
Automatic Web Spreadsheet Data Extraction

Zhe Chen
University of Michigan

Ann Arbor, MI 48109-2121
chenzhe@umich.edu

Michael Cafarella
University of Michigan

Ann Arbor, MI 48109-2121
michjc@umich.edu

ABSTRACT
Spreadsheets contain a huge amount of high-value data but
do not observe a standard data model and thus are difficult
to integrate. A large number of data integration tools exist,
but they generally can only work on relational data. Exist-
ing systems for extracting relational data from spreadsheets
are too labor intensive to support ad-hoc integration tasks,
in which the correct extraction target is only learned during
the course of user interaction.

This paper introduces a system that automatically ex-
tracts relational data from spreadsheets, thereby enabling
relational spreadsheet integration. The resulting integrated
relational data can be queried directly or can be translated
into RDF triples. When compared to standard techniques
for spreadsheet data extraction on a set of 100 random Web
spreadsheets, the system reduces the amount of human la-
bor by 72% to 92%. In addition to the system design, we
present the results of a general survey of more than 400,000
spreadsheets we downloaded from the Web, giving a novel
view of how users organize their data in spreadsheets.

1. INTRODUCTION
Spreadsheets have become a critical data management

tool [3, 20]. They allow non-experts to perform tasks we tra-
ditionally associate with relational systems: selection, pro-
jection, sorting, etc. Spreadsheets make up some of the most
expensive data available to us, because they have been con-
structed by hand by well-paid professionals. They are a
standard tool for many researchers, scientists, and policy-
makers and have found especially wide adoption in financial
and clinical research settings [15]. In short, spreadsheets
make up an important dataset but live outside mainstream
data management practices.

Spreadsheets often contain data that are roughly rela-
tional, but the schema is often designed for human con-
sumption and entirely implicit. As a result, spreadsheets
cannot benefit from society’s huge investment in data man-
agement tools that work on relational databases. In par-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SSW’13, August 30, 2013, Riva del Garda, Italy.
Copyright 2013 ACM 978-1-4503-2483-0/30/08 ...$15.00.

ticular, spreadsheets lack data integration operations. For
example, it is easy to imagine an analyst who wants to com-
bine a spreadsheet about company sales with a government-
produced spreadsheet about economic performance to pre-
dict future sales. But in practice, the analyst would likely
have to write custom code to integrate the two spreadsheets.
If we could automate this burdensome integration proce-
dure, users could make vastly more effective use of the spread-
sheet data on the Web, intranets, and elsewhere. Given the
high value of data stored in spreadsheets, such a system
would likely have a large impact on the lives of analysis-
minded Web users.

Extracting relational data from spreadsheets would en-
able traditional data integration methods to unlock the la-
tent value in spreadsheet data. Recent studies [1, 2, 8, 11]
attempted to transform spreadsheet data into the relational
model, making further integration among spreadsheets pos-
sible. Some extraction systems require explicit sheet-specific
user-provided rules [2, 11], which might yield good results
for a single spreadsheet. But they are not feasible for our
setting: the corpus is large and users are not aware of the
target spreadsheets to be processed ahead of time. It is
impractical to manually transform all of them to relations.
Abraham and Erwig[1] and Cunha et al. [8] automatically
infer some spreadsheet structure, but they cannot process
hierarchical spreadsheets. This type of spreadsheet is com-
monplace and extracting metadata from such spreadsheets
presents the central technical challenge of this paper. We
will illustrate these challenges using an example of a Web
spreadsheet downloaded from the U.S. Census Bureau.

Challenges – The spreadsheet in Figure 1 shows a spread-
sheet about the smoking rate downloaded from the govern-
ment’s Statistical Abstract of the United States.1. Each
row clearly represents a different configuration of the smok-
ing rate; for example, 13.7 in the value region is the rate
for people with constraints Male, White, 65 years and over in
the attribute region, and it yields an annotating relational
tuple at the bottom. But there are two main problems here.
First, the spreadsheet only implicitly indicates which cells
carry values versus attributes. Often a spreadsheet is a mix
of attributes, values, and other elements such as titles and
footnotes. These elements are not easily distinguished from
each other. Second, the spreadsheet does not explicitly indi-
cate which attributes describe which values. If the leftmost
column is processed näıvely, rows 25, 31, and 37 will yield
three tuples that have different smoking rates for 65 years
and older. All three extracted tuples are incorrect, as none

1
http://www.census.gov/compendia/statab/2012/tables/12s0204.xls

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Le
ft

 A
tt

ri
b

u
te

s

Values

Top Attributes

Male, total White,
total

65 years
and over

Total
smokers 13.71990Relational

Tuple:

Figure 1: A portion of one spreadsheet from the
U.S. Census Bureau.

will contain any mention of the attribute Male. In sum-
mary, Figure 1 shows a clean, high-quality spreadsheet, but
extracting relational data from it requires us to: (1) detect
attributes and values, (2) identify the hierarchical structure
of left and top attributes, and (3) generate a relational tuple
for each value in the spreadsheet.

Background – We implemented Senbazuru [5], a proto-
type spreadsheet database management system (SSDBMS).
Senbazuru focuses on data frame spreadsheets, which are
one of the most popular types in the Web. Senbazuru
searches a large number of Web crawl spreadsheets, and it
automatically transforms spreadsheets into relations while
allowing users to fix the extraction errors effectively and ef-
ficiently. Finally, it supports selection queries on the result-
ing relations and join queries to integrate arbitrary spread-
sheets. In summary, Senbazuru is able to extract relational
information from a large number of Web spreadsheets, which
makes it possible to directly manage spreadsheet data in
databases; doing so also opens up opportunities for data
integration among spreadsheets and with many other rela-
tional data sources.

Contributions – In this paper, we present the first auto-
matic, domain-independent spreadsheet extractor, which is
the first step in building Senbazuru. First, we analyzed our
Web crawl spreadsheets, 410,554 Microsoft Excel files from
51,252 distinct Internet domains. Our findings on those Web
spreadsheets help us to better understand numerous spread-
sheet usage scenarios on the Web and motivate our goal to
design a practical SSDBMS. Second, our spreadsheet extrac-
tor automatically recognizes spreadsheet’s layout, discovers
the implicit metadata structure and emits relational data
for a given spreadsheet. In contrast to previous research,
our extraction does not require users to explicitly provide
extraction rules. In our follow-up work, we will explore how
to effectively and efficiently incorporate users’ efforts to fix
extraction errors, thus generating perfect relational tables
from spreadsheets.

Applications – The central application goal of this work
is a system that can combine spreadsheet data from many

different sources, including the Web, intranets, and local
storage. But there are a number of byproducts from our
extraction procedure that could be useful for other semantic
Web applications. For example, the procedure recovers a
large amount of hierarchical metadata that is implicit in the
spreadsheet and may not exist in a more formal database.
Consider the organizational hierarchy of a small company;
the management relationships among employees may not ex-
ist in a formal LDAP system but could plausibly be recov-
ered from a stray spreadsheet. There may also be business-
specific hierarchies (e.g., families of industrial materials, or
manufacturing stages) that are otherwise not recorded. These
hierarchies are critical for our integration and search appli-
cation but could also be useful on their own merit when
combined with other semantic tools.

Organization – The paper is organized as follows.

• We describe a general survey of spreadsheet data prac-
tices based on 410,554 spreadsheets we downloaded
from a general Web crawl (Section 2).

• We present our domain-independent extractor that ob-
tains relational tuples from raw spreadsheets without
any human intervention (Section 3).

• We evaluate the system’s accuracy on a random sample
of 100 Web hierarchical spreadsheets. We find that our
methods can accurately obtain relational tuples from
a spreadsheet; compared to a standard technique, our
method reduces the amount of work a human must
perform between 72% and 92% on average (Section 4).

In Section 5, we differentiate our work from the previous
related work. Finally, we conclude and discuss the future
work in Section 6.

2. THE WEB SPREADSHEET CORPUS
We obtained 410,554 Microsoft Excel files from 51,252 dis-

tinct Internet domains from our Web crawl. We call this
collection the WEB dataset. We located the spreadsheets
by looking for Excel-style file endings among roughly ten
billion URLs in the ClueWeb09 Web crawl [6]. However, to
the best of our knowledge, there is no other study that has
surveyed a large number of spreadsheets in the Web. There-
fore in this section, we aim to create the first portrayal of
the WEB dataset in order to design our spreadsheet extrac-
tion pipeline. But first, we introduce notation to describe
spreadsheets.

2.1 Spreadsheet Notations
In this paper, we focus on a two-part spreadsheet struc-

ture that we call a data frame. Data frame spreadsheets
represent a type of spreadsheet, and this structure consists
of two semantic components: a block of numeric values as a
value region and accompanied attribute or metadata regions
on the top or to the left. For attributes on the right, we
treat them as an extension of left attributes. For example,
Figure 1 shows a data frame with a value region indicated
by the dashed rectangle and attribute regions on the top and
to the left indicated by the solid rectangles.

A hierarchical spreadsheet is a data frame spreadsheet
with either a hierarchical left attribute region or a hierarchi-
cal top attribute region. An example of a hierarchical left
region can be found in Figure 1, and an example of hier-
archical top region is shown in Figure 5. In contrast, flat

Figure 2: The distri-
bution of Web spread-
sheets.

Domain # files % total data frame h-top h-left

www.bts.gov 12435 3.03% 99% 30% 40%
www.census.gov 7862 1.91% 94% 72% 70%
www.stat.co.jp 6633 1.62% x x x
www.bankofengland.co.uk 5520 1.34% 98% 77% 35%
www.ers.usda.gov 4328 1.05% 95% 77% 70%
www.agr.gc.ca 4186 1.02% 87% 77% 81%
www.wto.org 3863 0.94% 96% 61% 77%
www.doh.wa.gov 3579 0.87% 81% 53% 64%
www.nsf.gov 2770 0.67% 96% 53% 76%
nces.ed.gov 2177 0.53% 98% 55% 92%
average 5335 1.30% 93.78% 61.67% 67.33%

Figure 3: The top 10 domains in our Web spreadsheet corpus. h-top
and h-left are percentages of spreadsheets with a hierarchical top or left
region.

spreadsheets refer to those spreadsheets without any hierar-
chical structure.

For each value in the value region, there is usually (but
not necessarily) at least one annotating string in the top and
left regions, generating a relational tuple. For example, in
Figure 1, the value 13.7 is annotated by 65 years and over,
White total, Male total, and Total smokers in the left region
and by 1990 in the top region, yielding a relational tuple.

2.2 Web Spreadsheets Survey
To better design our extraction system, we answer the

following critical questions about the general properties of
the Web spreadsheets and the popularity of the data frame
spreadsheets on the Web:

1. Where are those Web spreadsheets from? The
Web spreadsheets cover a huge range of topics and show wide
variance in cleanliness and quality. Most of the spreadsheets
are statistical data, with a heavy emphasis on government,
finance, transportation, etc. We are also interested in the
distribution of the spreadsheets from different Internet do-
mains. Figure 3 shows the top 10 Internet domains that host
the largest number of spreadsheets in the WEB corpus. Nine
of the top 10 domains are sites run by the U.S., Japanese,
UK, or Canadian governments. Figure 2 shows the distribu-
tion of spreadsheets among hosting domains. We rank the
domains according to the size of their hosting spreadsheets in
descending order. The plot indicates that the spreadsheets
follow a strongly skewed distribution, with a large number
of spreadsheets from relatively few domains and with a large
number of domains hosting relatively few spreadsheets.

2. How many of the Web spreadsheets consist of
data frame structures? To better understand the struc-
ture of the WEB spreadsheets, we randomly chose 200 sam-
ples and asked a human expert to mark their structures. We
found 50.5% of the spreadsheets consist of data frame com-
ponents and 32.5% have hierarchical top or left attributes.
The other 49.5% non-data frame spreadsheets belong to the
following categories: 22.0% are Relation spreadsheets that
can be converted to the relational model almost trivially (we
can simply translate each spreadsheet column into a rela-
tional table column and translate each spreadsheet row into
a relational tuple); 10.5% are Form spreadsheets that are not
for data storage and are designed to be filled by a human;
3.5% are Diagram spreadsheets for visualization purposes,
and they are often data-intensive without any schema in-
formation; and 3% are List spreadsheets that consist of non-
numeric tuples. The 10.5% Other spreadsheets are schedules,
syllabi, scorecards, or other files whose purpose is unclear.

Although there are a variety of categories of spreadsheets on
the Web, in this paper, we only focus on data frame spread-
sheets.

3. How many of the Web spreadsheets are hierar-
chical like the example shown in Figure 1? Are those
hierarchical spreadsheets spread uniformly across the
Web? As just mentioned, 32.5% of the 200 sample Web
spreadsheets have hierarchical top or left attributes in a data
frame. To better understand how the hierarchical spread-
sheets are distributed in different domains, we randomly se-
lected 100 spreadsheets from each of the top 10 domains,
yielding 900 spreadsheets in total.2 Figure 3 shows the
fraction of spreadsheets with data frames or hierarchical at-
tributes in the top 10 domains. The ratios are much higher
than the fractions we obtained from the general Web sample.
We also randomly selected 100 spreadsheets from domains
hosting fewer than 10 spreadsheets. We found 19% with
data frame structures, 4% of which have hierarchical top
attributes and 6% of which have hierarchical left attributes.
These results suggest that the number of hierarchical spread-
sheets differs greatly by domain and may be linked to the
domain’s popularity or degree of professionalism. Comput-
ing the exact distribution of hierarchical spreadsheets among
domains would be useful but requires a huge amount of la-
beled data; we will explore this question in future work.
Even without computing that distribution, we have found
a huge number of hierarchical spreadsheets: 32.5% of all
spreadsheets on the Web and more than 60% in popular
domains. Therefore, to extract relational data from spread-
sheets, we believe our system must process hierarchical-style
metadata.

Overall, we observe that: (1) the Web contains a huge va-
riety of spreadsheets from a large range of data sources, and
(2) the data frame spreadsheets, especially the hierarchical
ones, are highly popular in the Web. Therefore, to design
a system to extract relational data from spreadsheets, the
system should be able to process data frame spreadsheets,
especially those hierarchical-style spreadsheets.

3. SYSTEM PIPELINE
In this section, we describe our spreadsheet extraction

pipeline. The goal of the extraction pipeline is to create a
relational model of the data embedded in data frame spread-
sheets: it takes in a data frame spreadsheet and emits rela-
tional tuples. It should be able to work on both flat and
hierarchical spreadsheets (we treat flat spreadsheets as a

2www.stat.co.jp is excluded because it is in Japanese.

Spreadsheet
Top

Attributes

Value
RegionLe

ft
At

tri
bu

te
s

Data Frame
Left Hierarchy Top Hierarchy

Attribute Hierarchies Relational Tuples
frame
finder

hierarchy
extractor

tuple
builder

Figure 4: The system pipeline to process a single spreadsheet.

special case of hierarchical ones). As shown in Figure 4,
the extraction pipeline consists of three components: the
frame finder, the hierarchy extractor, and the tuple
builder. The frame finder identifies the data frames, lo-
cating attribute regions and value regions. The hierarchy
extractor recovers the hierarchical metadata from spread-
sheets, and the tuple builder generates a relational tuple
for each value in the value region.

Notice that the extraction pipeline does not explicitly
distinguish data frame spreadsheets from non-data frame
spreadsheets. We assume that given a spreadsheet, if the
pipeline could process the spreadsheet and output a set of
relational tuples in a good quality, then the spreadsheet is a
data frame spreadsheet; otherwise it is not. Of course, this
approach might yield false positive data frame spreadsheets.
However, a post-processing stage could be added to the end
of the pipeline to further filter the non-data frame spread-
sheets. We skip details of this post-processing component
because it is beyond the scope of this paper.

3.1 Frame Finder
The frame finder identifies the value region and the top

and left attribute regions. It receives a raw spreadsheet as
input and emits geometric descriptors of the data frame’s
three rectangular regions. We define the problem as follows:

Definition 1. (Frame Finder) Let a spreadsheet be a
grid of cells c = {cij}, where i represents the row index
and j represents the column index. The frame finder as-
signs each cell cij ∈ c with a label lij ∈ L = {top, left, value,
other}, where top represents top attributes, left represents
left attributes, value represents values, and other represents
everything else.

To simplify the problem, we assume that the structure of
the spreadsheets has the following property: there may be
multiple data frames in a spreadsheet, but they only stack
in the vertical dimension. In fact, we found less than 2%
of the 900 spreadsheets in Figure 3 violate the assumption.
This assumption allows us to treat data frame-finding as a
problem of row labeling. Therefore, we start with the row
labeler task, which assigns each row in a spreadsheet to one
of the following four categories: title, header, data, or foot-
note. The label title represents a spreadsheet title, header
represents a row that contains top attributes only, data rep-
resents a row that contains left attributes or values, and
footnote is information that annotates the main contents.
As in Figure 1, rows 5-7 are labeled header and rows 19-37
are labeled data. A formal definition is as follows:

Definition 2. (Row Labeler) Let r = {r1, r2, ..., rN} be a
set of variables representing the non-empty rows in a spread-
sheet. The row labeler assigns each ri ∈ r with a label
li ∈ L = {title, header, data, footnote}.

Figure 5: An example of hierarchical top attributes.

We observe the following two types of signals that the
row labeler should use to automatically assign semantic
labels to each non-empty row: (1) the properties of each
non-empty row indicate its semantic label, such as its fonts
and keywords; and (2) the labels assigned to adjacent rows
are highly related. For example, if we know the current
row is a header row, it is highly probable that the next row
is a header or data row. Therefore, we employ an approach
based on a linear-chain, conditional random field (CRF) [13]
to exploit these two types of signals. Pinto et al. [16] used
linear-chain CRFs to obtain labels for textual tables in gov-
ernment statistical text reports. We also use the linear-chain
CRFs to obtain the semantic labels for each row of a spread-
sheet, and our training and inference procedure is the same.
However, with the access to spreadsheet APIs, we are able
to build the CRFs with a richer set of features, such as the
alignment and indentation information that is hard to obtain
from plain text reports. Our extraction features fall into two
main categories: layout features test visual characteristics of
a row, and textual features test the contents of the row. The
details of the features can be found in Appendix A.

Once we have labels for each row in a spreadsheet, we can
construct the correct data frame regions. The vertical extent
of a value region is described by the set of rows marked data,
and its horizontal extent is determined by finding regions of
numeric values. The top attribute region is delimited by all
header rows, and the left attribute region is everything to
the left of the value region.

3.2 Hierarchy Extractor
The hierarchy extractor recovers the attribute hierar-

chies. This step receives a data frame with top and left
regions as input and emits hierarchies as output: one for
left and one for top. These trees describe the hierarchical
annotation relationship among attributes in the top and left
regions. For example, in Figure 1, row 31 is annotated by
attributes at rows 26, 20, and 19. An example of a top
hierarchy can be found in Figure 5, where the attribute Air-
plane pilots annotates the attribute Airline transport. Now
we formally describe the problem of recovering the attribute
hierarchy for a single region as follows:

Definition 3. (Hierarchy Extractor) Let A = {a1, ..., aN ,
root} represent the set of cells in an attribute region. Given
ai, aj ∈ A, we say (ai, aj) is a ParentChild pair if ai is a
parent attribute of aj in the hierarchy. The hierarchy ex-
tractor identifies all the ParentChild pairs in the attribute
region.

For example, consider the hierarchy on the left of Figure 1
where each node represents an attribute in the correspond-
ing row. (20, 26) is a ParentChild pair, while (20, 31) and
(24, 25) are not. For a top hierarchy as shown in Figure 5,
(Airplane pilots, Airline transport) is a ParentChild pair.

The goal of the hierarchy extractor is to find all such
ParentChild pairs in an attribute region, thus describing a
hierarchical tree. It may seem that a simple heuristic can
recover the annotation hierarchies, but in practice, a correct
heuristic is extremely hard to obtain and to generalize to
a large number of spreadsheets. As in Figure 1, a simple
heuristic, such as the indentations of left attributes, may
identify some ParentChild pairs but fails to recognize (19,
20) as a ParentChild pair. Therefore, to obtain a correct
hierarchy, we need to use a probabilistic method to exploit
a variety of signals. In the rest of the section, we discuss our
proposed two classification-based algorithms.

3.2.1 Algorithm 1: Classification
To obtain all the ParentChild pairs in an attribute region,

our classification-based approach first generates a series
of ParentChild candidates and then finds all the true Par-
entChild pairs through classification.

A straightforward way to generate ParentChild candidates
for an attribute region A = {a1, ..., aN , root} is to create a
(ai, aj) for each ai, aj ∈ A. This simple method will yield
thousands of nodes for every single attribute region A with
N attributes. The size of created candidates potentially
could be very large, but in practice, we can greatly shrink the
number by leveraging our observations on the spreadsheets
to filter the unlikely candidates.

For left attributes, given a ParentChild pair candidate
(ai, aj) in a left attribute region, we observe that a candidate
in two cases is not likely to be a ParentChild pair.

1. The formatting styles of the parent and child attributes
are the same. We believe that formatting style of an at-
tribute cell is a strong indication of the hierarchical struc-
ture. Given a ParentChild candidate (ai, aj), ai and aj

are determined to share the same formatting style or not
based on a predefined style feature vector. The style fea-
ture vector for each attribute, style(a), is a combination of
the unary extraction features shown in Table 5 and the at-
tribute’s font size and indentation information. If we have
style(ai) = style(aj), then (ai, aj) is not likely to be a true
ParentChild pair. For example in Figure 1, the left attribute
at row 23 has the same formatting style as the one at row
21: style(23) = style(21), and so we do not consider this a
ParentChild candidate (21, 23).

2. We prioritize the similar ParentChild pairs which are
geometrically close to each other in the spreadsheet. For ex-
ample, as shown in Figure 1, we create two ParentChild pair
candidates (32, 33) and (26, 33), and the two candidates are
considered similar because 32 (Black, total) and 26 (White,
total) are both talking about race. As a result, we only keep
the pair (32, 33) with attributes geometrically closer and re-
move the ParentChild candidate (26, 33).

Algorithm 1 EnforcedTreeInference

Input: The attributes in an attribute region A = {a1, ..., aN}
Output: The attribute hierarchy P = {p1, ..., pM}
1: Initiate P
2: for each parent ∈ A do
3: maxprob← 0
4: maxparent← Root
5: for each child ∈ A do
6: Create a ParentChild candidate p = (parent, child)
7: Compute the probability cprob for L(p) = true
8: if cprob > maxprob then
9: maxprob← cprob

10: maxparent← parent
11: end if
12: end for
13: Create a ParentChild pair p′ = (maxparent, child)
14: P ← P ∪ p′

15: end for
16: Break cycles in P

For top attributes, given a ParentChild candidate (ai, aj)
in a top attribute region, we believe (ai, aj) is not likely to
be a true ParentChild pair if the row of the child attribute aj

is lower than the row of the parent attribute ai. Of course,
more heuristics could be found to further filter the unlikely
ParentChild candidates, but in practice, this simple rule is
already effective enough to greatly shrink the size of the
created ParentChild candidates.

Now we formally describe the classification process: given
a set of ParentChild pair candidates P = {(ai, aj)} in an
attribute region, the classifier assigns each p = (ai, aj) ∈ P
with a label from L = {true, false} s.t. the predicted Par-
entChild pairs {(ai, aj) | L(ai, aj) = true} construct an at-
tribute hierarchy in the given attribute region. If the clas-
sification is entirely correct, the produced ParentChild pairs
represent a tree. However any error in the classification
might yield an inaccurate result.

Our classification-based method exploits a variety of sig-
nals in a spreadsheet to extract attribute hierarchies. For left
and top attributes, we use a different set of features. For left
attributes, the classifier utilizes two types of features: unary
features and binary features; for top attributes, we mainly
utilize layout features. The features we used for both left
and top regions are discussed in detail in Appendix B.

3.2.2 Algorithm 2: Enforced-tree Classification
One weakness of the classification-based approach is that

it does not guarantee that the emitted ParentChild pairs
construct a tree. Thus, our second proposed technique is
enforced-tree classification, which embeds simple heuris-
tics into the classification results to ensure the produced
pairs construct a strict hierarchical tree. Of course, in a
tree structure, each node has only one parent (except the
root). Thus for each attribute, we select the one with the
maximal probability as its parent attribute. We obtain the
probability associated with each ParentChild pair during the
classification. This one-parent constraint does not guaran-
tee that the output will be a tree, as cycles may still exist in
the results. We then iteratively break cycles by deleting the
pairs with the minimal probability until there are no more
cycles in the output. We assume one’s parent attribute is
Root by default. Therefore, the two steps, the one-parent
constraint and the breaking-cycles, enforce the classification
results to generate a strict tree. The classifier uses the same

Algorithm 2 TupleBuilder

Input: The left hierarchy Hl, the top hierarchy Ht,
the set of values in the value region V = {v}
Output: The relational tuples T = {t}
1: Initiate T
2: for each v ∈ V do
3: Initiate t
4: Get annotating attributes for v from Hl as {al}
5: Get annotating attributes for v from Ht as {at}
6: t← v ∪ {al} ∪ {at}
7: T ← T ∪ t
8: end for

set of features as the classification method, and the details
of the algorithm are shown in Algorithm 1.

3.3 Tuple Builder
The tuple builder is straightforward, as long as the pre-

vious steps are accurate. We generate a relational tuple for
each value in the value region, annotating each one with rele-
vant attributes from the attribute hierarchies. For example,
Figure 1 shows the full six-field tuple we want to recover
for the highlighted value 13.7. The tuple builder is also
algorithmically straightforward. It processes the extracted
attribute hierarchies and the value region to generate a series
of relational tuples. As described in Algorithm 2, for each
value v, we find the its annotating attributes along the path
to the root in the attribute hierarchies for both left and top
attribute regions. The tuple builder relies entirely on the
frame finder and hierarchy extractor for correctness.

4. EXPERIMENTS
We can now quantify the performance of the system by

evaluating its individual components. In particular, we present
the performance of the frame finder and the hierarchy
extractor. We do not directly evaluate the tuple builder
because it entirely relies on the correctness of the hierarchy
extractor, and it will yield the ideal results as long as it
receives accurate hierarchies.

In the following experiments, we use 100 random hier-
archical data frame spreadsheets (data frame spreadsheets
with hierarchical top attributes or hierarchical left attributes).
We obtained this dataset by randomly sampling spread-
sheets from WEB and only keeping those with a hierar-
chical data frame. For top, the average hierarchy depth of
the dataset is 2.14, with a maximum depth of 5; for left, the
average hierarchy depth is 2.61, with a maximum depth of
9. The training and testing procedures for both the row la-
beler and the hierarchy extractor are as follows: we ran-
domly split the dataset into equal-sized training and testing
sets, repeating this process 10 times. Then we report the
average Precision, Recall, and F1 measure for each class.
We also present the mean and standard deviation (std) for
errors per sheet, which is defined as follows:

Definition 4. (Errors per sheet) A classification task pro-
duces two types of errors, false positive (fp) and false neg-
ative (fn), on N spreadsheets. We define errors per sheet:

Errorssheet = (fp + fn)/N

For the experiment setup, we used several open-source
packages: for frame finder, our CRFs were implemented
on CRF++ [7]; for hierarchy extractor, we used the SVM

Performance Errors
Precision Recall F1 Mean Std

title
Base-CRF 0.561 0.605 0.582 3.534 4.532
Full-CRF 0.818 0.734 0.774 0.872 0.150

header
Base-CRF 0.624 0.606 0.615 2.348 0.621
Full-CRF 0.812 0.740 0.774 1.316 0.343

data
Base-CRF 0.995 0.970 0.982 6.526 5.239
Full-CRF 0.995 0.993 0.994 1.528 0.330

footnote
Base-CRF 0.550 0.786 0.647 4.208 3.414
Full-CRF 0.843 0.826 0.834 1.208 0.223

Table 1: Performance of the row labeler.

Performance Errors
Precision Recall F1 Mean Std

top
SVM 0.921 0.918 0.919 1.834 0.398

EN-SVM 0.920 0.920 0.920 1.829 0.395

left
SVM 0.852 0.700 0.769 19.554 5.107

EN-SVM 0.811 0.811 0.811 16.154 4.332

Table 2: Performance of the hierarchy extractor.

library from the LIBSVM package [4] and the Weka pack-
age [10] for the logistic regression and naive Bayes method.

4.1 Frame Finder
We now evaluate the performance of the frame finder

described in Section 3.1 by evaluating the row labeler. Our
experiment spreadsheets contain 27,531 non-empty rows that
are correctly assigned with semantic labels by a human ex-
pert. In [16], CRFs were used to label the lines of tables in
plain-text government statistical reports using textual fea-
tures. Our row labeler also uses CRFs but incorporates
richer features: both textual and layout features. The layout
features, such as bold font and alignment, are hard to obtain
from plain text but accessible in spreadsheets through the
Python xlrd library. Therefore, we compare two CRFs with
different sets of features: Base-CRF for textual features and
Full-CRF for textual + layout features.

As shown in Table 1, Full-CRF performs significantly bet-
ter than Base-CRF on all the metrics, including precision, re-
call, and errors per sheet. According to precision and recall,
both methods do a decent job of predicting all the labels,
but they show a large difference in the number of errors, es-
pecially for the label data. For data, the two methods have
very close precision and recall, but Base-CRF produces many
more errors than Full-CRF. This occurs because of the huge
number of data rows in the dataset, and a small difference
in the F1 measure will make a big difference to the absolute
number of errors. Overall, Table 1 shows that the Full-CRF
method is superior to the baseline Base-CRF method and can
work effectively as a part of the system. Full-CRF predicts
each category fairly accurately, and the number of errors
produced by Full-CRF is tolerable for all the labels, with
about one error per sheet.

4.2 Hierarchy Extractor
We evaluate the performance of the hierarchy extractor

discussed in Section 3.2 by measuring its accuracy in re-
trieving correct ParentChild pairs from a spreadsheet. The
hierarchical metadata in spreadsheets is unique, and we are
not aware of any previous method to automatically extract
such hierarchical metadata. Therefore, we create a base-
line approach Human to ask a user to manually enumerate
all the ParentChild pairs in an attribute region, which is
exactly what the hierarchy extractor infers automatically.
We first evaluate the performance of our two approaches:

Repairs

top
Human 22.469
SVM 1.834

EN-SVM 1.829

left
Human 58.598
SVM 19.554

EN-SVM 16.154

Table 3: User repair # for the hierarchy extractor.

SVM for classification and EN-SVM for enforced-tree classifi-
cation. We then compare our two methods with the baseline
method, Human, on the metric user repair #.

Definition 5. (User Repair #) We assume that a user
reviews every ParentChild pair candidate with an assign-
ment, true or false, in an attribute region. User repair #
is the number of assignments the user must modify in order
to obtain the correct hierarchy.

For SVM and EN-SVM, user repair # equals errors per
sheet in a given attribute region. For Human, user repair #
is the total number of true ParentChild pairs in an attribute
region (we assume that all the ParentChild pair candidates
are labeled false by default).

Table 2 shows the performance of our two methods. As
seen in Table 2, EN-SVM performs the best, especially on
left. Note that for left, EN-SVM has a higher recall than
SVM but a slightly lower precision. The reason is that given
an attribute, all the ParentChild candidates containing its
parent attribute may be labeled false by the classifier, and
then the attribute will not have any parent attribute. But
EN-SVM is able to recover its parent attribute by selecting
the most probable ParentChild pair from the false group.
Table 3 presents the user repair # for the three methods and
shows that both SVM and EN-SVM require a much smaller
number of user repairs than Human. We also tried logistic
regression and naive Bayes for classification. Overall, SVM
is comparable to logistic regression but performs the best of
the three. Therefore, we conclude that our method EN-SVM
is superior to the baseline Human, as EN-SVM predicts the
ParentChild fairly accurately and it beats Human on user
repair #.

One limitation of our system lies in the fact that the ab-
solute number of required repairs on left is not trivial. Ac-
cording to Table 3, the number of repairs on top is almost
negligible, but not on left. We will try to reduce the user
burden even further in future work.

5. RELATED WORK
There are three main types of existing approaches to trans-

form spreadsheet data into databases. The first is a schema-
based approach. For spreadsheet data already in a rela-
tional format, traditional schema mapping systems, such as
Clio [9] and Clip [17], could potentially be used to convert
the spreadsheet data into databases by specifying the source
and target attribute mapping. The second is a rule-based
approach [11], which requires explicit user-provided conver-
sion rules. Finally, a visualization-based approach provides
users with an interactive visualization interface to convert or
manage the underlying data [12, 18, 19, 21]. However, these
existing approaches all suffer from two common drawbacks:
(1) it is challenging to handle hierarchical spreadsheets; (2)
the transformation process cannot be accomplished auto-
matically: most of the approaches require users to learn a

new language or predefined operators to describe the trans-
formation rules. In fact, the work of Abraham and Erwig [1]
and Cunha et al. [8] are the most similar to ours. The for-
mer attempts to infer spreadsheet metadata, but they do
not address the hierarchical structures in spreadsheets. The
latter tries to convert spreadsheets into relational databases,
but their primary technical focus is to address the lack of
data normalization in spreadsheets that use very conven-
tional layouts. In addition, the approach does not address
hierarchical spreadsheets.

There is other research on spreadsheets attempting to
build database-like operators on a spreadsheet-style inter-
face [14, 22, 23, 25], but these systems cannot be directly
used to manage the large number of spreadsheets that al-
ready exist on the Web. The QueryByExcel project [23,
24, 25] uses a spreadsheet as a front end of the relational
database. It translates Excel formulas using an extension
of SQL relational operations and performs on RDBMS ta-
bles. Liu et al. [14] implemented an extended set of database
functions operating on spreadsheets, and the operations are
executed by a classic database engine in the background.
Tyszkiewicz [22] also attempted to combine SQL with spread-
sheets but implemented the functionality inside spreadsheets
instead of using an additional database engine.

6. CONCLUSIONS AND FUTURE WORK
We have described a domain-independent spreadsheet ex-

traction system for converting spreadsheet data into rela-
tional tuples. Our system consists of three components that
detect the structure of a spreadsheet, extract hierarchical
metadata, and generate relational tuples. Our experiments
show that our proposed methods are superior to the base-
line approaches and can work effectively as a part of the
whole framework. As a result, the system can help bring
relational-style data management techniques to the mass of
data currently locked in spreadsheets. The extraction pro-
cedure also emits various semantic byproducts in the form
of hierarchies that could be useful in a range of other appli-
cations, such as schema integration and design tools.

One area of future work lies in how to best incorporate
manual repairs to further reduce users’ burden. Another lies
in the integration application itself; extraction is a necessary
first step, and we have not yet rigorously addressed search
ranking quality and join findability in the end user tool.

7. ACKNOWLEDGMENTS
This project is supported by National Science Founda-

tion grants IIS-1054913 and IIS-1064606, as well as gifts
from Dow Chemical, Yahoo!, and Google. Special thanks
to Robert Vogel for advice and assistance.

8. REFERENCES
[1] R. Abraham and M. Erwig. Ucheck: A spreadsheet type checker

for end users. J. Vis. Lang. Comput., 18(1):71–95, 2007.

[2] Y. Ahmad, T. Antoniu, S. Goldwater, and S. Krishnamurthi. A
type system for statically detecting spreadsheet errors. In ASE,
pages 174–183, 2003.

[3] P. Blattner and L. Stewart. Microsoft excel 2000 functions in
practice. QUE, 1999.

[4] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support
vector machines. ACM Transactions on Intelligent Systems
and Technology, 2:27:1–27:27, 2011.

[5] Z. Chen, M. Cafarella, J. Chen, D. Prevo, and J. Zhuang.
Senbazuru: A prototype spreadsheet database management
system. VLDB Demo, 2013.

[6] 2009. ClueWeb09, http://lemurproject.org/clueweb09.php.

[7] 2009. http://crfpp.sourceforge.net.

[8] J. Cunha, J. Saraiva, and J. Visser. From spreadsheets to
relational databases and back. In PEPM, pages 179–188, 2009.

[9] A. Fuxman, M. A. Hernández, C. T. H. Ho, R. J. Miller,
P. Papotti, and L. Popa. Nested mappings: Schema mapping
reloaded. In VLDB, pages 67–78, 2006.

[10] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,
and I. H. Witten. The weka data mining software: an update.
SIGKDD Explor. Newsl., 11(1):10–18, Nov. 2009.

[11] V. Hung, B. Benatallah, and R. Saint-Paul. Spreadsheet-based
complex data transformation. In CIKM, pages 1749–1754, 2011.

[12] T. Igarashi, J. D. Mackinlay, B.-W. Chang, and P. Zellweger.
Fluid visualization for spreadsheet structures. In VL, pages
118–125, 1998.

[13] J. Lafferty, A. McCallum, and F. Pereira. Conditional random
fields: Probabilistic models for segmenting and labeling
sequence data. In ICML, pages 282–289, 2001.

[14] B. Liu and H. Jagadish. A spreadsheet algebra for a direct data
manipulation query interface. In ICDE, pages 417–428, 2009.

[15] M. Nahm and J. Zhang. Operationalization of the ufurt
methodology for usability analysis in the clinical research data
management domain. Journal of Biomedical Informatics,
42(2):327–333, 2009.

[16] D. Pinto, A. McCallum, X. Wei, and W. B. Croft. Table
extraction using conditional random fields. In SIGIR, pages
235–242, 2003.

[17] A. Raffio, D. Braga, S. Ceri, P. Papotti, and M. A. Hernández.
Clip: a visual language for explicit schema mappings. In ICDE,
pages 30–39, 2008.

[18] V. Raman and J. M. Hellerstein. Potter’s wheel: An interactive
data cleaning system. In VLDB, pages 381–390, 2001.

[19] R. Rao and S. K. Card. The table lens: merging graphical and
symbolic representations in an interactive focus + context
visualization for tabular information. In CHI, pages 318–322,
1994.

[20] J. Simon. Excel 2000 in a nutshell. O’Relly Media, 2000.

[21] M. Spenke, C. Beilken, and T. Berlage. Focus: The interactive
table for product comparison and selection. In UIST, pages
41–50, 1996.

[22] J. Tyszkiewicz. Spreadsheet as a relational database engine. In
SIGMOD, pages 195–206, 2010.

[23] A. Witkowski, S. Bellamkonda, T. Bozkaya, G. Dorman,
N. Folkert, A. Gupta, L. Sheng, and S. Subramanian.
Spreadsheets in rdbms for olap. In SIGMOD Conference, pages
52–63, 2003.

[24] A. Witkowski, S. Bellamkonda, T. Bozkaya, N. Folkert,
A. Gupta, L. Sheng, and S. Subramanian. Business modelling
using sql spreadsheets. In VLDB, pages 1117–1120, 2003.

[25] A. Witkowski, S. Bellamkonda, T. Bozkaya, A. Naimat,
L. Sheng, S. Subramanian, and A. Waingold. Query by excel. In
VLDB, pages 1204–1215, 2005.

APPENDIX
A. FRAME FINDER FEATURES

The features we used in the frame finder include layout
and textual features. Each of the features is a binary func-
tion, taking in a given row in a spreadsheet as the input and
emitting a 0/1 Boolean value as the output. The features
attempt to test whether the properties of a row are an indi-
cation of a certain category in {title, header, data, footnote}.
The features are listed in Table 4.

B. HIERARCHY EXTRACTOR FEATURES
Left Attributes – For left attributes, given a ParentChild

pair candidate (ai, aj), we employ a set of features to char-
acterize its properties, thus determining whether it is a true
ParentChild pair. The testing features include unary fea-
tures and binary features, as shown in Table 5. The unary
features apply on each of the child and parent attributes,
and the binary features apply on the attribute pair.

Top Attributes – For top attributes, given a ParentChild
pair candidate (ai, aj), we utilize a set of layout features to
characterize the properties of the attribute pair, thus deter-
mining whether it is a true ParentChild pair. The features
we used are shown in Table 6.

Layout Features
1 Has a bold font cell
2 Has a cell reaching the left bound
3 Has a cell reaching the right bound
4 Has a cell with indentations
5 Has a center-aligned cell
6 Has a left-aligned cell
7 Has a merged cell
8 Has only one column

Textual Features
1 Contains colon
2 Contains punctuations
3 Has a cell with with a word count > 40
4 Numeric cells within year range ratio > 0.6
5 Row is blank
6 With all words in lowercases
7 With all words capitalized
8 With all words starting with capitals
9 With numeric cells ratio > 0.6
10 With words starting with “table”

Table 4: Extraction features for the frame finder.

Unary Extraction Features
1 Attribute has underline
2 Attribute contains keywords like “total”
3 Attribute contains colon
4 Attribute is bold
5 Attribute is center aligned
6 Attribute is italic
7 Attribute is numeric
8 Attribute letters are all capitalized
9 Is the first attribute
10 Is the last attribute

Binary Extraction Features
1 Attribute pair is adjacent
2 Attribute pair’s indentation is equal
3 Attribute pair’s style is adjacent in the region
4 Child’s font size is smaller than parent’s
5 Child’s indentation is greater than parent’s
6 Child’s row index is greater than parent’s
7 Child’s style is the same as the first attribute
8 Has blank cells in the middle
9 Has middle cell with indentation between the pair’s
10 Has middle cell with indentation larger than the pair’s
11 Has middle cell with indentation less than the pair’s
12 Has middle cell with style different from the pair’s
13 Has middle cell containing keywords like “total”
14 Parent is the root

Table 5: Extraction features for the hierarchy ex-
tractor on left attributes.

Layout Extraction Features
1 Child has no cell right above
2 Child is at the uppermost header row
3 Has a cell in the middle
4 Parent cell covers child’s column
5 Parent is on the left of child
6 Parent is on the right of child
7 Parent is right above child
8 Parent is the root

Table 6: Extraction features for the hierarchy ex-
tractor on top attributes.

