undirected relations, and may

be derived from other networks (e.g., as similarity/distance from WordNet), from

distributional representations of words, or directly from evidence found in corpora

(e.g., corresponding to conjunctions of the form X (and—or—but) Y).

The purpose of the tasks also varies. The focus may be to build a lexical network,

to transfer annotations from one lexical network to another, or to induce higher

level information, such as semantic classes or even ontologies.
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Fig. 3. Lexical network constructed for the extraction of semantic classes.

6.1 Lexicon and language models

One of the largest graph representations constructed to support an NLP task is

perhaps the graph model proposed by Widdows and Dorow for unsupervised lexical

acquisition (Widdows and Dorow 2002). The goal of their work is to build semantic

classes, by automatically extracting from raw corpora all the elements belonging

to a certain semantic category such as fruits or musical instruments. The method

first constructs a large graph consisting of all the nouns in a large corpus (British

National Corpus, in their case), linked by the conjunction and or or. A cutoff value

is used to filter out rare words, resulting in a graph of almost 1,00,000 nouns, linked

by more than half-million edges. To identify the elements of a semantic class, first a

few representative nouns are manually selected and used to form a seed set. In an

iterative process, the node found to have the largest number of links with the seed

set in the co-occurrence graph is selected as potentially correct, and thus added to

the seed set. The process is repeated until no new elements can be reliably added to

the seed set. Figure 3 shows a sample of a graph built to extract semantic classes.

An evaluation against ten semantic classes from WordNet indicated an accuracy of

82 per cent which, according to the authors, was an order of magnitude better than

previous work in semantic class extraction. The drawback of their method is the low

coverage which is limited to those words found in a conjunction relation. However,

whenever applicable, the graph representation has the ability to precisely identify

the words belonging to a semantic class.

Another research area is the study of lexical network properties carried out by

Ferrer-i-Cancho and Sole (2001). By building very large lexical networks of nearly

half-million nodes, with more than ten million edges, constructed by linking words

appearing in English sentences within a distance of at most two words, they proved

that complex system properties hold on such co-occurrence networks. Specifically,

they observed a small-world effect, with a relatively small number of 2–3 jumps

required to connect any two words in the lexical network. Additionally, it has also

been observed that the distribution of node degrees inside the network is scale-free,
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which reflects the tendency of a link to be formed with an already highly connected

word. Perhaps not surprisingly, the small-world and scale-free properties observed

over lexical networks automatically acquired from corpora are were also observed

on manually-constructed semantic networks such as WordNet (Sigman and Cecchi

2002; Steyvers and Tenenbaum 2005).

In a more recent work on acquiring semantic classes and their instances, Talukdar

et al. (2008) use a graph formalism to encode information from unstructured and

structured texts and then induce and propagate labels. Nodes representing instances

or classes are extracted from free text using clustering techniques and structured

sources (like HTML tables). A small set of nodes is annotated with class labels

(which also appear as class nodes in the graph), and these labels are propagated

in the graph using Adsorption label propagation, which computes for each node a

probability distribution over the set of labels. Talukdar and Pereira (2010) continues

this work by comparing several label propagation algorithms for this problem,

determining that Modified Adsorption gives the best results. Modified Adsorption

is a variation of the Adsorption algorithm, formalized like an optimization problem.

Velardi, Faralli and Navigli (2013) learn concepts and relations via automated

extraction of terms, definitions and hypernyms to obtain a dense hypernym graph.

A taxonomy is induced from this (potentially disconnected and cyclic) graph via

optimal branching and weighting.

As seen above, corpus information can be exploited to obtain structured informa-

tion. One downside of information derived from corpora is the fact that it captures

information at the word level and connecting to other linguistic resources such as

WordNet or FrameNet requires word-sense distinctions. Johansson and Nieto Piña

(2015) present a framework for deriving vector representations for word senses from

continuous vector-space representations of the words and word sense information

(and their connections) from a semantic network. The work is based on word-sense

constraints in the semantic network – neighbors in the semantic network should

have similar vector representations – and the fact that the vector for a polysemous

word is a combination of the vectors of its senses.

Numerous lexical resources, including those automatically derived, have a graph

structure. To combine such resources Matuschek and Gurevych (2012) iteratively

determine an alignment using the graphs representing these resources and an initial

set of trivial alignments consisting of monosemous nodes in both resources. Further

alignments are based on the shortest path in the connected graph that links a pair

of candidate nodes, one from each of the initial resources.

From monolingual lexical networks we can transition to multi-lingual networks by

linking together monolingual networks. Issues like inducing new connections starting

from a seed of relations that link the networks, and disambiguating ambiguous

entries are seamlessly tackled in the graph-based framework. Laws et al. (2010) build

separate graphs for two languages, representing words and their lexical relations (e.g.,

adjectival modification). The two monolingual graphs are linked starting with a set

of seeds. Nodes from the two graphs are compared and linked using a similarity

measure to determine translations. Flati and Navigli (2012) disambiguate ambiguous

translations in the lexical entries of a bilingual machine-readable dictionary using
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cycles and quasi-cycles. The dictionary is represented as a graph and cyclic patterns

are sought in this graph to assign an appropriate sense tag to each translation

in a lexical entry. The output is also used to correct the dictionary by improving

alignments and missing entries.

6.2 Similarity and relatedness measures

A large class of methods for semantic similarity consists of metrics calculated on

existing semantic networks such as WordNet and Roget, by applying, for instance,

shortest path algorithms that identify the closest semantic relation between two input

concepts (Leacock, Chodorow and Miller 1998). Tsatsaronis, Varlamis and Nørv̊ag

(2010) present a method for computing word relatedness based on WordNet that

exploits several types of information in the network: depth of nodes, relations and

relation weights, relations crossing POS boundaries. The computation is extended

from word-to-word to relatedness between texts.

Hughes and Ramage (2007) propose an algorithm based on random walks.

Briefly, in their method, the PageRank algorithm is used to calculate the stationary

distribution of the nodes in the WordNet graph, biased on each of the input words

in a given word pair. Next, the divergence between these distributions is calculated,

which reflects the relatedness of the two words. When evaluated on standard word

relatedness data sets, the method was found to improve significantly over previously

proposed algorithms for semantic relatedness. In fact, their best performing measure

came close to the upper bound represented by the inter-annotator agreement on

these data sets.

Tsang and Stevenson (2010) introduce a measure of the semantic distance between

texts that integrates distributional information with a network flow formalism. Texts

are represented as a collection of frequency weighted concepts within an ontology.

The network flow method provides an efficient way of explicitly measuring the

frequency-weighted ontological distance between concepts across two texts.

A different approach to similarity computation that combines co-occurrence

information from a parsed corpus is presented by Minkov and Cohen (2008).

The starting point is a graph with two types of vertices and two types of edges

that covers a dependency parsed corpus: nodes are work tokens and word types

(terms), edges representing grammatical dependencies connect word token vertices,

the inverse relation is then added, and there are also edges linking word tokens

with the corresponding word type (term). The working assumption is that terms

that are more semantically related will be linked by a larger number of paths in

this corpus graph, and shorter paths are more meaningful. The similarity between

two nodes in this graph is derived through a weighted random walk. The edges

may have uniform weights, or they can be tuned in a learning step. For specific

tasks, additional information from the graph can be used to rerank the terms with

the highest similarity to terms in the given query (for example) – the sequence of

edges on the connecting path, unigrams that appear on the path, and the number of

words in the query that are connected to the term that is being ranked. Minkov and

Cohen also propose a dynamic version of graph-walk, which is constrained at each
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new step by previous path information. This is achieved by reevaluating the weights

of the outgoing edges from the current edge based on the history of the walk up to

this node.

6.3 Word sense induction and word sense disambiguation

The surface level of a text consists of words, but what a reader perceives, and

what we’d ideally want a system to access, are the meanings of words, or word

senses. It is commonly accepted that the context of a word – within a window of

a given size/sentence/larger text fragment – influences its interpretation and thus

determines its sense. Mapping words onto specific senses can be done relative to a

given inventory of senses, or a system may determine itself the set of senses that

occur in a given text collection, or something in between when a partial set of senses

can be provided for a small set of seed words. Depending on the task and the

availability of labeled data, various graph-based methods can be applied, including

clustering on unlabeled data, label propagation starting from a small set of labeled

data, ranking of given word senses to determine which applies to specific instances

in the data.

Work related to word senses has been encouraged by recurring word sense

induction and word sense disambiguation tasks within the SensEval/SemEval/*SEM

semantic evaluation campaigns. The variety of approaches has been recorded in the

events’ proceedings. We will present an overview of graph-based methods successfully

used to tackle these tasks by modeling the relations between words, their contexts

and their senses, and using these models in different manners.

A graph-based method that has been successfully used for semi-supervised word

sense disambiguation is the label propagation algorithm (Niu, Ji and Tan 2005). In

their work, Niu and colleagues start by constructing a graph consisting of all the

labeled and unlabeled examples provided for a given ambiguous word. The word

sense examples are used as nodes in the graph, and weighted edges are drawn by using

a pairwise metric of similarity. On this graph, all the known labeled examples (the

seed set) are assigned with their correct labels, which are then propagated throughout

the graph across the weighted links. In this way, all the nodes are assigned with

a set of labels, each with a certain probability. The algorithm is repeated through

convergence, with the known labeled examples being reassigned with their correct

label at each iteration. In an evaluation carried out on a standard word sense

disambiguation data set, the performance of the algorithm was found to exceed the

one obtained with monolingual or bilingual bootstrapping. The algorithm was also

found to perform better than SVM when only a few labeled examples were available.

Graph-based methods have also been used for knowledge-based word sense

disambiguation. In Mihalcea, Tarau and Figa (2004), Mihalcea and colleagues

proposed a method based on graphs constructed based on WordNet. Given an input

text, a graph is built by adding all the possible senses for the words in the text,

which are then connected on the basis of the semantic relations available in the

WordNet lexicon. For instance, Figure 4 shows an example of a graph constructed

over a short sentence of four words.
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Fig. 4. (Colour online) Graph constructed over the word senses in a sentence, to support

automatic word sense disambiguation.

A random-walk applied on this graph results in a set of scores that reflects the

‘importance’ of each word sense in the given text. The word senses with the highest

score are consequently selected as potentially correct. An evaluation on sense-

annotated data showed that this graph-based algorithm was superior to alternative

knowledge-based methods that did not make use of such rich representations of

word sense relationships.

In follow-up work, Mihalcea developed a more general graph-based method

that did not require the availability of semantic relations such as those defined in

WordNet. Instead, she used derived weighted edges determined by using a measure of

similarity among word sense definitions (Mihalcea 2005), which brought generality, as

the method is not restricted to semantic networks such as WordNet but it can be used

on any electronic dictionaries, as well as improvements in disambiguation accuracy.

Along similar lines with (Mihalcea et al. 2004), Navigli and Lapata carried out

a comparative evaluation of several graph connectivity algorithms applied on word

sense graphs derived from WordNet (Navigli and Lapata 2007). They found that the

best word sense disambiguation accuracy is achieved by using a closeness measure,

which was found superior to other graph centrality algorithms such as in-degree,

PageRank, and betweenness. Navigli and Lapata (2010) present an updated survey

of graph-based methods for word sense disambiguation. Agirre, de Lacalle and Soroa

(2014) present a random walk-based disambiguation method on a combination of

WordNet and extended WordNet. Extended WordNet (Mihalcea and Moldovan

2001) brings in relations between synsets and disambiguated words in the synset

glosses. This additional information makes the graph more dense, which leads

to better results of the PageRank algorithm for word sense disambiguation than

WordNet alone.

In the related task of entity linking – essentially disambiguating a named entity

relative to an inventory of possible interpretations/concepts – Fahrni, Nastase and

Strube (2011) starts from an n-partite graph similar to Mihalcea et al. (2004),

where each part corresponds to the possible interpretations of the corresponding

text mention. Edges between potential interpretations are weighted based on a
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combination of relatedness measures that capture relatedness information between

these interpretations from Wikipedia (if they can be mapped onto a Wikipedia

article), as well as context selectional preference. Concepts are then chosen using

a maximum edge weighted clique algorithm – choose the interpretations that have

the highest scored subgraph. The method achieved highest scores in the NTCIR-9

entity linking task for several languages (Japanese, Korean, Chinese) and evaluation

methods. For the same task, Moro, Raganato and Navigli (2014) use a densest

subgraph heuristic together with entity candidate meanings to select high-coherence

semantic interpretations. The graph consists of terms in the texts and their candidate

meanings, whose edges are reweighted using random walks and triangles. The highest

density subgraph heuristic provides the joint disambiguation solution.

Graph connectivity can also be used to tackle the complementary problem of

word sense induction. Word sense induction is often modeled as a clustering

problem, with word occurrences – represented through their contexts – that share the

same word sense grouped together. Graph-based word sense induction rely usually

on the co-occurrence graph, where (open-class, or just nouns) words are nodes.

Nodes corresponding to words that occur together within a pre-specified span (e.g.,

document, sentence, or a specific window size) are connected with edges whose

weights reflect co-occurrence frequency, pointwise mutual information between the

two words, or other co-occurrence measures. The assumption is that clusters in

this network will correspond to different word senses (Biemann 2012). Nodes

could also represent word pairs (target word,collocate) to better separate subgraphs

pertaining to different senses of the same target word. Nodes are weighted based

on the frequency of the corresponding word pair, and nodes that come from the

same context are connected (Klapaftis and Manandhar 2008). Clustering using the

Chinese whispers algorithm proceeds iteratively, with vertices all assigned to different

classes, and then reassigned at every step based on the strongest class in its local

neighborhood (Biemann 2012). Building the graph relies on several parameters, that

threshold and weight the nodes and edges. Korkontzelos, Klapaftis and Manandhar

(2009) explore eight graph connectivity measures that evaluate the connectivity of

clusters produced by a graph-based word sense induction method based on a set

of parameters. The evaluation allows the system to estimate the sets of parameters

that lead to high performance. Di Marco and Navigli (2013) investigate the effect

of different similarity measures used to draw and weigh edges in a word-based

co-occurrence graph.

The previously mentioned approaches to word sense disambiguation either pair a

target word with its collocates within the same node, or connects two co-occurring

words together. Different models of the problem are proposed in Klapaftis and

Manandhar (2007) and Qian et al. (2014), who use hypergraphs – actually hyperedges

– to capture shared semantic context. Klapaftis and Manandhar (2007) build a

hypergraph where nodes are words, and hyperedges connect words within the same

context. In Qian et al. (2014)’s hypergraph, the nodes represent instances of the

context where a target word appears, hyperedges represent higher-order semantic

relatedness among these instances – particularly lexical chains. This representation

captures a more global perspective as different contexts can be connected through
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Fig. 5. A min-cut algorithm applied on a graph constructed over the sentences in a text,

which is used to separate subjective from objective sentences.

a lexical chain. To induce word senses (Klapaftis and Manandhar 2007; Qian et

al. 2014) use hypergraph clustering methods such as Normalized Hypergraph Cut

(Zhou, Huang and Schölkopf 2006), Hyperedge Expansion Clustering (Shashua,

Zass and Hazan 2006), or a maximal density clustering algorithm (Michoel and

Nachtergaele 2012).

For processing semantic roles, Lang and Lapata (2014) represent argument

instances of a verb as vertices in a graph whose edges express similarities between

these instances. The graph consists of multiple edge layers, each capturing a different

aspect of argument-instance similarity. This graph is partitioned based on extensions

of standard clustering algorithms.

7 Sentiment analysis and social networks

Sentiment and subjectivity analysis is an area related to both semantics and

pragmatics, which has received a lot of attention from the research community.

An interesting approach based on graphs has been proposed by Pang and Lee

(2004), where they show that a min-cut graph-based algorithm can be effectively

applied to build subjective extracts of movie reviews.

First, they construct a graph by adding all the sentences in a review as nodes, and

by drawing edges based on sentence proximity. Each node in the graph is initially

assigned with a score indicating the probability of the corresponding sentence being

subjective or objective, based on an estimate provided by a supervised subjectivity

classifier. A min-cut algorithm is then applied on the graph and used to separate

the subjective sentences from the objective ones. Figure 5 illustrates the graph

constructed over the sentences in a text, on which the min-cut algorithm is applied

to identify and extract the subjective sentences.

The precision of this graph-based subjectivity classifier was found to be better

than the labeling obtained with the initial supervised classifier. Moreover, a polarity

classifier relying on the min-cut subjective extracts was found to be more accurate

than one applied on entire reviews.

Recent research on sentiment and subjectivity analysis has also considered the re-

lation between word senses and subjectivity (Wiebe and Mihalcea 2006). In work tar-

geting the assignment of subjectivity and polarity labels to WordNet senses, Esuli and
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Sebastiani applied a biased PageRank algorithm on the entire WordNet graph (Esuli

and Sebastiani 2007). Similar to some extent to the label propagation method, their

random-walk algorithm was seeded with nodes labeled for subjectivity and polarity.

When compared to a simpler classification method, their random-walk was found

to result in more accurate annotations of subjectivity and polarity of word senses.

One of the first methods of inducing the semantic orientation of words is

Hatzivassiloglou and McKeown (1997). They build a graph of adjectives, and draw

edges based on conjunctions found in corpora, following the observation that if they

appear in a conjunctions, the adjectives will have the same orientation (e.g., ‘happy

and healthy’). Adjectives are clustered based on the connectivity of the graph, and

those in the same cluster will have the same label, thus expanding from an initial

set of labeled seeds.

Graph methods for semantic orientation rely on a graph of words, seeded with

semantic orientation information for a small subset of the nodes. The edges are

drawn based on a variety of similarity metrics, relying on lexical resources (such

as WordNet) or distributional representation from a corpus or the Web. Inducing

the labels of unlabeled nodes is done in various manners such as label propagation

(Blair-goldensohn et al. 2008; Rao and Ravichandran 2009; Velikovich et al. 2010),

or random walks (Xu, Meng and Wang 2010; Hassan et al. 2014). Blair-Goldensohn

et al. (2008) and Rao and Ravichandran (2009) apply the label propagation

algorithm on a graph built based on WordNet’s synonymy and antonymy links.

Velikovich et al. (2010) apply a variation on the label propagation algorithm (which

considers only the highest scoring path from a labeled node to an unlabeled one) on a

large graph of n-grams built based on the information in four billion pages. Context

vectors and cosine similarity were used to draw edges. Hassan et al. (2014) apply

random walks from unlabeled nodes to labeled ones, and estimate the orientation

of the unlabeled nodes based on its relative proximity to positive/negative words.

Xu et al. (2010) use random walks for ranking words based on the seed words. The

method can be applied on a multilingual graph, to transfer sentiment information

from one language to another through random walks (Hassan et al. 2014) or label

propagation (Gao et al. 2015).

Semantic orientation can be transferred between languages using graph align-

ments. Scheible et al. (2010) build monolingual sentiment graphs for the source

and target language respectively, and then align nodes in the two graphs based

on a similarity measure that relies on the topology of each graph and a set of

seed links between them, as in the SimRank algorithm (Jeh and Widom 2002;

Dorow et al. 2009). The influence of different phenomena (coordinations through

‘and’ and ‘but’, adjective-noun modification) can be computed separately and then

averaged to obtain the final similarity score for two compared nodes. Similar

nodes will have similar orientation. Gao et al. (2015) present a similar approach,

building a graph consisting of two monolingual subgraphs for the source and target

languages respectively. The link between the two graphs consists of an inter-language

subgraph that connects the two based on word alignment information in a parallel

corpus. The edges in the monolingual subgraphs can have positive or negative

weights, corresponding to synonymy/antonymy relations between the words. Label
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propagation is used to propagate sentiment polarity labels from the source language

(English) to the target language (Chinese).

To build a tweet recommendation system that presents users with items they

may have an interest in, Yan, Lapata and Li (2012) build a heterogeneous graph,

which is used to rank both tweeters and tweets simultaneously. This graph covers

the network of tweeters, the network of tweets linked based on content similarity,

and includes additional edges that link these two based on posting and retweeting

information. Nodes are ranked based on coupling two random walks, one on the

graph representing the tweeters, the other the tweets. The framework was also

extended to allow for personalized recommendations, by ranking tweets relative to

individual users.

Another interesting task related to social media is determining the polarity of

the users and the content they produce. Zhu et al. (2014) build a tripartite graph

with the purpose of determining the polarity of tweets and tweeters. The graph

nodes represent users, their tweets, and features of the users and the tweets (as

words in the user profile and in the tweets). Edges between user nodes and tweet

nodes represent posting or retweeting, and feature nodes are linked to the user

and tweet nodes with which they appear. Co-clustering in this graph will produce

simultaneously sentiment clusters of users, tweets and features. Recognizing that

such graphs change fast over time, leads to an online setting where an initial graph

is updated with new network information (new users, tweets and features), which

allows them to study the dynamic factor of user-level sentiments and the evolution

of latent feature factors.

8 Machine translation

Label propagation approaches are based on the smoothness assumption (Chapelle,

Schölkopf and Zien 2006) which states that if two nodes are similar according to

the graph, their output labels should also be similar. We have seen in previous

sections the label propagation algorithm – which usually relies on a small set of

labels (e.g., binary) that will be propagated – applied to text normalization, passage

retrieval, semantic class acquisition, word sense induction and disambiguation,

semantic orientation. The goal of the label propagation algorithm is to compute

soft labels for unlabeled vertices from the labeled vertices. The edge weight encodes

(intuitively) the degree of belief about the similarity of the soft labeling for the

connected vertices.

Labels to be propagated need not be atomic, but can also be ‘structured’ – e.g., the

label is a translation of the node’s string. In this format, the technique can be applied

to machine translation, particularly to encourage smooth translation probabilities

for similar inputs.

The first machine translation approach using graph-based learning is presented

by Alexandrescu and Kirchhoff (2009). They build a graph consisting of train and

test data (word strings) connected through edges that encode pairwise similarities

between samples. The training data will have labels – i.e., translations – that will be

propagated to the unlabeled data based on the similarity relations between nodes.
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Label options for unlabeled nodes (i.e., candidate translations) are first produced

using an SMT system, and the label propagation algorithm is used to rerank the

candidates, ensuring that similar nodes (i.e., input strings) will have similar labels.

The similarity measure used to compute edge weights is crucial to the success of

the method, and can be used to incorporate domain knowledge. Alexandrescu and

Kirchhoff compare two measures – the BLEU score (Papineni et al. 2002) and a score

based on string kernels. On different datasets, different similarity measures perform

better. An important issue facing graph-based learning is scalability, because the

working graph combines training and test data. To address this issue, a separate

graph is built for each test sentence, as a transitive closure of the edge set over

the nodes containing all hypotheses for that test sentence. A similar approach is

presented in Liu et al. (2012).

One of the causes of errors in machine translation are out-of-vocabulary words.

Razmara et al. (2013) use label propagation to find translations (as labels) for

out-of-vocabulary words. A graph is constructed from source language monolingual

texts, and the source side of the available parallel data. Each phrase type represents

a vertex in the graph, and is connected to other vertices with a weight defined by

a similarity measure between the two profiles (and filtered based on a threshold

value). There are three types of vertices: labeled, unlabeled, and out-of-vocabulary.

Nodes for which translations are available (from the parallel data/phrase tables) are

annotated with target-side translations and their feature values. A label propagation

algorithm is used to propagate translations form labeled nodes to unlabeled nodes.

This handles several types of out-of-vocabulary words, including morphological

variants, spelling variants and synonyms. The graph constructed is very large, the

experiments show that the methods proposed are scalable.

Graphs can be used to combine different translation models in one structure,

where the models can complement or strengthen each other’s choices. Cmejrek, Mi

and Zhou (2013) introduce the ‘flexible interaction of hypergraphs’ where translation

rules from a tree-to-string and hierarchical phrase-based model are combined in a

hypergraph, which is then used for decoding. Tree-to-string translation rules –

consisting of a tree fragment on the left-hand side, and a string on the right-hand

side in the target language – are considered to be good at non-local reorderings,

while hierarchical phrase-based rules – consisting of a source-language string on the

left-hand side and a target-language string on the right – are good at providing

reliable lexical coverage. The hypergraph is built from these rules: left and right

sides of these rules will become nodes with an associated span (start and end point

in the source or target language string). Nodes from different rules that cover the

same span are merged – forming interaction supernodes. Nodes within an interaction

supernode are connected through interaction edges. Interaction hyperedges within

each supernode allow the decoder to switch between models.

9 Information extraction/Knowledge extraction and representation/Events

Information extraction and representation is a multi-faceted problem, and this is

reflected in the variety of graph-based approaches proposed. One characteristic of
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the problem which makes it particularly appropriate for a graph approach is the

redundancy in the data – the same type of information can appear in numerous

contexts or forms. Redundancy can be explored to boost particular patterns – as

vertices or edges or paths within the representation graph.

For identifying topics of a given document, Coursey and Mihalcea (2009) use high

ranking nodes in a very large graph built based on Wikipedia articles and categories,

scored through a biased graph centrality algorithm started from Wikipedia concepts

identified in the input document. Several variations regarding the structure of the

graph are tested, with the best performance obtained from a graph that has as

nodes both Wikipedia articles and categories. Within the ranking process, the best

performing bias takes into account the nodes in the graph that have been identified

in the input document (through a wikification process).

A popular approach to information extraction is bootstrapping – start with a

few seed relation examples or patterns, and iteratively grow the set of relations

and patterns based on occurrence in a large corpus (Hearst 1992). This view of

bootstrapping as a mutual dependency between patterns and relation instances

can be modeled through a bipartite graph. Hassan, Hassan and Emam (2006)

cast the relation pattern detection as a hubs (instances) and authorities (patterns)

problem, solved using the HITS algorithm (Kleinberg 1999). The method relies

on redundancy in large datasets and graph-based mutual reinforcement to induce

generalized extraction patterns. The mutual reinforcement between patterns and

instances will lead to increased weight for authoritative patterns, which will then be

used for information extraction. To reduce the space of instances and induce better

patterns, instances are clustered based on a similarity/relatedness measure based on

WordNet between the entities in the same position in a pair of instances.

Bootstrapping algorithms are prone to semantic drift – where patterns that encode

relations different that the target one are started to be extracted, which leads to the

extraction of noisy instances, which in turn lead to more noisy patterns, and so on.

Komachi et al. (2008) show that semantic drift observed in bootstrapping algorithms

is essentially the same phenomenon as topic drift in the HITS algorithm through

an analysis of HITS-based algorithm performance in word sense disambiguation.

Comparison of the ranking of instances (text fragments containing a target word)

obtained through bootstrapping and the HITS algorithm show that the two methods

arrive at the same results. To address the issue of semantic drift, they propose

two graph-based algorithms (von-Neumann kernels and regularized Laplacian), for

scoring the instances relative to the patterns, which will keep the extraction algorithm

more semantically focused.

While semantic networks and ontologies that include knowledge about words/

word senses/concept as a hierarchy are quite common, similar knowledge structures

that encode relations between larger text units are just starting to appear. One such

knowledge structure is an entailment graph (Berant, Dagan and Goldberger 2010).

The entailment graph is a graph structure over propositional templates, which are

propositions comprising a predicate and arguments, possibly replaced by variables

– e.g., alcohol reduces blood pressure, X reduces Y. Berant et al. (2010) present a

global algorithm for learning entailment relations between propositional templates.
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The optimal set of edges is learned using Integer Linear Programming – they define

a global function and aim to find the graph that maximizes the function under a

transitivity constraint.

Representing temporal interactions between events in a text is another problem

where graphs are a good fit. The problem is how to build them. Bramsen et al.

(2006) compare three different approaches to building directed acyclic that encode

temporal relations found in texts. They are all based on predictions for pairs of

events (edges) – forward, backward, null – learned from manually annotated data.

These local decisions though can be combined in different ways to arrive at the

big picture. From the three methods investigated – (i) Natural Reading Order –

start with an empty graph and add the highest scoring edge for a new node (event)

that appears in text without violating the consistency of the direct acyclic graph;

(ii) Best-First – add edges to obtain the highest scoring graph, by always adding

the highest scoring edge that doesn’t violate the direct acyclic graph condition;

(iii) exact inference with Integer Linear Programming – build a globally optimal

temporal direct acyclic graph as an optimization problem, subject to the following

constraints: there is exactly one relation (edge) between two events (nodes), the

transitivity constraint is respected, and the direct acyclic graph is connected. The

graph construction method using Integer Linear Programming provides the best

results.

Events have multiple facets, e.g., the outcome, its causes, aftermath. To detect the

facets of an event and group together blog posts about a facet of the same event,

Muthukrishnan, Gerrish and Radev (2008) use KL divergence and the Jaccard

coefficient to generate topic labels (as keyphrases) and then build a topic graph

which represents the community structure of different facets. The graph built has

keyphrases as nodes, linked with edges weighted with an overlap measure (Jaccard

similarity coefficient, defined as a ratio of the documents covered by both keyphrases

and the total number of documents covered by the two keyphrases). A greedy

algorithm is used to iteratively extract a Weighted Set Cover using a cost function

for each node (i.e., keyphrase) that combines coverage information and coverage

overlap with other keyphrases.

Popular application areas for event extraction are the medical and biological

domains, to help find and aggregate data from an ever increasing number of studies.

To find events and their arguments in biological texts, Björne et al. (2009) represent

texts as semantic graphs – entities and events connected by edges corresponding to

event arguments.

Notions like minimal graphs of a graph are useful for casting a difficult evaluation

problem into a manageable formalism. Evaluation of NLP problems can be difficult

– e.g., the evaluation of temporal graphs that capture temporal relations between

events in text. Allen’s relations (seven direct + six inverse) have been adopted

for annotation of events’ temporal relations. Evaluating the annotations against a

gold standard is difficult because the level of the relations may vary: the same

ordering of events may be expressed in different ways, or they may include relation

closures that may artificially increase a score. Tannier and Muller (2011) propose

a method to address these issues and provide an objective evaluation metric. First,
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based on fact that the Allen relations are defined in terms of the ends of the time

interval corresponding to an event, they transform the graph where events are nodes

connected by the Allen relations into a graph where the nodes are the start and end

points of events, and the relations between them can be equality, before or after.

From this graph, the ‘gold standard’ reference graph is extracted as the minimal

graph of constraints. A minimal graph has the following two properties: (1) its

(relation) closure leads to the full graph; (2) removing any relation leads to breaking

the first property. Minimal graphs of a candidate temporal events annotation can

be compared to the reference minimal graph objectively.

10 Further reading

General graph and network analysis papers. The following papers describe the

relevant graph theory: (Doyle and Snell 1984; Bollobás 1985; Bollobás 1998; Brin

and Page 1998; Grimmett 1999; Langville and Meyer 2003). Lexical networks. The

following readings are essential: (Dorogovtsev and Mendes 2001; Motter et al. 2002;

de Moura, Lai and Motter 2003; Ferrer i Cancho 2005; Caldeira et al. 2006; Masucci

and Rodgers 2006; Pardo et al. 2006; Ferrer i Cancho et al. 2007), and (Mehler

2007). Language processing applications. A list includes (Haghighi, Ng and Manning

2005; Wolf and Gibson 2005; Zens and Ney 2005; Erkan 2006; Malioutov and

Barzilay 2006), and (Biemann 2006). Random walks and learning on graphs. Some

readings include (Zhu and Ghahramani 2002; Radev 2004; Zhu and Lafferty 2005;

Goldberg and Zhu 2006), and (Zhu 2007).

The lists above are by far not exhaustive. A large bibliography appears on

Dragomir Radev’s web site http://clair.si.umich.edu/~radev/webgraph/

webgraph-bib.html.

11 Conclusions

In this paper, we presented an overview of the current state-of-the-art in research

work on graphs in NLP. We addressed the relevant work in the main areas of

NLP, including text structure and discourse, semantics and syntax, summarization

and generation, machine translation, and information and knowledge extraction. We

covered both the graph representations used to model the problems, as well as the

graph algorithms applied on these representations. We believe the intersection of

the fields of natural language processing and graph theory has proven to be a rich

source of interesting solutions that has just been untapped. We expect that future

work in this space will bring many more exciting findings.
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