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Abstract—MapReduce, in particular Hadoop, is a popular
framework for the distributed processing of large datasets on
clusters of relatively inexpensive servers. Although Hadoop clusters
are highly scalable and ensure data availability in the face of server
failures, their efficiency is poor. We study data placement as a
potential source of inefficiency. Despite networking improvements
that have narrowed the performance gap between map tasks that
access local or remote data, we find that nodes servicing remote
HDFS requests see significant slowdowns of collocated map tasks
due to interference effects, whereas nodes making these requests do
not experience proportionate slowdowns. To reduce remote accesses,
and thus avoid their destructive performance interference, we
investigate an intelligent data placement policy we call ‘partitioned
data placement’. We find that, in an unconstrained cluster where
a job’s map tasks may be scheduled dynamically on any node
over time, Hadoop’s default random data placement is effective
in avoiding remote accesses. However, when task placement is
restricted by long-running jobs or other reservations, partitioned
data placement substantially reduces remote access rates (e.g., by
as much as 86% over random placement for a job allocated only
one-third of a cluster).

I. INTRODUCTION

MapReduce [8] is a popular framework for the distributed
processing of large datasets. One of the most popular im-
plementations of the MapReduce programming model is
Hadoop [1], an open-source Java implementation. Hadoop’s
design centers on affording scalability and availability of
data. Hadoop provides scalability by making data management
transparent to cluster administrators; this transparent data
management allows the framework to support thousands of
machines and petabytes of data. Hadoop ensures data avail-
ability (and scalability) by distributing three replicas of all data
blocks that constitute a file randomly among distinct nodes.
Whenever possible, Hadoop moves computation to data, as
opposed to the more expensive option of moving data to
computation. However, Hadoop’s storage layer, the Hadoop
Distributed File System or HDFS [7], facilitates remote data
accesses when moving computation is not possible.

Until recently, network bandwidth has been a relatively
scarce resource, and hence, conventional wisdom has held
that remote data accesses should be minimized [8]. However,
network performance improvements continue to outpace disk,
which has led some researchers to argue that disk locality
will soon be irrelevant in datacenter computing [6]. Indeed,
we corroborate that this hypothesis holds even today when
communicating over an unsaturated 1 Gb network—the per-
formance gap between CPU-bound map tasks that access local
and remote data (served from an idle node) is as little as
1.6%. Interestingly, however, we find that servicing remote

HDFS requests disproportionally slows map tasks located on
the same node, particularly under Linux’s default “deadline”
I/O scheduler (which biases scheduling to improve I/O perfor-
mance; the fair I/O scheduler shrinks performance disparities
at the cost of worse overall performance). For CPU-intensive
map tasks, we find that Reader nodes, which access data
from a remote node but serve no remote requests themselves,
suffer only a 2% slowdown relative to local accesses. However,
a Server node, which services remote requests while also
executing map tasks, suffers a 13% slowdown. Slowdowns
are much larger for I/O-bound map tasks. Hence, we conclude
that, unless MapReduce clusters use dedicated storage nodes,
remote accesses must still be minimized.

Based on these observations, we investigate intelligent data
placement as a potential avenue to reduce remote accesses. We
focus our investigation on the “map” phase of MapReduce jobs
as initial data placement is immaterial thereafter. Hadoop’s
scheduler is designed to assign map tasks to nodes such
that they access data locally whenever possible. When a
computation resource is assigned to a job, the scheduler scans
the list of incomplete map tasks for that job to find any
tasks that can access locally available data. Only if no such
tasks are available will it schedule a task that must perform
remote accesses. Hence, jobs with dedicated access to the
entire cluster rarely incur remote accesses (remote accesses
only arise at the end of the map phase, when few map tasks
remain, or under substantial load imbalance, for example,
due to server heterogeneity [4]). However, restrictions on
task assignment, because of long-running tasks, prioritization
among competing jobs, dedicated allocations, or other factors,
can rapidly increase the number of remote accesses.

We contrast Hadoop’s default random data placement policy
against an extreme alternative, partitioned data placement,
wherein a cluster is divided into partitions, each of which
contains one replica of each data block. (Note that, since
the number of replicas is unchanged and placement remains
random within each partition, availability is, to first-order,
unchanged). By segregating replicas, due simply to combina-
torial effects, we increase the probability that a large fraction
of distinct data blocks is available even within relatively
small, randomly selected allocations of the cluster. We further
consider the utility of adding additional replicas for frequently
accessed blocks, to increase the probability that these blocks
will be available locally in a busy cluster.

Our evaluation, through a combination of simulation of the
Hadoop scheduling algorithm and validation on a small-scale
test cluster, leads to mixed conclusions:



• When scheduling is unconstrained and task lengths are
well-chosen to balance load and avoid long-running tasks,
Hadoop’s scheduler is highly effective in avoiding remote
accesses regardless of data placement, as the job can
migrate across nodes over time to process data blocks
locally. Under an “Unconstrained” allocation scenario,
Hadoop can achieve 98% local accesses.

• However, when task allocation is constrained to a sub-
set of the cluster (e.g., because of long-running tasks,
reserved nodes, restrictions arising from job priorities,
power management [16], or other node allocation con-
straints), partitioned data placement substantially reduces
remote data accesses. For example, under a “Restricted”
allocation scenario where a job may execute on only
one-third of nodes (selected at random), partitioned data
placement reduces remote accesses by 86% over random
data placement.

• We demonstrate that selective replication of frequently
accessed blocks can further reduce remote accesses in
restricted allocation scenarios.

This paper is organized as follows: Section II provides
relevant background. Section III delves into why reducing
remote accesses is important even under unsaturated networks.
Section IV explores the data placement policies considered in
this research. Section V provides experimental results for the
performance of the data placement policies under different job
scheduling scenarios, and Section VI concludes.

II. RELATED WORK

Data replication is widely used in distributed systems to
improve performance when a system needs to scale in numbers
and/or geographical area [23]. Replication can increase data
availability, and helps achieve load balancing in the presence
of scaling. For geographically dispersed systems, replication
can reduce communication latencies. Hadoop leverages repli-
cation to provide both availability and scalability. Further,
Hadoop places two replicas of a data block on the same rack
to save inter-rack bandwidth.

Caching is a special form of replication where a copy of
the data under consideration is placed close to the client that
is accessing the data. Caching has been used effectively in
distributed file systems such as the Andrew File System (AFS)
and Coda to minimize network traffic [12], [21]. Gwertzman
and Seltzer have proposed a technique of server-initiated
caching called push caching [11]. Under this technique, a
server places temporary replicas of data closer to geographical
regions from which large fractions of requests are arriving.
Since replication and caching imply multiple copies of a data
resource, modification of one copy creates consistency issues.
Much research in the distributed systems field has been de-
voted to efficient consistency maintenance [19], [23]. However,
since Hadoop follows a write-once, read-many model for data
(i.e., data files are immutable), maintaining consistency is not
a concern.

In systems with distributed data replicas, achieving locality
while maintaining fairness is a challenge. Isard and co-authors
propose Quincy, a framework for scheduling concurrent dis-
tributed jobs with fine-grain resource sharing [13]. Quincy

defines fairness in terms of disk-locality and can evict tasks to
ensure fair distribution of disk-locality across jobs. Overall, the
system improves both fairness and locality, achieving a 3.9x
reduction in the amount of data transferred and a throughput
increase of up to 40%.

Zaharia et al. create a fair-scheduler that maintains task
locality and achieves almost 99% local accesses via delay
scheduling [25]. Under delay scheduling, when a job that
should be scheduled next under fair-scheduling cannot launch
a data-local task, it stalls a small amount of time while
allowing tasks from other jobs to be scheduled. However,
delay scheduling performs poorly in the presence of long
tasks (nodes do not free up frequently enough for jobs to
achieve locality) and hotspots (certain nodes are of interest
to many jobs; for example, such nodes might contain a data
block that many jobs require). The authors suggest long-task-
balancing and hotspot replication as potential solutions, but
do not implement either. In contrast to the authors’ approach,
we focus on how intelligent data placement can be used
to maximize MapReduce efficiency in scenarios where node
allocations are restricted.

Eltabakh and co-authors present CoHadoop [9], a
lightweight extension of Hadoop that allows applications to
control where data are stored. Applications give hints to
CoHadoop that certain files are related and may be pro-
cessed jointly; CoHadoop then tries to co-locate these files
for improved efficiency. Ferguson and Fonseca [10] highlight
the non-uniformity in data placement within Hadoop clusters,
which can lead to performance degradation. They propose
placing data on nodes in a round-robin fashion instead of
Hadoop’s default data placement, and demonstrate an 11.5%
speedup for the sort benchmark.

Ahmad et al. [4] observe that MapReduce’s built-in load
balancing results in excessive and bursty network traffic, and
that heterogeneity amplifies load imbalances. In response, the
authors develop Tarazu, a set of optimizations to improve
MapReduce performance on heterogeneous clusters. Xie et
al. [24] study the effect of data placement in clusters of
heterogeneous machines, and suggest placing more data on
faster nodes to improve the percentage of local accesses.
Zaharia et al. [26] also investigate MapReduce performance in
heterogenous environments. The authors design a scheduling
algorithm called Longest Approximate Time to End (LATE),
that is robust to heterogeneity and can improve Hadoop
response times by a factor of two.

Ananthanarayanan et al. [5] observe that MapReduce frame-
works use filesystems that replicate data uniformly to improve
data availability and resilience. However, job logs from large
production clusters show a wide disparity in data popularity.
The authors observe that machines and racks storing popular
content become bottlenecks, thereby increasing the completion
times of jobs accessing these data even when there are
machines with spare cycles in the cluster. To address this
problem, the authors propose a system called Scarlett. Scarlett
accurately predicts file popularity using learned trends, and
then selectively replicates blocks based on their popularity.
In trace driven simulations and experiments on Hadoop and
Dryad clusters, Scarlett alleviates hotspots and speeds up jobs



by up to 20.2%. We explore the utility of selective replication
in combination with partitioned data placement in subsequent
sections.

Prior work has also shown that well-designed data place-
ment might allow MapReduce clusters to be dynamically
resized in response to load, in an effort to increase energy
efficiency without compromising data availability [15], [16].

Finally, recent research demonstrates that application de-
mands in production datacenters can generally be met by
a network that is slightly oversubscribed [14]. However,
as we show subsequently, even under unsaturated network
conditions, remote accesses impose significant performance
penalties on nodes that service these remote requests.

III. THE COST OF REMOTE ACCESSES

It is clear that remote accesses add to network traffic. When
the network in a cluster is near saturation, each extra remote
access contributes to longer latencies and even higher network
traffic. Until recently, network bandwidth has been small
compared to the combined disk bandwidth in a cluster; hence,
relatively few simultaneous remote accesses can potentially
constrain a network. It is therefore evident that remote accesses
are best minimized under busy networks.

Perhaps more surprising, however, is our finding that remote
accesses can cause performance penalties even in a low-latency
network that is far from saturation (a scenario likely to become
more prevalent as data center network topologies improve). As
we will show, these performance penalties do not arise due to
higher latency from retrieving data over the network. Indeed,
to the contrary, we find that a map task accessing data lo-
cally or remotely experiences little difference in performance.
Instead, we find the interference effect of servicing remote
HDFS requests leads to a significant degradation of collocated
map tasks. Hence, if all I/O can be performed locally, the peak
throughput of a MapReduce cluster improves.

To study remote access overheads under unsaturated net-
work conditions, we set up a small Hadoop cluster. We use
Hadoop v0.21 on low-end servers representative of the low-
cost systems often used for throughput computing clusters.
Each server has eight 1.86 GHz Intel Xeon cores, and 16
GB of RAM running stock Ubuntu 10.10. This Linux release
enables the “deadline” I/O scheduler (described later) by
default. The inexpensive hard disks in these systems provide
50 MB/s sustained read bandwidth over HDFS. The servers
are connected via a dedicated gigabit Ethernet switch.

We demonstrate the cost of remote accesses using a minimal
Hadoop cluster of only three datanodes and a fourth dedicated
namenode. While this configuration is not representative of
typical MapReduce clusters, it allows us to isolate and easily
measure I/O performance effects. We use two microbench-
marks, CPU-intensive and I/O-intensive, respectively. The
CPU-intensive microbenchmark runs the map task of the
WordCount benchmark included with the Hadoop distribution.
The I/O-intensive microbenchmark runs an empty map task.
Note that since initial data placement does not matter beyond
the map phase, we limit this experiment to only the map phase.
The input file for both workloads is a 9.5 GB text file with

64 MB data blocks. Each datanode contains a complete copy
of the file with the block replication factor set to one. We
repeat experiments ten times and report averages; all reported
results have 95% confidence intervals of 0.5% or better. We
verify that network bandwidth never approaches saturation in
any experiment. Further, to isolate the costs associated with
remote accesses, we disable 7 of the 8 cores on the servers.

First, we perform a simple test contrasting the perfomance
of map tasks that access local data against map tasks that
access remote data served from an otherwise-idle node. This
simple test isolates the impact of the network on map task
performance. As predicted in recent literature [6], because the
available network bandwidth exceeds the bandwidth of the
disk and the data blocks transferred for each map task are
large (64 MB), there is a negligble performance difference
between local and remote accesses: the remote accesses incur
only a 1.6% slowdown. Hence, one might conclude that
remote accesses (and hence data placement) have no impact
on performance.

However, this simple test neglects the interference effects
of serving HDFS requests while concurrently running map
tasks. We study these interference effects through three data
access scenarios that are illustrated in Figure 1. In the first
scenario (Local), each datanode runs only map tasks that
access local data; we normalize runtimes to this baseline. In
the second scenario (Remote), each datanode runs only map
tasks that access remote data from the node with the next
higher ID (modulo the number of nodes); hence, all nodes act
concurrently as both readers and servers. In the final scenario
(Asymmetric), two datanodes (the Readers) access data located
on the third (the Server), which additionally runs its own
map tasks that access data locally. In all scenarios, each map
task accesses distinct files, and file system caches are initially
empty.

Table I shows the normalized runtimes for each combination
of I/O scenario and microbenchmark. Runtimes are normalized
to the Local case for each microbenchmark. For the CPU-
intensive microbenchmark, we see in the Remote scenario
that remote access results in a 10% performance penalty,
considerably larger than the 1.6% penalty of traversing the
network to access an idle HDFS server. In the Asymmetric
scenario, we see a further interesting effect: the slowdown on
the Reader nodes (which serve no remote HDFS requests)
shrinks to only the network-traversal penalty, while the server
node sees a disproportionate slowdown of 13%. For the
I/O-intensive microbenchmark, the penalties are magnified.
In the Remote scenario, the slowdown grows to 30%. The
Asymmetric scenario sees even larger slowdowns. Overall, we
observe that map tasks running on the Server node see a
disproportionate slowdown (i.e., they are not receiving a fair
share of disk bandwidth).

To explain the behavior observed above, we configure four
nodes in the Asymmetric mode, and vary the number of nodes
reading from the Server node from one to four (one of these
readers is always present on the Server). Figure 2 and Figure 3
show the breakdown of runtime spent in various CPU states
on the Server and a Reader for the CPU-intensive and I/O-
intensive microbenchmarks respectively. As the number of
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Fig. 1: Experimental configurations for characterizing the costs associated with remote accesses: Arrows indicate read
requests.

Microbenchmark Local Remote Asymmetric
Reader Server

CPU-intensive 1.0 1.1 1.02 1.13
I/O-intensive 1.0 1.3 2.65 3.14

TABLE I: Runtimes for Various I/O Configurations
(Normalized to Local for each microbenchmark)
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Fig. 2: Runtime breakdown on the Server and representative Reader for the CPU-intensive microbenchmark: (a) As the
number of readers increases, the CPU on the Server spends more time in I/O wait. (b) I/O wait associated with the read
request is effectively masked on the Reader.
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Fig. 3: Runtime breakdown on the Server and representative Reader for the I/O-intensive microbenchmark: (a) As the number
of readers increases, the Server spends more time in I/O wait. (b) I/O wait associated with the read request is not effectively
masked on the Reader, and is seen as increased idle time.



readers accessing the Server’s disk goes up, the Server spends
increasing amounts of time in the CPU I/O-wait state. In other
words, the CPU is stalled on I/O and starved for data to
process. (To verify that the Server’s CPU is stalled on I/O and
does not have any other tasks to process, we run a separate
CPU-intensive task on the Server and observe that the I/O wait
gets transformed into user time.)

The increased runtime and I/O wait on the Server stems
from inherent inefficiencies in HDFS. The HDFS client im-
plementation is highly serialized for data reads [22]. In the
absence of pipelining to overlap computation with I/O, the
application waits for data transfer to complete before process-
ing commences. Additionally, each datanode (the Server in
this case) spawns one thread per client to manage disk access
and network communication, with all threads accessing the
disk concurrently; these threads consume valuable resources.
Shafer et al. [22] observe that as the number of concurrent
readers in HDFS increases from one to four, the aggregate read
bandwidth reduces by 21% with UFS2, and by 42% with ext4.
Further, the average run-length-before-seeking drops from
over 4MB to well under 200kB. Since most I/O schedulers
are designed for general-purpose workloads and attempt to
provide fairness at a fine-grained granularity of a few hundred
kilobytes, the disk is forced to switch between distinct data
streams in the presence of multiple concurrent readers, thereby
lowering aggregate bandwidth.

Our experimental observations show that for the CPU-
intensive microbenchmark, the Server node experiences almost
an 8x increase in disk-queue size when going from 2 readers
to 4 readers—from 0.42 to 3.12. Further, the period between
request issue and data reception on the Server quadruples—
from 2.2ms to 8.9ms, thereby accounting for the I/O wait
observed. Disk utilization is also observed to increase from
31% to 94%.

For the I/O-intensive microbenchmark, the Server experi-
ences over a 2x increase in disk-queue size when going from
2 readers to 4 readers—from 2.2 to 4.8. As with the CPU-
intensive microbenchmark, the period between request issue
and data reception quadruples—from 2.2ms to 8.9ms. Disk
utilization is seen to increase from about 92% to about 98%.

We note from Figure 2 and Figure 3 that the I/O wait seen
on Server does not translate into an equivalent amount of idle
time on the Readers. For the CPU-intensive microbenchmark,
a majority of the delay associated with I/O wait on the Server
node is masked by computation on the Readers. However, this
masking is not observed on the Readers for the I/O-intensive
microbenchmark, and is translated into CPU-idle time. As
a consequence, for the I/O-intensive microbenchmark, the
Readers see large increases in runtime. Overall, we note
that the slowdown in the Remote scenario can primarily be
attributed to I/O stalls accounting for a larger fraction of the
runtime. And the even larger slowdowns in the Asymmetric
case can further be attributed to the saturation of the available
bandwidth on the (single) disk serving all three nodes.

The central conclusion from these results is that serv-
ing remote HDFS requests disproportionately delays locally-
running map tasks. The eventual source of this performance
phenomenon can be traced to the interaction of the threading

Fig. 4: Random data placement in a Hadoop cluster: Each
block is replicated three times across the cluster. Each disk
represents a node in the cluster.

model of HDFS and the default I/O scheduler in recent
versions of Linux, the “deadline” scheduler [3]. The deadline
scheduler imposes a deadline on all I/O operations to ensure
that no request gets starved, and aggressively reorders requests
to ensure improvement in I/O performance. Because of these
deadlines, a sleeping HDFS thread that receives an I/O com-
pletion (either a new request arriving over the network or data
being returned from the disk) will preempt a map task nearly
immediately to finish the I/O. In contrast, map tasks that issue
an I/O request, block on the I/O, thereby freeing a core to
allow HDFS to execute without disturbing other map tasks.

We can eliminate the unfairness caused by the deadline
scheduler by instead switching Linux to use a completely fair
scheduler [2]. However, we find that, when doing so, overall
performance suffers: in the 4-reader case, while running the
CPU-intensive microbenchmark, the Server node slows down
by an additional 6%, while the Reader nodes slow down by
16%, to only about 6% faster than the Server. The difference
in runtimes between the Server and the Readers with the
completely fair scheduler is consistent with the extra resources
the Server has to sacrifice in order to service the remote
requests. We also note that with the completely fair scheduler,
each Reader sees an increase in idle time that is consistent
with the I/O wait time seen on the Server.

The aforementioned experiments demonstrate that nodes
servicing remote read requests are slowed down more sig-
nificantly than nodes making these requests. Overall, our ob-
servations indicate that reducing remote accesses can improve
performance even in scenarios where the network is far from
saturated, and not just in highly loaded clusters with multi-
job loads, busy networks, and file fragmentation associated
with multiple simultaneous writers. In the next sections, we
explore intelligent data placement as one avenue to reduce
remote accesses.

IV. DATA PLACEMENT

In this section, we propose partitioned data placement as
an approach to reduce remote accesses. We first describe
Hadoop’s default random data placement as a baseline for
comparison.



Fig. 5: Partitioned data placement: The cluster is parti-
tioned into three sub-clusters (the vertical lines demarcate
the partitions). Each partition contains one replica of each
data block. Overall, the cluster still contains three replicas of
each block.

Fig. 6: Selective replication of popular data blocks within
partitions: Block D is a popular block and is replicated twice
within each partition. Non-popular blocks are replicated once
per partition.

A. Random Data Placement

Under random data placement, blocks are randomly dis-
tributed across nodes. Figure 4 illustrates this data placement
policy. Random data placement is a simplication of Hadoop’s
default data placement scheme (Hadoop’s default locality opti-
mization seeks to collocate two of three data replicas within a
single rack; rack locality is irrelevant when network distance
has no performance impact, as in the scenarios we study).
Although random data placement maintains data availability
in the presence of disk failures, it can be inefficient from a
performance perspective, especially when a job is restricted
from executing on some machines within a cluster.

The drawbacks of random data placement under restricted
task scheduling are illustrated using Figure 4. Consider a
cluster wherein only the three leftmost nodes may service a
job (e.g., because other nodes are reserved). We define the
allocated cluster fraction as the fraction of the cluster available
to a job. In the example in the figure, the allocated cluster
fraction is 3/9 or 33%. Under this scenario, it is clear that

blocks D and H are not locally accessible within the available
nodes, and hence must incur remote accesses.

B. Partitioned Data Placement

To reduce remote accesses when a job is restricted to a
subset of the cluster, we propose partitioned data placement.
In partitioned data placement, a cluster is divided into N
partitions, with N being equal to the replication factor. Each
partition contains exactly one replica of every data block;
overall, the entire cluster contains N replicas of each block.
Blocks are randomly assigned to nodes within a particular
partition. Figure 5 shows an example of this data placement
policy for a cluster with three partitions.

When a job can be assigned an entire partition (or more), all
data can be accessed locally. Hence, if the number of active
jobs is less than the number of partitions, remote accesses
will be rare (arising only due to load imbalance at the tail of
the job). However, as subsequently demonstrated, partitioned
data placement reduces remote accesses even for jobs that
execute on a smaller number of nodes. The data placement
restrictions implied by partitioning reduce the probability of
duplicate data blocks in a randomly selected subset of nodes,
thus increasing the diversity of blocks available locally. To first
order, partitioning does not sacrifice data availability since the
overall number of replicas remains unchanged.

C. Replication

In addition to data placement, creating more replicas of a
block can improve the probability the block will be available
locally within a random subset of the cluster. But, adding extra
replicas comes at a high storage cost (e.g., one extra replica
per block implies a 33% storage increase). With knowledge
of block access patterns, only the most popular (frequently
accessed) blocks can be replicated, reducing replication costs
while maintaining much of the benefit [5]. We explore the
impact of selective replication similar to that proposed by
Ananthanarayanan and co-authors in combination with parti-
tioned placement. Figure 6 illustrates the concept of selective
replication in partitioned clusters; a popular block (in the
example, block D), is replicated at a higher replication factor
within each partition.

V. RESULTS

We contrast random and partitioned data placement through
a combination of simulation of the Hadoop scheduling algo-
rithm and validation experiments on a small scale cluster. We
use simulation to allow rapid exploration of the impacts of
data placement policies on clusters much larger than the real
clusters to which we have access.

We contrast random and partitioned data placement policies
under two scenarios: unconstrained and restricted allocation.
Under unconstrained allocation, the tasks that constitute a
job may be scheduled on any node in the cluster. A job is
granted an allocation that limits the maximum number of
simultaneously executing tasks; however, there is no restriction
on the nodes that run these tasks. When multiple jobs execute



concurrently, with a suitable scheduling discipline (e.g., round
robin), over time, a job’s tasks will visit a time-varying subset
of nodes. Because the job migrates across the cluster over
time, a large fraction of data blocks can be accessed locally
at some point during the job’s execution, even when the job
is granted a small (simultaneous) allocation.

Under restricted allocation, we assign a job to execute
within only a fixed (but randomly selected) subset of nodes.
The restricted allocation scenario is representative of a variety
of reasons that Hadoop jobs might be precluded from exe-
cuting on some nodes. The simplest example is when nodes
are explicitly reserved for certain jobs or users; however, re-
stricted allocation might also arise because nodes are rendered
unavailable due to long-running tasks, job priorities, power
managment, or the job scheduling discipline.

A. Simulation Methodology

We model large-scale Hadoop clusters by extending the Big-
House data center simulation framework [17], [18]. BigHouse
is a parallel, stochastic discrete time simulation framework that
represents datacenters via generalized queuing models driven
by empirically-observed arrival and service distributions. Our
simulation assigns MapReduce tasks lengths drawn from a
service time distribution and assigns tasks to nodes in a manner
similar to Hadoop’s scheduler. When a task slot becomes
available on a node, the scheduler checks to see if a local
block required by the job is available on that node. If so, the
newly created task is assigned this local block. If there are no
local blocks that are awaiting processing, the scheduler picks
a pending block from the closest remote node and assigns it
to the new task.

We simulate a 60 node cluster that stores 10 files with up
to 1200 blocks each. Block popularity is drawn from a Zipf
distribution. Task execution times are drawn either from an
exponential distribution with rate parameter λ=1, or a gamma
distribution with shape parameter k=2 and scale parameter
θ=3. The baseline replication factor for both random and
partitioned data placement is set to Hadoop’s default of three.
For partitioned data placement, we assume three partitions,
i.e., one replica per partition.

1) Unconstrained Allocation: We first consider uncon-
strained allocation, wherein a task may be assigned to any
node. Under this scenario, provided job lengths are reasonably
balanced, the tasks constituting a job will be able to migrate
across the cluster over time to visit each data block such that
they can access it locally. We assume that jobs are sliced
into tasks at the granularity of disk blocks; finer granularity
can result in higher overhead from task startup and shutdown
[22], while coarser granularity may restrict task scheduling
flexibility. Recent research has suggested that relatively large
data block sizes improve performance [20].

Under unconstrained allocation, both partitioned and ran-
dom data placement perform similarly: approximately 98%
of data blocks can be accessed locally (98.2% local accesses
for partitioned, and 97.9% for random). On average, a job
incurs its first remote access only after over 85% of tasks
have been processed, i.e., towards the tail end of the job.
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Fig. 7: Local access fraction as a function of cluster avail-
ability: Partitioned data placement dominates random data
placement, especially for low cluster allocations.
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Fig. 8: Local access fraction versus number of replicas for
10% cluster availability: Adding more replicas increases the
number of local accesses.

Since tasks are scheduled on a per block basis, a job gets the
opportunity to visit multiple nodes through the cluster, thereby
increasing the likelihood that tasks will be scheduled on nodes
that contain locally accessible blocks. The key take-away is
that data placement has little impact when it is possible for a
job to traverse the cluster and visit nearly all nodes over time.
Even under a naive round-robin scheduler across competing
jobs, almost 98% of accesses can be completed locally. Hence,
under these circumstances, neither partitioned placement, nor
other techniques (e.g., delay scheduling) are necessary.

2) Restricted Allocation: Under restricted allocation sce-
narios, partitioned data placement can be effective in reducing
remote accesses. Figure 7 shows the fraction of blocks ac-
cessed locally for both random and partitioned data placement
as a function of the fraction of the cluster allocated to a
job (i.e., the fraction of nodes the job may visit), which
we vary from 10% to 90%. Under random data placement,
a job must be allocated nearly 80% of the cluster to avoid
remote accesses. Stated another way, if more than 20% of a
cluster is reserved and may not be used by a job, then the job
will suffer an increased rate of remote data accesses. Hence,
even relatively small allocations of much less than half the
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Fig. 9: Effect of selective replication of popular blocks on
local access fraction: Selectively replicating popular blocks
increases the number of local accesses with low storage
overhead.

cluster can substantially impact local versus remote access
rates under Hadoop’s default placement scheme. Partitioned
data placement substantially improves the fraction of local
accesses for cluster allocations from 10% to 80%. Once the
allocation fraction is larger than a partition (33% for the 3-
partition cluster in this experiment), the local access fraction
rapidly approaches 100%.

3) Replication: Next we study the effect of adding more
replicas on local access rates under restricted allocations. We
first consider the simple case where all blocks are replicated,
ignoring popularity. Figure 8 shows a graph of the local access
fraction as a function of the replication factor for 10% cluster
allocation, sweeping the number of replicas from one (no
replication) to ten. For the partitioned scheme, the number
of replicas also corresponds to the number of partitions. As
the number of replicas increases, the advantage of partitioned
data placement over random data placement grows.

We next consider only selective replication of blocks that
exceed a popularity threshold. To model this scenario, we
increase the popularity of two files (corresponding to 22% of
all blocks) by a factor drawn from a Zipf distribution relative
to the remaining blocks. We provision twice as many replicas
of blocks in the popular files. These additional replicas are
again distributed across the partitions, such that there are now
two replicas of the popular blocks per partition. Figure 9
shows the effect of such selective replication, relative to a
baseline of only a single replica per partition for all blocks.
Selective replication increases the rate of local accesses by
10-20% over the relevant range of cluster allocations (above
40% allocation, nearly all accesses are local without additional
replicas). Of course, selective replication results in a far lower
storage overhead than naive replication of all blocks.

B. Validation on a Real Hadoop Cluster

We validate our simulation results via a small-scale test on
a 10-node Hadoop cluster (nine datanodes and one dedicated
namenode). We contrast Hadoop’s default random data place-
ment against partitioned data placement. In both cases, we
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Fig. 10: Percentage of remote accesses as a function of
data placement policy on a real Hadoop cluster: On av-
erage, partitioned data placement reduces the number of
remote accesses by over 86% for a 33% cluster allocation.

distribute a 9.5 GB file across nodes in 64 MB blocks with a
replication factor of three. We emulate restricted allocation by
marking six randomly selected nodes as unavailable to execute
tasks, corresponding to a 33% cluster allocation. We report the
fraction of map tasks that access remote data.

Figure 10 shows the percentage of remote accesses for each
data placement policy. Over a series of ten trials, random data
placement requires a maximum of 48.7% of map tasks to
access remote data. On average, random data placement results
in 19.2% remote accesses. Partitioned data placement reduces
the average number of remote accesses to 2.6%, an 86%
reduction compared to random data placement. In summary,
our results show that the partitioned data placement policy
reduces remote accessess relative to random data placement
under restricted allocation scenarios. Additionally, increasing
replication factors can further reduce remote accesses, espe-
cially for small allocations.

VI. CONCLUSION

MapReduce, in particular Hadoop, is a popular framework
for the distributed processing of large datasets on clusters
of networked and relatively inexpensive servers. Whereas
Hadoop clusters are highly scalable and ensure data avail-
ability in the face of server failures, their efficiency is poor.
We demonstrate that remote accesses can cause significant
performance degradation, even under unsaturated network
conditions, due to the disproportionate interference effects on
nodes servicing remote HDFS requests. We study an intelligent
data placement policy we call partitioned data placement as
an avenue to reduce the number of remote data accesses, and
the associated performance degradation, when task placement
is restricted due to reasons such as long-running jobs or other
reservations. During the course of our investigation, we find
that partitioned data placement can reduce the number of
remote data accesses by as much as 86% when a job is
restricted to execute on only one-third of the nodes in a cluster.
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