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Abstract. The Semantic Web’s need for machine understandable con-
tent has led researchers to attempt to automatically acquire such content
from a number of sources, including the web. To date, such research has
focused on “document-driven” systems that individually process a small
set of documents, annotating each with respect to a given ontology. This
paper introduces OntoSyphon, an alternative that strives to more fully
leverage existing ontological content while scaling to extract compara-
tively shallow content from millions of documents. OntoSyphon oper-
ates in an “ontology-driven” manner: taking any ontology as input, On-
toSyphon uses the ontology to specify web searches that identify possible
semantic instances, relations, and taxonomic information. Redundancy
in the web, together with information from the ontology, is then used
to automatically verify these candidate instances and relations, enabling
OntoSyphon to operate in a fully automated, unsupervised manner. A
prototype of OntoSyphon is fully implemented and we present experi-
mental results that demonstrate substantial instance learning in a vari-
ety of domains based on independently constructed ontologies. We also
introduce new methods for improving instance verification, and demon-
strate that they improve upon previously known techniques.

1 Introduction

The success of the Semantic Web critically depends upon the existence of a suf-
ficient amount of high-quality, relevant semantic content. But to date relatively
little such content has emerged. In response, researchers have investigated sys-
tems to assist users with producing (or annotating) such content, as well as sys-
tems for automatically extracting semantic content from existing unstructured
data sources such as web pages.

Most systems for automated content generation work as follows. Given a
small to moderate size set of hopefully relevant documents, the system sequen-
tially processes each document. For each document, the system tries to extract
relevant information and encode it using the predicates and classes of a given on-
tology. This extraction might utilize a domain-specific wrapper, constructed by
hand [1] or via machine learning techniques [2]. More recent domain-independent



approaches have utilized a named entity recognizer to identify interesting terms,
then used web searches to try to determine the term’s class [3]. In either case,
these are document-driven systems whose workflow follows the documents.

This paper describes OntoSyphon, an alternative ontology-driven information
extraction (IE) system. Instead of sequentially handling documents, OntoSyphon
processes the ontology in some order. For each ontological class or property,
OntoSyphon searches a large corpus for instances and relations than can be ex-
tracted. In the simplest case, for instance, a Mammal class in the ontology causes
our system to search the web for phrases like “mammals such as” in order to
identify instances (and subclasses) of Mammal. We then use redundancy in the
web and information in the ontology to verify the candidate instances, subclasses,
and relations that were found. In this paper, we focus on learning instances.

Compared to more traditional document-driven IE, OntoSyphon’s ontology-
driven IE extracts relatively shallow information from a very large corpus of
documents, instead of performing more exhaustive (and expensive) processing
of a small set of documents. Hence, the approaches are complementary, and real
world systems may profitably utilize both. We note, however, several benefits of
ontology-driven IE. First, driving the entire IE process directly from the ontology
presents a very natural path for exploiting all kinds of ontological data, e.g., uti-
lizing class labels and synonyms for broader searching and exploiting instances
and stated restrictions for verifying candidate facts. Second, a search-based sys-
tem enables us to consider a much larger set of documents than could be handled
via individual, document-driven processing. Only a small fraction of the corpus
will be used for any one system execution, but much more potentially relevant in-
formation is accessible. Finally, ontology-driven IE can be easily focused on the
desired results. Rather than processing all content from some documents and
then looking for the desired info, we can instruct the system to search directly
for relevant classes.

Our contributions are as follows. First, we introduce the ontology-driven
paradigm for information extraction and explain its benefits compared to com-
plementary approaches. Second, we explain how to apply this general paradigm
to find instances from the web and demonstrate successful instance population
for three different, independently created ontologies. Third, we evaluate several
different techniques for improving the accuracy of instance identification and
classification. In addition, we introduce two simple but highly effective improve-
ments to previously known assessment techniques for such extractions. These
improvements relate to adding or improving upon frequency-based normaliza-
tion, and can be used even in contexts without an explicit ontology. Finally, we
describe techniques for further improving accuracy based on explicitly leveraging
the structure of the ontology.

The next section summarizes related work in this area. Section 3 summarizes
OntoSyphon’s operation, while Section 4 describes our methodology and evalu-
ation metrics. Section 5 describes the existing and new techniques that we use
for the key problem of assessing candidate instances. Finally, Section 6 presents
experimental results, Section 7 discusses our findings, and Section 8 concludes.
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Table 1. A summary of work that attempts to (semi-)automatically extract instance-
like content from the web or other text corpora. Note that an ontology-based system al-
most always utilizes a domain-specific ontology, but may still be a domain-independent
system if it can easily exploit input ontologies from many different domains.

2 Related work on Information Extraction from the Web

The general task we face is to learn information from some textual source, such
as the WWW, and encode that information in a structured language such as
RDF. Table 1 provides an interpretation of the most relevant other work in this
area. The rows of this table distinguish systems that are domain-independent
from those that rely on domain-specific techniques or extraction patterns.

The columns of Table 1 explain the extent to which each system utilizes an
explicit ontology. In the leftmost column (“Text-based”) are information extrac-
tion systems that are not explicitly based on an ontology. For instance, Citeseer
automatically extracts metadata about research publications, Opine [5] focuses
on product reviews, and Crystal [4] uses a domain-specific lexicon to learn text
extraction rules by example. Amongst more domain-independent systems, Mind-
Net [13] builds a semantic network based on dictionary and encyclopedia entries,
while Snowball [14] learns relations (such as headquarters0f) based on an ini-
tial set of examples. KnowItAll [16] learns instances and other relations from
the web. Many such systems [15-17] learn hyponym or is-a relationships based
on searching for particular lexical patterns like “cities such as ...,” inspired by
Hearst’s original use of such patterns [22]. Our work uses these same patterns as
building blocks, but exploits an ontology to guide the extraction and assessment,
and to formally structure the results.

Some of these text-based systems, such as MindNet, use their input cor-
pus to derive an ontology-like structured output. In contrast, we call a system
ontology-based if it specifies its output in terms of a pre-existing, formal ontology.
These systems almost always use a domain-specific ontology in their operation,
but we consider a system to be domain-independent if it can operate without
modification on ontologies covering a wide range of domains.

The majority of these ontology-based systems are document-driven: start-
ing from a particular document (or set of documents), they try to annotate all
of the entities in that document relative to the target ontology. For instance,
TAP [1] exploits a variety of wrappers to extract information about authors, ac-
tors, movies, etc. from specifically identified websites such as Amazon.com. We-



bKB [6] and Armadillo [2] both use supervised techniques to extract information
from computer science department websites. Amongst more domain-independent
systems, SemTag [20] and KIM [21] scan documents looking for entities corre-
sponding to instances in their input ontology. Likewise, S-CREAM [19] uses
machine learning techniques to annotate a particular document with respect to
its ontology, given a set of annotated examples. PANKOW [3] annotates a spec-
ified document by extracting named entities from the document and querying
Google with ontology-based Hearst phrases. For instance, if the entity “South
Africa” is found in a document, PANKOW would issues multiples queries like
“South Africa is a river” and use hit count results to determine which ontology
term (river, country, etc.) was the best match. These systems all use an ontology
to specify their output, but make limited use of information that is contained in
the ontology beyond the names of classes and properties that may be relevant.

OntoSyphon offers a complementary approach of being ontology-based and
ontology-driven. Instead of trying to learn all possible information about a par-
ticular document, we focus on particular parts of an ontology and try to learn all
possible information about those ontological concepts from the web. In addition,
we seek to use ontological data and structure to enhance our assessment of the
content that is found (see Section 6).

The only work of which we are aware that adopts a somewhat similar ap-
proach is that of Matuszek et al. [10,11] and van Hage et al. [12]. Both sys-
tems use an ontology to generate web search terms, though neither identifies
this ontology-driven approach or examines its merits. van Hage et al. use the
searches to find mappings between two given ontologies, whereas Matuszek et
al. use the searches to identify instances and relations that could be inserted
into the (large) Cyc ontology. Matuszek et al. use more sophisticated natural
language processing than we do, and use the existing Cyc ontology to perform
more kinds of reasoning. Compared to OntoSyphon, however, the systems of van
Hage and Matuszek perform much less accurate verification of content learned
from the web, either assuming that a human will perform the final verifica-
tion [10] or treating all web candidates as correct because of data sparsity [12].
In addition, both systems only discover information about instances or classes
that are already present in their ontology, and both are domain-specific. Ma-
tuszek’s system, for instance, depends upon manually generated search phrases
for a few hundred carefully chosen properties.

Ontology learning systems seek to learn or extend an ontology based on ex-
amination of a particular relevant corpus [23-26]. Some such systems [24—26]
use Hearst-like patterns to identify possible subclass relations. Ontology learn-
ing systems, however, presume a particularly relevant corpus and do not fo-
cus on learning instances (with some limited document-driven exceptions, e.g.,
Text20nto [26]). In addition, the goal of producing a very accurate ontology
leads to very different verification techniques, usually including human guidance
and/or final verification. OntoSyphon instead operates in a fully automatic, un-
supervised manner, and uses the web rather than require that a domain-specific
corpus be identified.



Init: SearchSet = {R} + O.subclassesOf(R)
SearchSet = {Animal} + {Amphibian, Arthropod, Bird, Fish,...}
1. C = PickAndRemoveClass (SearchSet)

C = Bird
2. Phrases = ApplyPatterns(C)
Phrases = {“birds such as ...”, “birds including ...”, “birds especially ...”,

“.. and other birds”, “... or other birds”}

3. Candidates += FindInstancesFromWeb (Phrases)
Candidates = {..., (kookaburra, Bird, 20), (oriole, Bird, 37), ... }

4. If MoreUsefulWork(SearchSet, Candidates), goto Step 1
5. Results = Assess (O, Candidates)

(kookaburra, Bird, 20) Results = {

(kookaburra, Mammal, 1) (kookaburra, Bird, 0.93), LA: 1.00
(leather, Animal, 1) (leather, Animal, 0.01), LA: 0.00
(oriole, Bird, 37) = (oriole, Bird, 0.93), LA: 1.00
(wildebeest, Animal, 56) (wildebeest, Animal, 0.91) LA: 0.67
(wildebeest, Mammal, 6) }

Fig. 1. OntoSyphon’s algorithm (bold lines), given a root class R, for populating an
ontology O with instances, and partial sample output (other lines). The text (oriole,
Bird, 37) describes a candidate instance that was extracted 37 times. Step 5 converts
these counts into a confidence score or a probability, and chooses the most likely class
for candidates that had more than one possible class (results shown computed via Urns,
see Section 5). “LA” is the “Learning Accuracy” of the final pair (see Section 4).

This paper focuses on demonstrating how a domain-independent, ontology-
driven system can reliably extract instances using a few simple techniques. Over-
all performance could be increased even more by incorporating other techniques
such as domain-specific pattern learning [14, 27, 16], automatic subclass identifi-
cation [16], non-pattern based extraction [18,24,25,23], and the combination of
multiple sources of evidence [28].

3 Overview of OntoSyphon’s Operation

Figure 1 gives pseudocode for OntoSyphon’s operation. The input to OntoSyphon
is an ontology O and a root class R such as Animal. The search set is initialized
to hold the root term R and all subclasses of R. OntoSyphon then performs the
following steps: pick a “promising” class C' from the ontology (step 1), instanti-
ate several lexical phrases to extract instances of that class from the web (steps
2-3), then repeat until a termination condition is met (step 4). Finally, use the
ontology and statistics obtained during the extraction to assess the probability
of each candidate instance (step 5). Below we explain in more detail.

1. Identify a Promising Class: OntoSyphon must decide where to focus
its limited resources. For our initial experiments, we pragmatically chose
to completely explore all subclasses of the user-provided root class. Future



work should consider how best to use OntoSyphon’s limited resources when
broader explorations are desired. For instance, we might like to chose the
class that we know the least about (fewest instances), or instead focus at-
tention on classes that are similar to those that yielded good results in the
past. Finally, note that some classes (e.g., zip codes) may produce very large
amounts of data that is accurate but uninteresting.

2. Generate Phrases: Given a class C, we search for lexico-syntactic phrases
that indicate likely instances of C'. For instance, phrases like “birds such
as” are likely to be followed by instances of the class Bird. We use the 5
Hearst phrase templates [22] listed in the sample output of Figure 1. To
generate the phrases, we use heuristic processing to convert class IDs such
as SweetDessert to the search label “sweet desserts.” Where present we also
exploit alternative class labels that can be inferred from the ontology, e.g.,
through the definition of an equivalent class.

3. Search and extract: Next, we search the web for occurrences of these
phrases and extract candidate instances. This could be done by submitting
the phrases as queries to a search engine, then downloading the result pages
and performing extraction on them. For efficiency, we instead use the Binding
Engine (BE) [29]. BE accepts queries like “birds such as <NounPhrase>"
and returns all possible fillers for the <NounPhrase> term in about a minute,
but for only a 90-million page fragment of the web.

4. Repeat (for this paper, until SearchSet is empty).

5. Assess Candidate Instances (see Section 5).

We focus in this paper on basic instance learning, but this algorithm naturally
lends itself to several future enhancements. For instance, in step 3, the candidate
instances that are discovered will also discover subclasses. Such subclasses might
be added to the SearchSet and/or might be used to extend the ontology itself.
Our initial experiments have shown that, as is to be expected, such steps will
increase recall but at some cost of precision. The next section discusses how we
grade discovered subclasses for this work; future work will more fully investigate
the benefits of exploiting these candidate subclasses.

4 Methodology

We ran OntoSyphon over the three ontologies shown in Table 2. All three on-
tologies were created by individuals not associated with OntoSyphon, and were
freely available on the web. For each, we selected a prominent class to be the
“root class,” thereby defining three different domains for evaluation: Animals,
Food, and Artists. Note that instances for the first two domains are dominated
by common nouns (horses, sushi), whereas the latter yields mostly proper nouns
(Michelangelo). These choices encompass a variety of domains and ontology
types. For instance, the Animal ontology was fairly complete but shallow, while
the Artist ontology covers artists in general but most classes focus on musical
artists. The Food ontology has been used for demonstrating OWL concepts; it
contains more complex constructions and classes such as NonSpicyRedMeat.



|Domain[ Ontology used [# Subs.[ Avg. Depth [# Graded‘

Animals|sweet.jpl.nasa.gov/ontology /biosphere.owl| 28 |1.04 (max 2) 300
Artists www.kanzaki.com/ns/music.rdf 39  |2.63 (max 4) 940
Food www.w3.org/TR/owl-guide/food.rdf 31 ]2.13 (max 3) 170

Table 2. The domains and ontologies used for our experiments. The third column
gives the number of subclasses of the chosen root term, followed by the average (and
maximum) depth of these subclasses relative to the root term. The last column is the
number of candidates that were human-graded for evaluation (5% of the total found).

OntoSyphon operates in a totally unsupervised manner and outputs a ranked
list of candidate instances for the ontology. Because there is no accurate, author-
itative source for determining the full, correct set of instances for our three do-
mains, we cannot report recall as an absolute percentage, and instead report just
the number of distinct, correct instances found. In addition, we must evaluate
correctness by hand. To do this, we created a “gold standard” as follows: all sys-
tem configurations produce the same basic set of candidate instances for a given
ontology. A human evaluator (one of the authors) classified a random sample of
5% of this set (see Table 2). For each candidate, the evaluator chose the best,
most specific ontology class available, while allowing for multiple senses. So a dog
would be marked as a Mammal rather than the less specific Animal, while Franz
Liszt would be marked as a Composer, Pianist, and Conductor. Two classes,
ExoticSpecies and IndigenousSpecies, were removed from Animals because
they were too subjective for a human to evaluate. To reduce bias, the evaluator
had no knowledge of what class OntoSyphon assigned to each candidate nor
OntoSyphon’s assigned probability for that candidate.

Candidates with no correct class for that domain (e.g., truck) were marked
as incorrect, as were misspelled or incomplete terms (e.g., the artist “John”). To
decide whether a candidate was a proper instance or a subclass, we assumed that
the ontology was fairly complete and tried to follow the intent of the ontology.
Candidates that could be properly classified as an instance of a leaf node in the
ontology were treated as instances. Candidates that were already present in the
ontology as a class or that seemed to parallel an existing class (e.g., the discovered
“fiddler” and the existing class Pianist) were counted as incorrect. Finally,
candidates that did not fit the intent of the ontology were marked incorrect.
For instance, we considered the Animal ontology to be about types of animals
(dogs, cats), so specific animals like “King Kong” or “Fido” were incorrect; other
animal ontologies might make different decisions (see Section 7).

This evaluation produced the function goldo(), where goldp (i) is the set of
classes assigned to candidate instance ¢ by the evaluator for ontology O. Then,
given a candidate instance ¢ and a class ¢, we define the pair (¢, ¢) to be:

e correct if ¢ € goldp (i),
e sensible if 3¢’ € goldp (i) s.t. ¢ € subclasses(c),

e or incorrect otherwise.



For instance, if goldp(dog) = {Mammal}, then (dog, Mammal) is correct,
(dog, Animal) is sensible, and (dog, Reptile) is incorrect.

Let X be the output of the system for some experimental condition, where
X consists of a set of pairs of the form (i, ¢), and where each candidate instance
i appears in only one pair.? Then the recall is the number of pairs in X that are
correct, and the precision is the fraction of pairs in X that are correct. These
metrics are useful, but count only instances that were assigned to the most
correct class possible, and thus do not fully reflect the informational content
of the result. Consequently, we primarily report our results using the sensible-
recall, which is the number of pairs in X that are sensible. In addition, we follow
the example of several others in using learning accuracy (LA) instead of exact
precision. The LA measures how close each candidate pair (i, c) was to the gold
standard (7, goldo(i)). This measurement is averaged over all pairs to yield a
precision-like number ranging from zero to one where LA(X) = 1 indicates that
all candidate pairs were completely correct.

We follow the general definition of Learning Accuracy from Cimiano et al. [3],
which requires the least common superconcept (lcs) of two classes a and b for
ontology O:

leso(a,b) = arg Icléiél@(a, c)+ (b, c) + d(top, c)) (1)

where §(a, b) is the number of edges on the shortest path between a and b. Given

this definition, the taxonomic similarity T'simn between two classes is:
d(top, f) +1

S(top, ) +146(d, f) + (e, f)

where f = lcso(d, e). We then define the average learning accuracy for ontology
O of a set X of candidate pairs as:

Tsimo(d,e) = (2)

1
LAx = — max(0, max Tsimol(c,c 3
Sy (i;x ( '€ gold(i) o(e,¢)) 3)

5 Assessing Candidate Instances

Extracting candidate instances from the web is a noisy process. Incorrect in-
stances may be extracted for many reasons including noun phrase segmentation
errors, incorrect or incomplete sentence parsing, or factual errors in the web cor-
pus. Because OntoSyphon operates in an unsupervised manner, it is thus critical
to be able to automatically assign a confidence value to the instances that are
produced. These values can be then used to expunge instances that are below
some confidence threshold and/or to provide reliability estimates to applications
that later make use of the output data.

3 OntoSyphon assigns only a single class to each instance, which is often sufficient
but restrictive for domains like Artists. Future work should consider more general
techniques.



Below we describe the five assessment techniques that we consider in our
initial results. Each is used to assign a confidence score or probability to a can-
didate pair (7, c¢). In what follows, count(i,c,p) is the number of times that the
pair (i,c) was extracted using the pattern p, and hits(y) is the number of hits
for the term y alone in the corpus.

1. Strength: Intuitively, if the pair (dog, Mammal) is extracted many times
from our web corpus, this redundancy gives more confidence that that pair is
correct. The Strength metric thus counts the number of times a candidate pair
was observed across all extraction patterns P:

Scoregirength(i,¢) = Z count(i, ¢, p) (4)
peEP

This metric was also used by PANKOW (3], although the counts were obtained
in a different manner.

2. Str-Norm: The Strength metric is biased towards instances that appear very
frequently on the web. To compensate, Str-Norm normalizes the pattern count
by the number of hits for the instance alone:

5 e count(i,c, p)
hits(7)

Scorest'r—nor’m (Z7 C) =

(5)

Similar normalization techniques are found in many systems (e.g., [16,28]).

3. Str-Norm-Thresh: The normalization performed by Str-Norm can be mis-
leading when the candidate instance is a very rare term or a misspelling. Con-
sequently, we created a modified Str-Norm where the normalization factor is
constrained to have at least some minimum value. We found that a variety of
such thresholds worked well. For this work we sort the instances by hits(i) and
then select Hitos, the hit count that occurs at the 25th percentile:

> pep count(i, ¢, p)
max(hits(i), Hitas)

Scarestrfnormfthresh(ia C) = (6)
4. Urns: OntoSyphon, like some other systems, extracts candidate facts by ex-
amining a large number of web pages (though we use the aforementioned Binding
Engine to perform this process very efficiently). Prior work has developed the
Urns model to apply in such cases [30,31] and has shown it to produce signifi-
cantly more accurate probabilities than previous methods such as PMI (point-
wise mutual information) or noisy-or. The Urns model treats each extraction
event as a draw of a single labeled ball from one or more urns, with replacement.
Each urn contains both correct labels (from the set C), and incorrect labels
(from the set E); where each label may be repeated on a different number of
balls. For instance, num(C) is the multi-set giving the number of balls for each
label ¢ € C. Urns is designed to answer the following question: given that a
candidate ¢ was extracted k times in a set of n draws from the urn (i.e., in n
extractions from the corpus), what is the probability that ¢ is a correct instance?
For a single urn, if s is the total number of balls in the urn, then this probability
is computed as follows:
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Urns operates in two phases. In the first phase, the set of all candidate
extractions is used to estimate the needed model parameters (num(C) and
num(C U E)), using Expectation Maximization (EM). In particular, num(C)
is estimated by assuming that the frequency of correct extractions is Zipf-
distributed, and then estimating the exponent z which parameterizes this distri-
bution. In the second phase, a single pass is made over the extractions and each
is assigned a probability using the estimated model parameters and an integral
approximation to Equation 7 [30].

Urns was designed to assign probabilities to a set of extractions that were
targeting a single class, and the EM phase relies upon having a sufficient number
of samples (roughly 500) for estimation. In our context, very few classes yield
this many extractions on their own. Fortunately, we found that combining the
candidates from all of the classes of a single ontology together for model esti-
mation yielded good results, better than performing per-class model fitting with
prior parameters for low-sample classes.

5. Urns-Norm: The Urns model, like Strength, does not exploit the frequency
with which a candidate appears in the corpus. Instead, each instance is assumed
to occur with equal probability anywhere along the aforementioned Zipf dis-
tribution. Introducing an appropriate prior probability of an input candidate’s
location along this curve would improve accuracy, but would significantly com-
plicate the model and computation.

Fortunately, we can approximate the benefit of such a change with a much
simpler approach. We begin by sorting the input data set X by hits(i). We
then run EM both on the “lower” half (which contains the less frequent terms),
obtaining parameter z;, and on the whole data set, obtaining the aforementioned
z. We then compute a parameter z; for each instance i as follows:

zi = max(zr, z + log(hits(i)) — Z log(|le7f<|9(j))) )
(4.e)eX

The probability for candidate (i,c¢) is then computed using z;. Intuitively,
the log functions increase z; when a candidate ¢ is more frequent than average,
thus forcing ¢ to have more pattern matches to obtain a high probability. On the
other hand, the max function ensures that very infrequent words (particularly
misspellings) do not obtain an artificially high probability, by insisting that the
minimum z; is a value appropriate for the “lower” half of the inputs (zr,).

Strength, Str-Norm, and Urns have been used in some form in other work,
though Urns required some adaption for our multi-class problem. Both Str-
Norm-Thresh and Urns-Norm, however, are novel contributions of this work
that we found to be very effective, and that should also provide significant im-
provements in other systems.



6 Experimental Evaluation

In this section we experimentally evaluate OntoSyphon. We first consider its
overall performance and the impact of different assessment techniques, then ex-
amine how to further improve accuracy by exploiting ontological structure.

6.1 Assessing Instances

Figures 2-4 show the results of executing OntoSyphon on our sample ontologies.
Each line represents one output of the system using a particular assessment
technique. To create one point on the line, we chose a threshold and then removed
from the output set all candidate pairs whose assigned confidence values were
below that threshold. The x-axis measures the sensible-recall of this modified set,
and the y-axis shows the LA of this set. Varying the threshold thus produces a
line with properties similar to a classical precision/recall tradeoff curve.

The data demonstrates that OntoSyphon was able to find a substantial num-
ber of sensible instances for all 3 domains. In addition, the data shows that some
of our tested assessment techniques are quite effective at identifying the more
reliable instances. In particular, the techniques that perform normalization (Str-
Norm, Str-Norm-Thresh, and Urns-Norm) show consistent improvements over
both techniques that do not (Strength and Urns). Consider, for instance, the
“50% recall” point, where each technique has a sensible-recall equal to half of
the maximum achieved under any situation (e.g., where sensible-recall equals
900 for Animals). At this point, Urns-Norm and Str-Norm-Thresh increase LA
compared to the no-normalization techniques by 82-110% for Animals, 19% for
Artists, and 51-56% for Food.

Overall, both Urns-Norm and Str-Norm-Thresh perform consistently well.
Str-Norm also performs well, except that it has many false positives at low
recall. It gets fooled by many incorrect terms that are very infrequent on the
web, and thus have a high score after normalization, even though they were
extracted only once or a few times. For instance, Str-Norm incorrectly gives a
high score to the misspelled terms “mosquities” for Animals, “Andrea Cotez”
for Artists, and “pototato” for Food.

OntoSyphon found the most sensible instances for Artists, but our assessment
techniques worked least well on this domain, showing a fairly flat curve. One
reason is that the assessment techniques are fooled by a large number of spurious
candidates that come from one ambiguous class, Players. This class (intended
for musical instrument players), finds mostly sports team participants (e.g. “Greg
Maddux”) and a few digital music software products (“WinAmp”). Figure 5
shows the results if this class is removed from OntoSyphon’s search process
(Section 7 describes how this could be done automatically). With Str-Norm-
Thresh, LA increases from 0.49 to 0.64 at 50% recall.

A more fundamental problem is the smaller amount of redundancy in our
corpus for the Artists domain. For instance, a sensible instance for Animals is
extracted by OntoSyphon’s patterns on average 10.9 times vs. 2.1 times for an
incorrect instance (23.9 vs 3.5 hits for Food). However, Artists, even with Player
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removed, averages only 3.0 hits for sensible instances vs. 2.1 hits for incorrect
instances. This smaller split yields a much more difficult assessment task, and
additional work is needed to more fully exploit the potential of such domains.

6.2 Leveraging Ontological Structure

When confronted with multiple possible classes for a candidate instance (e.g.,
is “lemur” an Animal, Mammal, or Reptile?), the results above chose the in-
stance/class pair with the highest score. We also tried normalizing the metrics
above by class frequency to influence this choice of classes, but we found that this
produced erratic results without improving accuracy. Instead, we found better
results by more explicitly leveraging the ontology to pick the best class via an av-
erage score computed over all classes. The component that each class contributes
is weighted by class frequency and by the taxonomic similarity Tsim:*

Tsimo(c, )

N . /
Class(i) = arg max Z Score(i, ) hits() 9)

c'eO

4 Maedche et al. previously used a similar, non-normalized technique (“tree ascent”)
for ontology learning, with some mixed success [24].



For our corpus and domains, only about 25% of distinct instance terms were
extracted for more than one subclass. Thus, this enhancement had a very small
effect on overall results. However, looking only at that 25% of the results where
a class decision must be made, we found that this new technique consistently
improved LA for both Animals and Artists, and had negligible effect for Food.
For instance, for Str-Norm-Thresh at 50% recall, LA improved from 0.88 to 0.95
for Animals and from 0.62 to 0.76 for Artists.

Thus, exploiting taxonomic relationships in the ontology can improve accu-
racy, though the small number of possible classes found for each instance limits
the impact of this technique. There remains room for improvement, because
even with this enhancement in the full results only 44-69% (average 60%) of
the instances that were assigned a valid class by the evaluator were assigned
that same fully correct class by the system. In the future, we would like to ex-
plore combining this technique with web-wide statistics computed via pointwise
mutual information (PMI) [16]. Using PMI would require a significant number
of additional search queries, and would need to be expanded to deal with our
multi-class scenario. However, this approach should boost performance by pro-
viding additional supporting data while still enabling us to leverage our efficient
gathering of candidate instances from our base 90 million page corpus.

7 Discussion & Future Work

Overall, we conclude that OntoSyphon was highly effective at extracting in-
stances from a web corpus, and that our new assessment techniques (Str-Norm-
Thresh and Urns-Norm) significantly improved the accuracy of the results. In
particular, using Str-Norm-Thresh OntoSyphon was able to achieve a LA of
about 0.6 while extracting 1400 sensible Animal instances (78% of the total
found), 1100 Food instances (93% of the total), and (after removing Player)
7500 Artist instances (87% of the total). Even higher accuracy may be obtained
for Animals and Food at a cost of reduced recall.

A Learning Accuracy of 0.6 is on par with the results surveyed by Cimiano
et al. [3]. They report LA of between 0.44 and 0.76 (with an average of 0.61 for
independent systems) and recall ranging from 0.17 to 0.31 (with an average of
0.24). These results are not directly comparable with ours, since these systems
perform a different task (annotating individual documents rather populating
a ontology from many documents), use different ontologies, and in some cases
evaluate LA using only those terms marked by the evaluator as valid for some
class.® Also, these systems generally define recall as the percentage of results
from the complete gold standard that was found by the system. For our open-
web system, however, recall is reported as a raw number or as a percentage

® For instance, C-PANKOW [3] appears to compute LA using only instances that
were assigned a class by both the system and an evaluator. For our system (see
Equation 3) it seemed more accurate to instead assign a value of zero to a pair (¢, ¢)
produced by the system but for which goldo (i) = 0 (e.g. for (truck, Animal)). This
decision lowers our LA values in comparison.



of the set of all answers found by any execution of the system (as with [16]).
Nonetheless, the magnitude of these previous results demonstrate that an LA of
0.6 is reasonable, and our results show that OntoSyphon can find many instances
at this accuracy level.

Normalization was essential to our results. Such normalization is particularly
important for OntoSyphon, as opposed to document-driven systems, because the
candidate terms are not guaranteed to come from domain-relevant, somewhat
reliable input documents. These same factors caused us to achieve the best, most
consistent results only when that normalization was constrained by a minimum
threshold to account for very rare or misspelled words.

Our two metrics that performed such normalization, Str-Norm-Thresh and
Urns-Norm, both performed well and about comparably. These results are con-
sistent with earlier, non-normalized findings: while Urns was found to be greatly
superior to many other techniques in terms of producing accurate probabili-
ties [30], simple Strength-like measures performed almost as well if only a rela-
tive confidence ranking, not a probability was required [31]. Because Urns and
Urns-Norm are more complex to compute, many situations may thus call for
using the simpler Str-Norm-Thresh. On the other hand, users of the final, popu-
lated ontology may find actual probabilities very helpful for further processing,
in which case Urns-Norm may be best.

Finally, OntoSyphon in its present form is clearly not suited for populating
every kind of ontology. For instance, ontologies describing things or events that
are mentioned only a handful of times on the web are not well suited to our cur-
rent strategy of using simple pattern-based extractions followed by redundancy-
based assessment. Likewise, classes that are either complex (NonBlandFish) or
ambiguous (Player) will not yield good results. We intend to develop tech-
niques to address these issues, for instance, by recognizing ambiguous classes by
the small degree of overlap between a class and its parent (as is the case with
Player and Artist) or by adding additional search terms to disambiguate such
classes during extraction. Lastly, deciding whether a term such as “dog” should
be a subclass or an instance can be challenging even for human ontologists.
More work is needed to help OntoSyphon honor the intent of an ontology, e.g.,
by considering subclasses and instances already present in that ontology.

8 Conclusion

The Semantic Web critically needs a base of structured content to power its
applications. Because of the great variety of information, no one approach will
provide everything that is needed. Much content can only be created by human
annotators, and incentives are needed to motivate this work. Other data is con-
tained in documents that can be effectively leveraged via the document-driven
approaches described in Section 2. This paper has focused on an alternative
ontology-driven method to extract large amounts of comparatively shallow in-
formation from millions of web pages. This approach lets us leverage the existing
work of skilled ontology designers, extract information from a very large corpus,
and focus extraction efforts where it is most valuable and relevant.



While additional work is needed to demonstrate that OntoSyphon is robust
across an even wider range of ontologies and can extract non-instance infor-
mation, our initial results have demonstrated the feasibility of OntoSyphon’s
ontology-driven, domain-independent approach. We successfully extracted a large
number of instances from a variety of independently-created ontologies. We
demonstrated how different assessment techniques affect the accuracy of the out-
put, and introduced simple improvements to existing assessment techniques that
significantly improved upon these results. Because these techniques, Str-Norm-
Thresh and Urns-Norm, are easy to implement modifications to techniques that
have been used for other tasks, our improvements should carry over easily to
many other systems (e.g., [3,16, 10,17, 12]). Future work will examine the many
promising directions for further improvements in this area.
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