
Sample-Driven Schema Mapping∗

Li Qian
Univ. of Michigan, Ann Arbor

eql@umich.edu

Michael J. Cafarella
Univ. of Michigan, Ann Arbor

michjc@umich.edu

H. V. Jagadish
Univ. of Michigan, Ann Arbor

jag@umich.edu

ABSTRACT
End-users increasingly find the need to perform light-weight, cus-
tomized schema mapping. State-of-the-art tools provide powerful
functions to generate schema mappings, but they usually require an
in-depth understanding of the semantics of multiple schemas and
their correspondences, and are thus not suitable for users who are
technically unsophisticated or when a large number of mappings
must be performed.

We propose a system for sample-driven schema mapping. It
automatically constructs schema mappings, in real time, from user-
input sample target instances. Because the user does not have to
provide any explicit attribute-level match information, she is iso-
lated from the possibly complex structure and semantics of both the
source schemas and the mappings. In addition, the user never has
to master any operations specific to schema mappings: she simply
types data values into a spreadsheet-style interface. As a result, the
user can construct mappings with a much lower cognitive burden.

In this paper we present MWEAVER, a prototype sample-driven
schema mapping system. It employs novel algorithms that enable
the system to obtain desired mapping results while meeting inter-
active response performance requirements. We show the results
of a user study that compares MWEAVER with two state-of-the-
art mapping tools across several mapping tasks, both real and syn-
thetic. These suggest that the MWEAVER system enables users to
perform practical mapping tasks in about 1/5th the time needed by
the state-of-the-art tools.

Categories and Subject Descriptors
H.2.5 [Database Management]: Heterogeneous Databases; D.2.12
[Software Engineering]: Interoperability—Data mapping
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1. INTRODUCTION
A schema mapping transforms a source database instance into

an instance that obeys a target schema. It has long been one of the
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most important, yet difficult, problems in the areas of data exchange
and data integration [9, 21, 22]. Traditional database applications in
E-business, data warehousing and semantic query processing have
required good schema mappings among heterogeneous schemas.
Moreover, as the amount of structured Web-based information ex-
plodes (e.g., Wikipedia, Freebase, Google BigTable, etc.), users
are directly exposed to the task of combining, structuring and re-
purposing information [12]. Doing so inevitably requires schema
mapping to be democratic: non-technical users should be able to
cook their data with their own flavor, even if they cannot master the
“professional kitchenware” designed for database experts.
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Figure 1: A Comparison between the Match-Driven Approach and
the Sample-Driven Approach

Due to the importance of the schema mapping problem, a hand-
ful of mapping design systems have been developed. These systems
include InfoSphere Data Architect (from Clio [27]), BizTalk Map-
per [2], Altova MapForce [1], and Stylus Studio [3]. All of these
systems are based on the same general methodology that was first
proposed in Clio [27]. The methodology consists of two phases. In
the first matching phase, a set of correspondences between source
and target schema elements is solicited from the user, with possible
aid from automated techniques that find similar attribute pairs [25,
23, 20, 14, 24, 13, 16, 26, 15]. During the second mapping phase,
the set of matches yields an executable transformation from the
source schema to the target schema.

Unfortunately, this traditional match-driven model is unsuitable
for many modern schema mapping tasks. The user must either build
attribute-level matches from scratch, or else painstakingly double-
check an automatically-generated set of matches. An implicit as-
sumption made by these systems is that the user has detailed knowl-



edge of both the source and target schemas. For traditional schema
mapping tasks that involve a sophisticated administrator and a sin-
gle high-value target database, this assumption makes sense. But
modern mapping scenarios feature relatively unsophisticated users
and a multiplicity of tasks: a DBA may only map two HR databases
together when a corporate acquisition takes place, whereas a Web
advertising analyst may need to combine schemas of different data-
sets multiple times a day. For these less-technical users who per-
form a large number of mappings, the laborious match-driven pro-
cess can be a heavy burden.

A Sample-Driven Approach In this paper, we propose a sample-
driven approach that enables relatively unsophisticated end-users,
not DBAs, to easily construct their own data. The key idea be-
hind our approach is to allow the user to implicitly specify schema
mappings by providing sample data of the target database. Be-
hind the scenes, the system automatically elicits the mappings that
transform the source database into this partially-described target.
After the user has provided enough information, the system can
determine a single best mapping. The process is iterative. As
the user types more information from the target database, the sys-
tem provides increasingly better estimates of the correct mapping.
Figure 1 depicts a high-level comparison between the traditional
match-driven approach and the sample-driven approach.

Our sample-driven approach reduces the user’s cognitive burden
in two ways. First, the user no longer needs to explicitly under-
stand the source database schema or the mapping. She simply
types in sample instances until the system converges to a single
proposal. Second, the operations that the user performs are com-
mon and require no special training: she simply types in data as in
a spreadsheet. In contrast, current tools are applications designed
for trained DBAs, and require users to decide whether individual
attribute-level matches are correct. The following example pro-
vides some intuition about how the sample-driven approach works.
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Figure 2: An Example Schema Mapping with The Question Mark
Indicating a Join Path Ambiguity.

EXAMPLE 1. A user is exploring the Yahoo Movies database,
and wishes to store the movie title as Name and the director name
as Director in a target MyMovieInfo, as shown1 in Figure 2.

A typical match-driven system proposes attribute correspondences
to the users, as shown in Figure 3. The user needs to either pick out
each correct correspondence from multiple candidates, or scan the
source schema for the correct correspondence if it is not proposed;
both situations require a comprehensive knowledge of the schemas.

In a sample-driven approach, the user freely provides sample in-
stances for the target Director field. For each director name she
provides, the system automatically searches the source database to
find all attributes that contain the name. For example, if a user en-
ters Ed Wood, the system may find the value in both Person.name
and Movie.title. As the user enters more names, the set of at-
tributes eventually converges to a single attribute Person.name,
indicating that the user has implicitly specified the correspondence
from MyMovieInfo.Director to Person.name.
1We only show a subset of the source schema due to space. The
solid arrows represent foreign key constraints.

Even if a match-driven system perfectly generates all the attribute-
level correspondences, it may has to deal with multiple possible
mappings. In this example, imagine the system matches MyMovie-
Info.Name to Movie.title, and MyMovieInfo.Director
to Person.name. There are still two possible ways to construct
the mapping2: one by joining Movie and Person via Director,
the other by joining via Writer. (See Figure 2.) Current match-
driven systems usually pick only one mapping, which may not be
the desired one [7]. Even if the system presents both candidate
mappings to the user, she still has to manually select the desired
join via Director.

In contrast, the sample-driven approach also considers data-
level information to help find the correct mapping. For example,
if the user enters (Harry Potter, David Yates) in the target, the
system will know that the join must NOT be via Writer, as the
source indicates that the writer of Harry Potter is J. K. Rowling.

Figure 3: A Screenshot of IBM InfoSphere Data Architect

Of course, the user must be familiar with the target schema in
order to provide samples. While traditional database schemas can
be quite complex, expert DBAs are likely to know the data well
enough to give useful samples. Non-traditional users may not be fa-
miliar with database schemas in general. But as the trend for light-
weight, Web-based information integration increases, our computa-
tionally unsophisticated users are likely to be well-informed about
the target database they want to build. In either case, it is reason-
able to believe that the sample-driven approach will be suitable for
a large group of mapping scenarios.

In this paper, we design and prototype a sample-driven mapping
system, MWEAVER, which facilitates schema mapping tasks for
end-users. We also conduct a detailed user study that compares
users’ behavior with MWEAVER and with state-of-the-art mapping
tools. We show that by reducing the cognitive burden for the user,
and providing a familiar spreadsheet-style interface, MWEAVER

allows the average user to perform a practical mapping task in about
1/5th the time needed for the traditional match-driven approach.

Technical Challenges MWEAVER renders schema mapping eas-
ier from the user’s perspective, but actually building the runtime
system presents two substantial technical challenges. First, it must
obtain the desired mapping using just the user-provided samples.
Doing so can entail locating each piece of sample throughout the
source database, and then deriving all possible mappings that those
pieces together suggest. Second, these mappings must be com-
puted quickly enough that the user can obtain “interactive-speed”
feedback, allowing her to review the current system status before
continuing to provide more samples or stopping if the system has
generated the desired mapping.
2We only consider joins via foreign key constraints.



Figure 4: A Screenshot of MWEAVER. Left: The Input Spreadsheet. Right: The Expanded List of Candidate Mappings.

Our Contributions Our work makes the following contributions:

• We propose a sample-driven approach to facilitate schema map-
ping tasks for end-users, and present a prototype system, MWEAVER.

• We develop an efficient sample search algorithm and show that
it can obtain provably correct results at interactive speeds.

• We present the results of a detailed user study that demonstrates,
among other things, that a typical MWEAVER user can obtain
schema mappings in 1/5th of the time required by state-of-the-
art mapping tools.
Our paper is organized as follows. We cover related work in

Section 2 and provide an overview of MWEAVER in Section 3.
The sample search algorithm is described in Section 4. Section 5
describes how we iterative prune the candidate mappings. In Sec-
tion 6, we present user studies that demonstrate the usability of our
system, as well as performance experiments that demonstrate the
efficiency of our algorithm. Finally, we conclude in Section 7.

2. RELATED WORK
Research into schema matching and mapping make up an enor-

mous body of work, as described in a recent text [10]. State-of-
the-art schema matching approaches can be roughly classified into
three categories. Schema-based techniques perform matching by
examining metadata, such as in Clio [27] and Similarity Flood-
ing [25]. Instance-based approaches determine the similarity be-
tween schema elements from the similarity of the characteristics
of their instances [23, 20]. Many systems utilize a combination of
these two techniques, such as LSD [14], Cupid [24], COMA [13].
Usage-based methods improve matching quality by exploiting us-
age information, such as query logs [16] and search clicklogs [26].

Although we are not aware of systems that use contributed sam-
ple instances to directly construct the mapping, data examples have
been an important part of the mapping literature. Alexe, et al. re-
cently developed Eirene, a system for interactive design and refine-
ment of schema mappings using data examples, by GLAV fitting
generation [8]. Eirene offers abundant flexibility in that it derives
the mappings as long as the source and the target schema, as well as
a few paired examples under both schemas are provided. However,
consequently, the user has to understand both schemas in order to
fill in valid data examples and explicitly specify join paths by link-
ing related tables using data with the same value. This may result
in some user burden, especially in the presence of a complex source
schema and long join paths in the mapping. In contrast, MWEAVER

assumes the existence of a complete source database instance, to
which the user-input samples belong. As a result, the user does not
need to know the source schema or to specify the join paths, be-
cause the system can use the source instance as a knowledge base
to automatically derive the mappings.

Yan, et al. attempted to choose tuples that best exemplify a map-
ping [30]. Alexe, et al. systematically investigated the capabilities
and limitations of data examples in explaining and understanding
schema mappings, especially in using universal examples to char-
acterize mappings defined by s-t tgds [7]. However, these are done
in an “explanatory” phase after the mapping has been generated.

SPIDER [6] and MUSE [5] are designed to refine a partially-
correct mapping generated by a more traditional tool. They first
generate candidate mappings using a match-driven mapping tool,
and then ask the user to debug them by examining user-proposed
examples. In contrast, MWEAVER asks users to simply enter data
items, and to trust that the system will find the correct mapping.

Drumm et al. designed QuickMig for automatic schema match-
ing for data migration [15]. It asks a user to manually create tar-
get instances in the source and then apples standard instance-based
matching algorithms on these sample instances to determine the
matching. However, these sample instances only aim to generate
schema element correspondences rather than mapping structure.

Recently, there has been a trend toward leveraging user feedback
to improve the quality of an information integration task. Talukdar
et al. [29, 28] developed system Q to assist the user in creating in-
tegration queries. In system Q, integration is defined as a union of
queries weighted by relevance. The system shows the query result
to the user, who in turn provides feedback to the system by judging
whether a result tuple is relevant. In MWEAVER, the system noti-
fies the user about the current mapping generation status, and the
user provides feedback in the form of additional sample instances.

The system [31] is a well-known work that employs example
data to assist in query generation. The user constructs a query with
QBE by providing example tuples under both the database schema
and the result view. Examples with same value suggest how the re-
lations are joined and which attributes are projected. While the user
can supply fake data in QBE, the input to MWEAVER must be sam-
ples from the database instance. As a result, the user has to manu-
ally specify join paths by simulated IDs in QBE, while MWEAVER

is able to automatically derive the join paths from sample values.
MWEAVER has a strong relationship to database keyword search

techniques, which have been extensively studied in the literature [11,
4, 17]. However, database keyword search focuses on querying tu-
ples that may be related to the keywords; in contrast, MWEAVER

focuses on determining the exact mapping that produces a target
database containing the samples.

3. SYSTEM OVERVIEW
In this paper, we propose MWEAVER, a sample-driven schema

mapping tool that constructs schema mappings based on user-input
sample instances. By assuming the user-input samples are approx-
imately present3 in a source database instance that we have ac-
cess to, the major advantage of MWEAVER is that it isolates the
user from the possible complexity of such a source database and
its schema. MWEAVER takes as input the source instance and
a partially filled spreadsheet, and produces as output the schema
mappings that map the source to a target containing that spread-
sheet. We assume the schema mappings are Project-Join queries
over relational database. While selection, aggregation and user-
defined functions would largely strengthen the expressive power of
the mappings, we do not study them in this work because they may
produce information loss that is non-recoverable on the target side.

3We will detail this notion of “approximation” in Section 4.1



Since we do not expect end-users to be able to specify foreign
key constraints[18], we assume in this paper that the target schema
comprises one or more table “views”, each of which has joined all
the information the user wants to see at one time. Since these views
are independent, they can be constructed one at a time. Without loss
of generality, we can assume the target schema is a single table.
User Interface: The primary UI component of MWEAVER is a
spreadsheet that conforms to the target schema. We call it the In-
put Spreadsheet. On the left of Fig 4 shows an input spreadsheet in
which the user is filling data. The user may adjust the input spread-
sheet by adding/dropping/renaming columns to meet her mental
model of the target. The bar directly under the logo provides in-
formation about the current mapping generation status. By default
it only displays the number of mappings currently found. If the user
wishes to know more about the mappings, she may expand the in-
formation bar by clicking the “plus” on the right. This will trigger
a Mapping List, which visualizes each mapping with details.

In the mapping list, each mapping is visualized as an undirected
tree. Each node in the tree is labeled with the source relation in-
volved in the mapping, together with the correspondences between
the target columns and the source attributes. Each edge in the tree
represents how these source relations are joined in the mapping.
User Input: After the structure of the input spreadsheet is fixed,
the user can input data in any cell in the spreadsheet. Formally, a
user input is Input(i, j, c), which updates the content of the cell
on the i-th row and the j-th column of the input spreadsheet to c.
We call the content in each non-empty cell of the input spreadsheet
a sample. We do not consider empty cells.
Interaction Model: The system interacts with the user by main-
taining a set of mappings upon each user input. We call such map-
pings candidate mappings. The interaction starts with the user fill-
ing out the first row of the input spreadsheet. We require the first
row to be fully populated in order to establish a general impression
of the complete desired mapping. After this, MWEAVER constructs
the initial set of candidate mappings from the samples in the first
row. Formally, we name this process Sample Search.

Afterwards, the user may continue to provide sample instances
in any cell below the first row. Whenever one cell is updated,
MWEAVER uses all the samples (i.e., non-empty cells) from that
row to prune the set of candidate mappings. We call this process
Sample Pruning. Finally, the interaction terminates when there is
only one mapping left. As long as the user input correctly reflects
her knowledge and her knowledge is consistent with the source
database, the remaining mapping must be the desired mapping. In
other words, as the number of candidate mappings decreases, the
average mapping quality increases w.r.t. the number of user-input
sample. This finally produces a single best mapping which meets
the user requirement. We will elaborate on the sample search and
pruning techniques in Section 4 and Section 5, respectively.

4. SAMPLE SEARCH
4.1 Problem Formalization

We consider a source database DS with schema SS that has n
relations R1, ..., Rn and a target database with target schema ST

comprising a single target relation R. A schema mapping M is
a project-join query that maps SS to ST . For each Ri, i ∈ [n]4,
we denote its schema by S(Ri) and its instance by I(Ri). S(Ri)
is the set of all the attributes in Ri. Similarly, R has a schema
S(R) = {A1, ..., Am}, where m is the size of the target and Aj

(j ∈ [m]) represents the j-th attribute in R. t[A] stands for the
projection of tuple t on attribute A.

4Throughout the paper, we denote {1..n} by [n].

The user types in samples in the input spreadsheet under the tar-
get schema. Each sample E is a string. We denote the first row of
samples by tE = (E1, ..., Em), and call it a sample tuple. Our goal
of sample search is to find all the schema mappings that transform
the source database to a target “containing” the sample tuple.

Because the user-input may not have an exact match in the source,
as we use them to generate the schema mappings, we forgive in-
accurate samples by allowing them to be “noisily contained” by
some database instance. Formally, we define this “noisily contain”
relationship by a binary operator �, which returns a boolean value
based on the desired error model. Having this operator, we say t[A]
contains sample E iff t[A] � E. Similarly, we say t contains E iff
∃A s.t. t[A] � E. Furthermore, given tE = (E1, ..., Em), we say
t contains tE , iff ∀i ∈ [m], t[Ai] � Ei. Finally, we say a target
database DT contains tE iff ∃t ∈ DT s.t. t contains tE . Having
this concept of containment, we define sample search as follows.

DEFINITION 1 (SAMPLE SEARCH). Given a source database
DS and a sample tuple tE = (E1, ..., Em), sample search finds all
schema mappings5 M such that M(DS) contains tE . Each such
mapping is called a valid schema mapping.
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Figure 5: The Source Schema and the Target Relation with Samples

EXAMPLE 2 (THE RUNNING EXAMPLE). Let DS be part of
the Yahoo Movie Database with its schema SS partially shown
in Figure 5. Let ST has R = MyMovieInfo with S(R) =
{name,director,producer, location}, where name indicates
the movie title, director represents the name of the movie director,
producer identifies the company which produces the movie and
location specifies the filming location. Suppose the user enters a
sample tuple (Avatar, James Cameron, Lightstorm Co., New Zealand).
The sample search aims to find all the schema mappings that pro-
duce a target database that contains the sample tuple.

We will use this as a running example throughout this section.

4.2 The Challenge and The Opportunity
Intuitively, one way to solve the sample search problem is to

model the whole source database as a graph with each tuple repre-
sented by a vertex and each foreign key reference by an edge. Then
the problem is equivalent to finding all the subgraphs such that each
user-input sample is contained by a vertex of the subgraph. How-
ever, the fan-out of vertices in such a graph can be very large (e.g., a
director may have directed dozens of movies, and one movie genre
may even contain thousands of movies). As a result, searching such
a graph may be very inefficient [11].

An alternative approach is to first generate a group of mappings
that will possibly yield a target database that contains the sample tu-
ple, and then execute each of the mappings on the source database
to see if it is actually a valid mapping. Such “lucky” mappings
could be constructed by joining sample-containing relations in the
source database via various foreign key relationships. Unfortu-
nately, the number of such “lucky” mappings grows exponentially
with respect to both the number of joins allowed and the size of the
target. Because a “lucky” mapping has to be executed before one
5We restrict the search space with certain constraints that we will
detail in Section 4.4



knows whether its result contains the sample tuple, this approach
may require exponential rounds of database accesses. This can be
verified in similar database keyword search scenarios [17, 4].

In fact, the sample search problem is NP-hard, because it essen-
tially deals with the problem of searching a graph for all sub-graphs
that satisfy certain properties [19]. However, the definition of sam-
ple search implies that, if a mapping is invalid, then any mapping
that structurally contains it must be invalid. This inspires us to
construct valid mappings from smaller ones to larger ones. Since
generating smaller valid mappings is relatively cheap, as long as
we can efficiently build larger valid mappings on top of the smaller
ones, we can potentially meet practical interactive requirement.

4.3 Our Solution
In this paper, we propose a tuple path weaving algorithm TPW

to solve the sample search problem. We first create schema map-
pings for each pair of samples (pairwise mappings), and then check
their validity within the limit of acceptable noise. The execution re-
turns a set of pairwise tuple paths, which are essentially instance-
level support for the mappings. A mapping is valid iff such support-
ing set is non-empty. After that, we “weave” these pairwise tuple
paths purely in memory to generate larger and larger paths, which
finally cover all the samples. Lastly, we extract the valid mappings
from these “complete” tuple paths and return them with ranking.

Informally, TPW functions in the following five major steps.
1. Find sample occurrences in the source database.
2. For each pair of sample occurrences, generate pairwise map-

ping paths by searching their possible connections in the
source schema.

3. For each pairwise mapping, create a set of pairwise tuple
paths. Do so by translating the mapping into an approxi-
mate search query6, then executing it in the source database.
This will produce all pairwise tuple paths that support the
mapping. Mappings with no support will be pruned.

4. From these pairwise paths, build all complete tuple paths in
a bottom-up manner.

5. Rank mappings extracted from the complete tuple paths.
By pruning invalid mappings in an earlier stage, TPW avoids

exponential rounds of database accesses. Moreover, since instance-
level exploration is done in step 2, there is no overhead from travers-
ing the database with a potentially large tuple fan-out. Finally, it is
reasonable to expect “weaving” to be efficient, because as tuple
paths grow larger, their number decreases dramatically, which we
have verified by experiments and will describe in Section 6.3.

4.4 Definitions
Before we dive into a detailed description of TPW, we need

some definitions. Hereafter, for any graph or tree structure g, we
use V (g) to denote all its vertices, E(g) to denote all its edges, and
T (g) to denote all its terminal vertices (vertices of degree one).

Schema Graph To create pairwise mappings, we need to search
for possible join paths between the sample-containing relations.
This requires modeling the source schema as a graph. Because a
“null” value can not contain any samples, we only consider inner
join here. Since inner join is symmetric, we omit the direction of
the foreign key to primary key relationship hereafter.

DEFINITION 2 (SCHEMA GRAPH). The schema graph G is
an undirected graph that defines relation joinability according to
the foreign key to primary key relationships in SS . It has a ver-
tex Ri for each relation Ri ∈ SS and an edge (Ri, Rj) for each
foreign key to primary key relationship from Ri to Rj in SS .

6We use standard full-text search techniques for such approximate
search in our implementation.
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Figure 6: The Schema Graph of the Running Example

Figure 6 shows the schema graph of Example 2.

Relation Path Each possible join path among the sample-containing
relations specifies a unique mapping structure. We extract this
structure by a path of relations.

DEFINITION 3 (RELATION PATH). A relation path p is an undi-
rected tree such that: (1) ∀u ∈ V (p), u has a corresponding rela-
tion Ru ∈ V (G) and (2) ∀(u, v) ∈ E(p), (Ru, Rv) ∈ E(G).

Note that the same relation can appear multiple times in a rela-
tion path, as long as the second condition is satisfied. This poten-
tially means the size of the relation tree is not upper bounded by
the size of the schema graph.

Mapping Path Having the join structure defined, a mapping also
needs to specify which attributes in which relations are projected
to the target relation. We capture this information by a projection
map, which maps a subset of the target attributes to attributes be-
longing to vertices on the relation path. Intuitively, each terminal
vertex must have at least one projection, or it is redundant. Recall
that the target relation has size m, we have the following definition.

DEFINITION 4 (MAPPING PATH). Given a relation path p, let
N be a subset of [m] and A(p) =

⋃
u∈V (p) S(R

u). A mapping
path is p augmented with a projection map pm : N → A(p), such
that ∀v ∈ T (p), ∃i ∈ N and a ∈ S(Rv), s.t. pm(i) = a.

The definition says that a mapping path is essentially a relation
path whose terminal vertices have some attributes projected to the
target. Attributes in non-terminal vertices may also be projected.

direct 
produce company 

filmed-in location 
movie person 

name title 
name 
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Figure 7: One Desired Mapping Path for the Running Example

A mapping path is equivalent to a schema mapping in that it
can be translated to a SQL query that maps the source database to
the target relation. The projection can be fully determined from
the projection map while the joining of relations is implied by the
structure of the relation path. Hereafter, we use mapping path and
schema mapping interchangeably.

Informally, we say a mapping path is valid iff the corresponding
schema mapping is valid. A mapping path can be partial, when
N is a proper subset of [m]. We define the size of the mapping
path to be the size of N . Specifically, we call a mapping path with
size two a pairwise mapping path and a mapping path with size
m a complete mapping path. Our goal mapping paths must be
complete. Figure 7 exhibits a complete mapping path that is one of
the possible answers to the running example.7

Since the size of a relation path is unbounded by the schema, the
corresponding schema mapping size is also unbounded. This may
lead to an infinite number of mappings, most of which make little
practical sense. We will restrict the family of mappings we explore
by a join number constraint, which is detailed in Section 4.5.2.

Tuple Path In general, a mapping path may or may not be valid.
Because a mapping path is merely a schema-level object, and does
not guarantee the samples can be connected in the source database
7We also show the sample tuple for clarity.



instance following its path. Indeed, a mapping path is valid iff there
is a corresponding instance-level support. Such a support should
comprise source database tuples that connect samples via the map-
ping path. The formal definition of such a support is given below.

DEFINITION 5 (TUPLE PATH). A tuple path r is an instanti-
ated mapping path such that: (1) for each vertex u ∈ V (r), there is
an associated tuple tu ∈ I(Ru) and (2) for each (u, v) ∈ E(r), tu

and tv are directly connected in the source database by the foreign
key to primary key relationship between Ru and Rv.
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Figure 8: One Tuple Path Supporting the Desired Mapping
We define the size of a tuple path in the same way we did for a

mapping path. We call a tuple path with size two a pairwise tuple
path and one with size m a complete tuple path. Figure 8 depicts a
complete tuple path that instantiates the mapping path in Figure 7.8

One mapping path may be instantiated to any number of tuple
paths. Formally, we say a mapping path is valid iff it can be instan-
tiated to at least one tuple path. And our goal of sample search is
to find those valid complete mapping paths.

4.5 TPW Algorithm
In this section, we elaborate the five steps (see Section 4.3) of

the TPW algorithm. Details can be found in Appendix A.

4.5.1 Find Sample Occurrences
A mapping path can be arbitrary. However, if a source attribute

does not contain any samples, the mapping path that projects that
attribute can not be valid. Therefore, we first narrow our search
space by focusing only on the source attributes that contain at least
one sample. Formally, we construct a location map L, where L(i)
(i ∈ [m]) is the set of all the source attributes containing Ei.

EXAMPLE 3. In the running example, we first search for sam-
ple Avatar. We have L(1) = {movie.title,movie.logline},
because these are all the attributes that contain Avatar. Simi-
larly, L(2) = {person.name, family.family} since they con-
tain James Cameron. A more complete L is shown in Figure 9.

4.5.2 Pairwise Mapping Path Generation
Next, we generate all the pairwise mapping paths from schema

graph G and location map L. The size of such pairwise mapping
paths can be arbitrarily large, because the number of joins in these
mapping paths is unbounded by the source schema [17]. Fortu-
nately, we realize in practice, the mappings that project two at-
tributes from two relations that are joined via many intermediate
relations who have no attribute projected are very rare. Therefore,
we set up a threshold value PMNJ (Pairwise Maximal Number of
Joins) to restrict the family of mapping paths we explore. Specifi-
cally, we say a mapping path satisfies the PMNJ constraint iff the
largest number of joins between each pair of projected attributes on
the path is no larger than PMNJ . And we only aim to generate the
mapping paths that satisfy the PMNJ constraints. In this running
example, we will set PMNJ = 2, since it is enough to generate
the complete mappings of interest.

The pairwise mapping paths are generated as follows. First, for
each j ∈ [m] and each attribute Aj ∈ L(j), we issue a breadth-first
8We present only the primary keys, foreign keys and the projected
attributes due to space.
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Figure 9: The Tuple Path Weaving Algorithm TPW
search from the vertex Rj that contains Aj in the schema graph G
with depth limited by PMNJ . Whenever we encounter a vertex
Rk that contains Ak ∈ L(k) with k > j, we construct a relation
path backward from Rk to Rj and augment it with a projection
map built from Aj and Ak. The created pairwise mapping paths are
stored in a pairwise mapping path map PMPM with key (j, k).f

EXAMPLE 4. In the running example, we first generate the pair-
wise mapping path linking Avatar and James Cameron. We start
by picking movie.title from L(1), person.name from L(2)
and searching for the relation paths between them. By a breadth-
first search from movie in G, we reach Person via two paths:
movie-direct-person and movie-write-person. We aug-
ment them with projection information from the two attributes and
respectively obtain the mapping paths p1 and p2, and store them in
PMPM with key (1, 2), as shown in Figure 9.

4.5.3 Pairwise Tuple Path Creation
Once all the pairwise mapping paths are generated, we produce

tuple paths that instantiate them. To do this, we retrieve each pair-
wise mapping fromPMPM , translate it into an approximate search



query with the keywords constraints derived from the samples and
execute it. If the result set is empty, we prune the corresponding
pairwise mapping because any larger mapping containing it must
be invalid. Otherwise, we construct a pairwise tuple path from
each returned tuple, associate it with the corresponding mapping
and store it in a pairwise tuple path map PTPM . Since foreign-
key connection is normally sparse in real-life datasets, we expect
these tuple paths to fit in memory. Subsequent operations can also
be completed in memory, because the number of the tuple paths
decreases dramatically w.r.t. its size, as we will see in Section 6.3.

EXAMPLE 5. In Figure 9, suppose the source tuple t1 contains
Avatar, t3 contains James Cameron and t2 links t1 and t3 by for-
eign keys. Because these tuples successfully support mapping path
p1, we create a tuple path r1 from them, associate it with p1 and
store it in PTPM with key (1, 2). r2 - r5 are created similarly.

4.5.4 Complete Tuple Path Construction
Since all the necessary information for constructing the complete

mapping paths is stored in the pairwise tuple paths, we can then
perform the “weaving” in memory. “Weaving” essentially merges
a pairwise tuple path onto an existing base tuple path to produce
a new larger tuple path. We use the word “weave” to describe the
process of traversing the pairwise tuple path from one end to the
other and gradually merging its vertices onto the base tuple path.
The “weaving” terminates once a vertex fails to merge.

If all vertices on the pairwise tuple path can be successfully
merged onto the base tuple path, the latter will preserve its struc-
ture. Otherwise, the “unwoven” part of the the pairwise tuple path
will enrich the structure of the base tuple path by adding a “tail” to
it. Either way, the cost of “weaving” is upper-bounded by the size
of the pairwise tuple path, which is in turn bounded by PMNJ .

Since various larger tuple paths may share smaller sub-paths, we
“weave” the tuple paths in a bottom-up manner. Specifically, we
organize tuple paths by levels. Level n contains all the tuple paths
of size n, n ∈ {2..m}. For each n from 2 to m − 1, for each
base tuple path in level n, we “weave” a pairwise tuple path onto it
to create a tuple path in level n + 1. This terminates when all the
complete tuple paths are “woven” and stored in level m.

The following example illustrates how the “weaving” works. A
detailed description can be found in Algorithm 6 in Appendix A.

EXAMPLE 6. We start by constructing tuple paths of size three
from a base tuple path of size two, say, r1 in Figure 9. Then, we
enumerate all the possible pairwise tuple paths that may be woven
onto r1. Those are pairwise tuple paths whose projection map has
exactly one key in common with that of r1. For instance, it is possi-
ble to weave r3 or r4 onto r1 since their keys intersect on key 1.

Next, we attempt to merge the two paths by fusing the two ver-
tices pointed by the common key in both paths. If the tuples associ-
ated with the two vertices are identical, the two vertices are fused
and the two paths are merged successfully. Otherwise, the merge
fails and returns no new path. Here, r1 and r3 successfully merge
by fusing the first vertex (since they agree on tuple t1). However, r1
and r4 fail to merge (because r4 has tuple t7).

Finally, we issue a synchronized search from the fused vertex
along the pairwise tuple path to be woven. For each following ver-
tex v on the path, we search in the base tuple path for the next
adjacent vertex u such that tu = tv . If such a vertex does not exist,
we stop and return the current tuple path. Otherwise we fuse u and
v and proceed to the next vertex. This continues until the whole
pairwise tuple path is traversed. In this example, there is no vertex
which is adjacent to movie:t1 in r1 and has a tuple t5 as in r3. So
the process terminates and the new tuple path r6 is returned.

After all tuple paths of size three are generated, we begin to con-
struct tuple paths of size four (the complete tuple paths) from those
ones with size three. It is straightforward that r5 can be woven onto
r6, producing the complete tuple path shown in Figure 8. Another
complete tuple path is constructed by weaving r3 and r5 onto r2.

4.5.5 Ranking
We extract all the complete mapping paths from the complete tu-

ple paths and rank them before returning them to the user. For each
complete tuple path, we define its score to be a weighted sum of
two scores: a matching score which indicates how well the samples
match the actual data in the tuple, and a complexity score which is
the number of joins in the tuple path. The score of a complete map-
ping path is the average score of all its corresponding tuple paths.

4.6 Soundness and Completeness
The TPW algorithm is sound and complete in that every com-

plete tuple path generated corresponds to a valid schema mapping,
and every valid schema mapping satisfying the PMNJ constraint
is discovered by the algorithm. The soundness is straightforward.
The completeness is because, for any valid schema mapping that
generates a tuple t containing the sample tuple, we can always con-
struct the corresponding complete tuple path from the source tuples
that contribute to t, which are completely recorded when generating
the pairwise tuple paths. The proof can be found in Appendix B.

5. SAMPLE PRUNING
After the initial set of valid candidate mappings is generated, the

user may continue to enter additional samples to prune the can-
didate set. We call this process sample pruning. Given that our
sample search returns a limited number of candidate mappings, the
pruning can be processed in a straightforward manner as follows.
Pruning by Attribute Suppose the user enters a new sample Ei in
column i on another row in the input spreadsheet. We record all the
source attributes that contain Ei. Any mapping path that does not
map i to any of these attributes is then discarded.
Pruning by Mapping Structure After the user enters a new sam-
ple Ei in column i, whenever there is more than one sample on the
same row, we execute an approximate search query for each can-
didate mapping with the keywords constraints derived from these
samples. We discard a mapping if the search returns zero result.

EXAMPLE 7. In the running example, suppose the user con-
tinues to enter Big Fish on the first column of the second row,
and we find that the attribute Movie.logline does not contain
Big Fish. As a result, any mapping that maps the first column to
Movie.logline will be discarded. Similarly, if the user continues
to enter Tim Burton on the second column of the second row, we
will issue a search query with Big Fish and Tim Burton on each
candidate mapping. Any mapping that joins Movie and Person
via Writer will be discarded, because the writer of Big Fish is
not Tim Burton and, as a result, the query will return empty set.

6. EVALUATION
The critical test for our sample-driven mapping tool is whether

it truly renders schema mapping tasks feasible for end-users. In
this section we demonstrate a positive result in two ways. First, we
show that our sample-driven tool reduces user effort for completing
the mapping task when compared to both a standard match-driven
system and a state-of-the-art QBE-like mapping tool. Specifically,
we present a user study that compares the usability of the three
tools and show that our sample-driven tool enables an average user
to complete a schema mapping task in just 1/5-1/4th the overall



D1 D2 N1 N2 N3 N4 N5 N6 N7 N8
(a) Overall Time for Yahoo Movies

0

100

200

300

400

500

600

700

800

tim
e

(s
)

MWeaver
Eirene
InfoSphere

D1 D2 N1 N2 N3 N4 N5 N6 N7 N8
(b) Overall Keystrokes for Yahoo Movies

0

50

100

150

200

250

300

#
ke

ys
tro

ke
s

MWeaver
Eirene
InfoSphere

D1 D2 N1 N2 N3 N4 N5 N6 N7 N8
(c) Overall Mouse Clicks for Yahoo Movies

0

50

100

150

200

250

#
m

ou
se

cl
ic

ks

MWeaver
Eirene
InfoSphere

D1 D2 N1 N2 N3 N4 N5 N6 N7 N8
(d) Overall Time for IMDb

0

100

200

300

400

500

600

700

800

900

tim
e

(s
)

MWeaver
Eirene
InfoSphere

D1 D2 N1 N2 N3 N4 N5 N6 N7 N8
(e) Overall Keystrokes for IMDb

0

50

100

150

200

250

#
ke

ys
tro

ke
s

MWeaver
Eirene
InfoSphere

D1 D2 N1 N2 N3 N4 N5 N6 N7 N8
(f) Overall Mouse Clicks for IMDb

0

50

100

150

200

250

#
m

ou
se

cl
ic

ks

MWeaver
Eirene
InfoSphere

Figure 10: The overall time, keystrokes and mouse clicks for completing the mapping task on Yahoo Movies and IMDb. D1 and D2 are
database experts. N1-N8 are non-technical users.

time required by the other tools. Second, we show, with a synthetic
mapping task workload, that the sample-driven approach is able to
find the goal mapping with just about two rows of samples.

The sample search described in Section 4.1 is intuitively expen-
sive since the search space is the whole source database instance.
However, it relies on fast cooperation between the user and the sys-
tem, so any serious computational delay could render the tool un-
usable. We conduct a performance experiment and show that the
Tuple Path Weaving algorithm, TPW, is efficient enough to under-
pin our sample-driven tool. Indeed, we show that TPW is able to
find the candidate mappings in seconds, in a 500MB sized database.
In contrast, a naive approach constructed in a traditional keyword
search manner yields runtime up to hundreds of seconds, far more
than a user of a sample-driven tool is likely to tolerate.

6.1 Implementation and Environment
Our implementation of a sample-driven tool, MWEAVER, has a

UI written in HTML and javascript that communicates via AJAX to
a backend engine written in Java Servlet. We use two datasets in our
experiments: Yahoo Movies and IMDb. The Yahoo Movies dataset
is 500MB in size and contains 43 relations and 131 attributes. The
IMDb dataset is 2GB in size and contains 19 relations and 57 at-
tributes. Both datasets are stored in MYSQL 5.

We use the full-text search engine in MySQL to implement the
approximate search query. We set PMNJ to two, which is sufficient
for our goal mappings. All the experiments were run on a desktop
machine with an Intel Core i7 860 @ 2.80GHz and 8GB RAM.

6.2 Usability
We compare the usability of MWEAVER against two tools. The

first is IBM InfoSphere Data Architect (Version: 7.5.3.0), which is
a commercialized version of the Clio project, and serves as a typical
representative of the state-of-the-art match-driven tools. The sec-
ond tool, Eirene [8], is a schema mapping tool recently developed
by Alexe, et al. to help users design schema mappings through a
QBE-like interface. We design the following user study scenario to
be simple so that it can be carried out with non-technical subjects.

Suppose a user is browsing her favorite movies on the Yahoo
Movies/IMDb website, and finds two pages of particular interests:
the movie information page, which lists various properties of a
movie, and the personal information page, which displays the bi-
ography of the contributors (e.g., the writers and the actors). How-
ever, the user finds these pages overwhelming since they contain
every piece of related information spanning from a one-hundred-
line movie description to an actor’s achievements in forty years. In
fact, all she wants is just a small subset of all these messy attributes.

Assume the user is only interested in the release date, the pro-
duction company and the director of the movie, we formalize the
mapping task as follows. The source schema SS includes the com-
plete Yahoo Movies/IMDb Database schema, and the target schema
ST contains only one relation comprising the following attributes:
Movie: the title of the movie, ReleaseDate: the release date of the
movie, ProductionCompany: the company which produces the
movie and Director: the director of the movie. The user is asked to
develop a schema mapping that transforms the data under SS to the
new database with schema ST , for both Yahoo Movies and IMDb.
The goal mappings are depicted by mapping paths in Figure 11.

company movie produce 
title name 

direct person 
release_date 

Movie ReleaseDate ProductionCompany Director 

movie movie_ 
companies 

title 

cast_info person 

Movie ReleaseDate ProductionCompany Director 

movie_info 

company_ 
name 

(a) Mapping from Yahoo Movies 

(b) Mapping from IMDb 

name 

name 

name 

release_date 

Figure 11: Task Schema Mappings: (a) Yahoo Movies, (b) IMDb.
We recruited eight non-technical subjects and two database ex-

perts for comparison. All of them were asked to complete the
schema mapping task using MWEAVER, IBM InfoSphere Data Ar-
chitect and Eirene9. We recorded the overall time, keystrokes and
mouse clicks to complete the task for each user with each tool,
on both datasets. Because the latter two tools require substantial
knowledge about the source schema, we provided complete techni-
cal support when the users were using these two tools. The results
are shown in Figure 10. There was no substantial performance dif-
ference between database experts and end-users, or Yahoo Movies
and IMDb datasets.

The results demonstrate that, on average, creating the mapping
with MWEAVER only needs 1/5 the overall time that required by
IBM InfoSphere Data Architect, and 1/4 the overall time required
by Eirene10. This difference is partly explained by the reduction in
number of keystrokes and mouse clicks. The rest is attributed to the
(not directly measurable) cognitive burden on the user in reasoning
with unfamiliar source schema in the other tools.

While Eirene also asks the users to enter examples as in tra-
ditional QBE systems to design the mapping, MWEAVER saves
9We randomized the order to counterbalance the learning effect.

10All the above differences are statistically significant with p-values
< 0.0002 according to the Mann-Whitney test.



around half of the keystrokes required by Eirene. This is because
MWEAVER requires only target sample entry aided by auto-completion,
while Eirene requires the user to fully specify the examples under
both related source and target schema. Finally, MWEAVER only
needs 1/5 mouse clicks required by the other two tools, since the
UI of MWEAVER is simply a spreadsheet, which the users may
naturally navigate through using traditional spreadsheet hot keys.

At the end of the user study, we asked each user how much she
was satisfied with each tool and recorded a satisfaction score scaled
from one (very dissatisfied) to five (very satisfied). MWEAVER has
an average score of 4.7, InfoSphere 2.7 and Eirene 3.45.

We also found that MWEAVER only requires a few user-input
samples to derive the goal mapping. However, the scale of the user
study prevented us from collecting statistically significant data. There-
fore, we focused on the Yahoo Movies dataset and constructed a
synthetic mapping task workload containing tasks similar to the
one used in the user study. Specifically, we defined three sets of
task mappings. All the mappings in the same task set share the
same relation path. The relation path has two, three and four joins
for the three task sets. Each set contains four mappings, which vary
in the target schema size from three to six.

For each mapping in each task set, we simulated user-input by re-
peatedly randomly sampling instances from a synthetic target database
and fed them into MWEAVER until the mapping is discovered.
Each task was repeated for one hundred times and the average num-
ber of samples required is shown in Table 1. Recall that one row in
the target has m samples, the results show that it only takes the user
approximately two rows of samples to obtain the goal mapping.

Size of ST (m) 3 4 5 6

Task Set 1 7.24 9.35 10.80 14.98
Task Set 2 5.08 8.50 11.55 16.18
Task Set 3 6.97 9.27 11.71 13.67

Table 1: The Average Number of Samples to Generate the Goal Mapping.

Finally, for each of the three task sets, we examined the num-
ber of candidate mappings (valid complete mapping paths) as the
number of user-input samples increased. From the results shown
in Figure 12, we observe that the number of candidate mappings
drops dramatically as the number of user-input samples increases.
Although in the worst case, the system may need about 8m sam-
ples to discover the goal mapping, the average is only about 2m,
where m is the target schema size.

6.3 Performance
We conducted performance experiments with the same set-up

introduced above to demonstrate that TPW is efficient enough to
meet interactive requirements.

We first measured the average response time for both searching
and pruning to provide an overall sense of our system performance.
The results shown in Table 2 demonstrates that MWEAVER is able
to respond to a user-input sample within 1s for searching and 50ms
for pruning. In practice, the computation for the previous input is
largely paralleled with the next user data entry so that the absolute
waiting time observed by the user is very small.

Task Set Size of ST 3 4 5 6

1 Searching (ms) 534.35 655.03 639.49 577.25
Pruning (ms) 34.27 24.46 35.13 58.54

2 Searching (ms) 177.98 363.32 407.69 450.91
Pruning (ms) 27.23 40.63 58.24 62.20

3
Searching (ms) 305.89 442.78 761.69 817.38
Pruning (ms) 32.53 24.46 40.24 51.58

Table 2: The Average Response Time for Searching and Pruning.

Next, we demonstrate that TPW is much more efficient com-
pared to the naive approach derived directly from the schema-based

keyword search techniques [17, 4]. To do so, we developed a naive
algorithm which enumerated all the complete mapping paths (no
matter valid or not) in the same way as the equivalent “candidate
networks” are generated in [17], and validated them by executing
an approximate search query translated from each of them. We per-
formed both algorithms on the same workload described above. Ta-
ble 3 shows the average overall time to complete the sample search
for both algorithms. While TPW completed the search within 5
seconds on average, the time required by the naive algorithm grew
dramatically. The naive algorithm failed beyond size 5 because the
enumerated mapping paths exhausted the memory.

Task Set Size of ST 3 4 5 6

1 TPW (ms) 3735.48 3775.22 3008.52 3695.28
Naive (ms) 35891.43 734319.25 – –

2
TPW (ms) 578.47 1354.05 2043.77 2804.33
Naive (ms) 1273.62 41976.94 – –

3 TPW (ms) 1044.49 1674.66 3885.44 4727.86
Naive (ms) 11644.93 388723.31 – –

Table 3: The Average Search Time for TPW and the Naive Algorithm.

From this experiment, we also see that, even if the sample search
problem is NP-hard, TPW is typically able to solve it in near-linear
time. The intuition behind this huge improvement is that, invalid
mapping paths are pruned away much earlier when smaller tuple
paths are being processed in MWEAVER. To offer a clearer insight
into the performance experiment, we measured the total number of
tuple paths (with various size) processed in TPW and the number
of potentially valid complete mapping paths generated by the naive
algorithm. Both numbers are compared with the exact number of
valid mapping paths given a sample tuple. The result is shown in
Table 4. Although the number of tuple path processed in our ap-
proach increased near-exponentially, it was still many fewer than
the number of complete mapping paths that were generated and
needed to be validated by the naive algorithm. In addition, the tu-
ple paths were quickly processed in memory in TPW. In contrast,
in the naive algorithm, the complete mapping paths had to be val-
idated via expensive database accesses. This explains the perfor-
mance difference observed in Table 3.

Task Set Size of ST 3 4 5 6

1
# Valid MP 2.67 5.05 4.52 6.00
# TP Woven 15.46 207.40 719.67 3403.20
# Naive MP 964.38 163634.45 – –

2
# Valid MP 2.69 2.55 6.61 6.16
# TP Woven 5.66 39.6 530.16 2008.39
# Naive MP 35.31 967.25 – –

3
# Valid MP 2.19 3.45 4.53 6.85
# TP Woven 4.38 72.69 640.49 4149.37
# Naive MP 318.36 10582.93 – –

Table 4: Comparison between TPW and the Naive Algorithm.
(MP=Mapping Path, TP=Tuple Path)

Our final experiment examined the average total number of tuple
paths generated at each level in the TPW algorithm. The results
are shown in Figure 13. We observed that the number of valid tuple
paths decreases dramatically as the algorithm approached the full
size of the target schema. This is because in a real-life dataset, the
distributions of samples in different source attributes are relatively
independent, making specific combinations unlikely as the size of
the combination increases.

7. CONCLUSION AND FUTURE WORK
In this paper, we have proposed a sample-driven schema map-

ping approach to facilitate the data integration tasks for end-users.
While it is hard for end-users to understand the precise semantics
of schemas and mappings, providing sample instances is much eas-
ier for them; we exploit this to design and prototype MWEAVER,



Figure 12: Average Number of Candidate Mappings w.r.t. the Number of Simulated Samples. J: number of joins in each mapping. m: the target schema size.

Figure 13: Average Number of Tuple Paths Generated at Each Level in TPW. J: number of joins in each mapping. m: the target schema size.

our sample-driven schema mapping tool, which renders the schema
mapping tasks for end-users much more feasible.

We have studied the sample search problem in such a sample-
driven approach, and proposed an algorithm to efficiently generate
candidate mappings from user-input samples. Through user studies
and simulated experiments on real-world datasets, we have demon-
strated that MWEAVER is more usable than existing schema map-
ping tools and our solution to the sample search problem is efficient
enough to meet interactive requirements.

Our approach relies on the user-input to be roughly present in
the source instance. In case the user-input is totally irrelevant to
the source, it will invalidate previously generated correct mappings.
We are studying on how to provide features that will automatically
suggest relevant data and warn the user about irrelevant one. In
this paper, we primarily dealt with samples of string values. If
the source contains many numerical attributes, a numerical sam-
ple may be contained by multiple source attributes, which will in
turn degrade system performance. Also, since the number of tuple
paths may grow rapidly w.r.t. the source database size, it is desir-
able to provide some insights into the scalability of our approach.
Finally, we currently only support mappings in the form of project-
join queries, which is a subset of GAV mappings. It would be in-
teresting to study how to extend our approach to LAV and GLAV
mappings. We plan to address these issues in the future work.
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APPENDIX
A. TPW ALGORITHMS
A.1 Find Sample Occurrences

Given a sample tuple and a source database, Algorithm 1 locates
in the source all the occurrences of each sample in that tuple by
scanning all the source attributes (loops at line 3 and 5). Whenever
a source attribute contains a sample (line 6), it is registered to the
corresponding location map (line 7 and 11). The check on line 6 is
done by a standard full-text search on an individual column which
has a pre-computed inverted-index. Line 7 and 11 nest the location
map by relation so we can easily generate relation path hereafter.

Algorithm 1 LocateSample

Input: A sample tuple (E1, ..., Em), source database DS with schema SS

Output: A location map L = {L1, ..., Lm}
1: Initialize L
2: for all i ∈ {1..m} do
3: for all relation Ri ∈ DS do
4: LRi ← ∅
5: for all attribute A ∈ Ri do
6: if ∃t ∈ Ri s.t. t[A] � Ei then
7: LRi ← LRi ∪ {A}
8: end if
9: end for
10: if LRi �= ∅ then
11: Li(R

i)← LRi

12: end if
13: end for
14: end for

A.2 Pairwise Mapping Path Generation
Algorithm 2 constructs all the pairwise mapping paths that sat-

isfy the PMNJ constraint by issuing a breadth-first search on
the schema graph G. To perform the breadth-first search, we de-
fine a structure relation node, which has three properties: relation
which points to the corresponding relation in the source database,
dist which records the number of joins from this node to the ori-
gin and parent which stores the previous node during the search.
We also define Path Vertex, which composes a relation path. It has
a property relation which stores the corresponding relation, and
neighbor which stores all its neighbors. A relation path maintains
a lookup table to manage vertex membership. Also, we compute a
map in advance to prepare for mapping path creation.

We first construct relation paths from the schema graph G and
the location map L, as described in Algorithm 2. For each sample
Ei (line 2) and each relation Ri that contains it (line 3), we issue
a breadth-first search from the relation by calling Grow() (See Al-
gorithm 3). Grow() returns every relation path whose length is no
larger than PMNJ and connects Ri with another relation Rj con-
taining Ej (j > i). Finally we construct all the pairwise mapping
paths by appending registered attributes to each returned relation
path by invoking Create() (See Algorithm 4).

A.3 Pairwise Tuple path Creation
For each pairwise mapping path inPMPM(i, j), we then search

for all the pairwise tuple paths that instantiate it, and store them in
PTPM(i, j). This is done by the following steps. (1) We trans-
late the mapping path into a SQL query, with the join conditions

Algorithm 2 GeneratePairwiseMapingPath
Input: The location map L, the schema graph G
Output: PMPM , a map from (i,j) to a set of pairwise mapping paths, where i, j ∈
{1..m} ∧ i < j

1: Initialize PMPM
2: for all i ∈ {1..m} do
3: for all relation Ri ∈ Keys(Li) do
4: Initialize relation node r
5: r.relation ← Ri

6: r.dist← 0
7: r.parent← null
8: rs = Grow(L, r, i, G, PMNJ)
9: Create(rs, PMPM)
10: end for
11: end for

Algorithm 3 Grow
Input: The location map L, a relation node r containing Ei, the index i, the schema

graph G, the maximal number of joins PMNJ
Output: All the relation paths from r to s within PMNJ joins, where s is a relation

node containing Ej and j > i

1: Initialize a relation path set rs
2: Initialize a queue of relation node Q
3: Q.push(r)
4: while Q is not empty do
5: c← Q.pop()
6: for all j ∈ {i + 1..m} do
7: if c ∈ Keys(Lj) then
8: Create relation path p backward from j to i.
9: rs.add(p)
10: end if
11: end for
12: if c.dist < PMNJ then
13: for all R′ that is adjacent to c.relation in G do
14: Initialize relation node n
15: n.relation← R′

16: n.dist← c.dist + 1
17: n.parent← c
18: Q.push(n)
19: end for
20: end if
21: end while

defined by the path structure. (2) For each relation on the mapping
path, we project all of its primary keys. (3) We expand the query
by full-text search constraints derived from the sample tuple. (4)
We execute the full-text search query. (5) For each tuple in the re-
sult set: (i) for each relation on the mapping path, we generate a
universal tuple id for the provenance tuple in that relation from the
schema of that relation and the values of all the projected primary
keys. (ii) We collect such tuple ids for all the relations on the map-
ping path, align them in the same structure as in the mapping path
and store them in PTPM .

A.4 Complete Tuple Path Construction
After all the pairwise tuple paths are generated, we no longer

need to access the database since the tuple paths contain complete
information to derive the candidate mappings. Specifically, we
compute the complete valid mapping paths by “weaving” the tu-
ple paths in a bottom-up manner, as described in Algorithm 5. At
each level (line 3), we retrieve all the tuple paths generated from
the previous level (line 4) and try to weave each pairwise tuple path
onto these base tuple paths (line 5-18). The weaving is described in
Algorithm 6, which simultaneously traversed two tuple paths (line
11, 12), compare corresponding vertices by checking the identities
of the tuples associated with them (line 13) and update path struc-
ture on successful merges (line 14-16).

B. PROOFS
Here we prove that the tuple path weaving TPW algorithm that

solves the sample search problem is sound and complete.



Algorithm 4 Create
Input: A relation path set rs, the pairwise mapping path map PMPM
Output: PMPM
1: for all r ∈ rs do
2: Let i, j ∈ DOM(r.pm) and i < j

3: for all ai ∈ Rr.pm(i) do
4: for all aj ∈ Rr.pm(j) do
5: Initialize a mapping path p from r
6: Append ai to p.pm(i)
7: Append aj to p.pm(j)

8: PMPM(i, j) ← p
9: end for
10: end for
11: end for

Algorithm 5 GenerateCompleteTuplePath

Input: The pairwise tuple path map PTPM , the size of the target schema m
Output: The complete tuple path map CTPM
1: Initialize tuple path set pl, npl
2: pl ← PTPM
3: for all i ∈ {2..m} do
4: for all tp ∈ pl do
5: for all ptp ∈ PTPM do
6: Initialize a set ck
7: ck ← DOM(tp.pm) ∩DOM(ptp.pm)
8: if ck.size = 1 then
9: Let k be the only element in ck
10: Initialize new tuple path ntp, nptp
11: ntp← tp
12: nptp← ptp
13: ntp← Weave(ntp, nptp, k)
14: if ntp �= null then
15: npl.add(ntp)
16: end if
17: end if
18: end for
19: end for
20: pl← npl
21: end for
22: CTPM ← pl

B.1 Soundness
THEOREM 1 (SOUNDNESS). Any valid complete mapping path

generated by TPW corresponds to a valid schema mapping.
We first give some definitions.
DEFINITION 6 (VALID SCHEMA MAPPING). Given a sample

tuple (E1, ..., Em), we say a schema mapping M is valid on N ⊆
[m] iff ∃t ∈ M(DS) s.t. ∀i ∈ N, t[Ai] � Ei.

DEFINITION 7 (TUPLE PATH PROJECTION). Given a tuple path
p with projection map pm, its projection tp is a tuple such that
∀i ∈ DOM(pm), tp[i] = tua [a], where a = pm(i) and ua is the
vertex containing a in p.

DEFINITION 8 (VALID TUPLE PATH). Given a sample tuple
(E1, ..., Em) and a tuple path p with projection map pm, we say p
is valid iff ∀i ∈ DOM(pm), tp[i] � Ei.

Hereafter, given a mapping path or tuple path p, we call the
schema mapping translated from it its corresponding schema map-
ping and denote it by Mp. Securely, if a tuple path p is valid, then
Mp must be valid on DOM(p.pm) since tp exists in Mp(DS) and
∀i ∈ DOM(p.pm), tp[Ai] � Ei.

Then, we have the following lemma.
LEMMA 1. Let p be a tuple path of size n, q be a pairwise tu-

ple path and DOM(p.pm) ∩ DOM(q.pm) = {k}. Let r =
Weave(p, q, k) and assume r 
= null. If p is valid and q is valid,
then r is also valid.

The proof to Lemma 1 is straightforward. According to Algo-
rithm 6, since r 
= null, p and q must have been successfully
merged. Thus tr = tp ∪ tq and ∀i ∈ DOM(r.pm), tr[Ai] � Ei.

Finally, we give the proof to Theorem 1.

Algorithm 6 Weave
Input: A tuple path tp of size n, A pairwise tuple path ptp
Output: A tuple path ntp of size n + 1
1: Initialize a set visited for visited path vertex
2: u← tp.map(k)
3: v ← ptp.map(k)
4: if u.tuple_id �= v.tuple_id then
5: ntp← null
6: return
7: end if
8: visited.add(u)
9: ptp.lookup.remove(v)
10: while ptp.lookup is not empty do
11: Let v′ be the next vertex of v in ptp
12: for all u′ ∈ u.neighbor ∧ u′ /∈ visited do
13: if u′.tuple_id �= v′.tuple_id then
14: u.neighbor.add(v′) {Update path structure}
15: v′.neighbor.remove(v)
16: v.neighbor.add(u)
17: return
18: end if
19: u← u′

20: v ← v′

21: visited.add(u)
22: ptp.lookup.rmove(v)
23: end for
24: end while

PROOF SOUNDNESS. According to the definition, a mapping
path is valid iff there is at least one tuple path that instantiates it.
So it is equivalent to prove that any valid complete tuple path gen-
erated by TPW corresponds to a valid schema mapping. Since we
generate pairwise tuple paths by executing full-text search queries
in the source database, every pairwise tuple path p must be valid.
Also, according to Lemma 1, if each tuple path or size n is valid,
then each tuple path of size n+1 must also be valid. According to
mathematical induction, every complete tuple path must be valid.
For each complete tuple path p, Mp defines the corresponding valid
schema mapping.

B.2 Completeness
THEOREM 2 (COMPLETENESS). Any valid schema mapping

whose corresponding mapping path satisfies the PMNJ constraint
must be discovered by TPW.

Hereafter, we assume every mapping path satisfies the PMNJ
constraint for simplicity. We first have the following lemma.

LEMMA 2. If all the valid tuple paths of size n are discovered
by TPW, then all the valid tuple paths of size n + 1 must also be
discovered.

PROOF. Suppose we have a valid tuple path r of size n+1. We
decompose it into two parts as the following. First we choose any
of its terminal vertex, say u. According to Definition 4, there must
be a map index associated with it. We denote that index by i. Then
we traverse r from u until we meet the first vertex v which has an
attribute projected by another map index j. We split r on v together
with its map split on j into two tuple paths: a pairwise tuple path
p connecting u and v, and a tuple path q of size n containing the
rest of r including v. Because r is valid, it is straightforward that
p and q are both valid. According to the procedure we generate
the pairwise tuple paths, each valid pairwise tuple path must be
discovered by TPW. So p must be discovered. According to the
hypothesis, q must also be discovered. Let r′ = Weave(q, p, j).
Since TPW is deterministic, we must have r′ = r. In other words,
r must also be discovered.

This leads to the proof to Theorem 2.
PROOF COMPLETENESS. Because a schema mapping is valid

iff there exists a corresponding valid tuple path, the proof is equiv-
alent to: TPW is able to discover any valid tuple path. According
to the procedure we generate the pairwise tuple paths, all the valid
pairwise tuple paths must be discovered. According to Lemma 2
and mathematical induction, all the complete valid tuple paths must
also be discovered.
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