
54 April 2004 QUEUE rants: feedback@acmqueue.com QUEUE April 2004 55 more queue: www.acmqueue.com

SSearch engines are as critical to Internet use as any other
part of the network infrastructure, but they differ from
other components in two important ways. First, their
internal workings are secret, unlike, say, the workings of
the DNS (domain name system). Second, they hold politi-
cal and cultural power, as users increasingly rely on them
to navigate online content.

When so many rely on services whose internals are
closely guarded, the possibilities for honest mistakes,
let alone abuse, are worrisome. Further, keeping search-
engine algorithms secret means that further advances
in the area become less likely. Much relevant research is
kept behind corporate walls, and useful methods remain
largely unknown.

To address these problems, we started the Nutch
software project, an open source search engine free for
anyone to download, modify, and run, either as an
internal intranet search engine or as a public Web search
service. As you may have just read in Anna Patterson’s

“Why Writing Your Own Search Engine Is Hard,” writing
a search engine is not easy. As such, our article focuses on
Nutch’s technical challenges, but of course we hope Nutch
will offer improvements in both the technical and social
spheres. By enabling more people to run search engines,
and by making the code open, we hope search algorithms
will become as transparent as their importance demands.

TECHNICAL CHALLENGES
Much of the challenge in designing a search engine is
making it scale. Writing a Web crawler that can download
a handful of pages is straightforward, but writing one that
can regularly download the Web’s nearly 5 billion pages is
much harder.

Further, a search engine must be able to process
queries efficiently. Requirements vary widely with site
popularity: a search engine may receive anywhere from
less than one to hundreds of searches per second.

Finally, unlike many software projects, search engines

Building Nutch:

Open Source Search

SearchFO
CU

S
MIKE CAFARELLA AND

DOUG CUTTING, NUTCH

54 April 2004 QUEUE rants: feedback@acmqueue.com QUEUE April 2004 55 more queue: www.acmqueue.com

Open Source Search
A case study in writing
an open source search engine

56 April 2004 QUEUE rants: feedback@acmqueue.com QUEUE April 2004 57 more queue: www.acmqueue.com

can have high ongoing costs. They may require lots of
hardware that consumes lots of Internet bandwidth and
electricity. We discuss deployment costs in more detail in
the next section, but for now it’s helpful to keep in mind
a few ideas:
• The cost of one part of the search engine scales with the

size of the document collection. The collection might
be very small when Nutch is searching a single intranet,
but could be as large as the Web itself.

• Another part of the search engine scales with the size
of the query load. Each query takes a certain amount of
time to process and consumes some bandwidth.

• With these two factors in mind, we’ve designed a sys-
tem that can easily distribute the work of both fetching
and query processing over a set of standard machines.

Figure 1 shows the system’s components.
WebDB. WebDB is a persistent custom database that
tracks every known page and relevant link. It maintains
a small set of facts about each, such as the last-crawled
date. WebDB is meant to exist for a long time, across
many months of operation.

Since WebDB knows when each link was last fetched,
it can easily generate a set of fetchlists. These lists con-
tain every URL we’re interested in downloading. WebDB
splits the overall workload into several lists, one for each
fetcher process. URLs are distributed almost randomly;
all the links for a single domain are fetched by the same
process, so it can obey politeness constraints.

The fetchers consume the fetchlists and start download-
ing from the Internet. The fetchers are “polite,” mean-
ing they don’t overload a single site with requests, and
they observe the Robots Exclusion Protocol. (This allows
Web-site owners to mark parts of the site as off-limits to
automated clients such as our fetcher.) Otherwise, the
fetcher blindly marches down the fetchlist, writing down
the resulting downloaded text.

Fetchers output WebDB updates and Web content. The
updates tell WebDB about pages that have appeared or
disappeared since the last fetch attempt. The Web content
is used to generate the searchable index that users will
actually query.

Note that the WebDB-fetch cycle is designed to repeat
forever, maintaining an up-to-date image of the Web
graph.
Indexing and Querying. Once we have the Web con-

tent, Nutch can get ready to process queries. The indexer
uses the content to generate an inverted index of all
terms and all pages. We divide the document set into a set
of index segments, each of which is fed to a single searcher
process.

We can thus distribute the current set of index seg-
ments over an arbitrary number of searcher processes,
allowing us to scale easily with the query load. Further,
we can copy an index segment to multiple machines
and run a searcher over each one; that allows more good
scaling behavior and reliability in case one or more of the
searcher machines fail.

Each searcher also draws upon the Web content from
earlier, so it can provide a cached copy of any Web page.

Finally, a pool of Web servers handle interactions with
users and contact the searchers for results. Each Web
server interacts with many different searchers to learn
about the entire document set. In this way, the Web
server is simultaneously acting as an HTTP server and a
Nutch-search client.

Web servers contain very little state and can be easily
reproduced to handle increased load. They need to be
told only about the existing pool of searcher machines.
The only state they do maintain is a list of which searcher
processes are available at any time; if a given segment’s
searcher fails, the Web server will query a different one
instead.
Quality. Generating high-quality results, of course, is the
most important barrier for Nutch to overcome. If it can-
not find relevant pages as well as commercial engines do,
Nutch isn’t much use. But how can it ever compete with
large, paid engineering staffs?
• First, we believe high-quality search is a slowing target.

By some measures of quality, the gap between the best
search engine and its competitors has narrowed con-
siderably. After several years of intense focus on search
results, anecdotal evidence suggests gains in quality are
harder to find. The everyday search user will find lots of
new features on the various engines, but real differences
in results quality are close to imperceptible.

• Second, although much search work takes place
behind corporate walls, there is still a fair amount of
public academic work. Many of the techniques that
search engines use were discovered by IR (information
retrieval) researchers in the 1970s. Some people have
tried to tie IR in with advances in language understand-
ing. With the advent of the Web, many different groups
experimented with link-driven methods. We think there
should be more public research, but there is already a
good amount to draw upon.

SearchFO
CU

S
Building Nutch:

Open Source Search

56 April 2004 QUEUE rants: feedback@acmqueue.com QUEUE April 2004 57 more queue: www.acmqueue.com

• Third, we expect that Nutch will be able to incorporate
academic advances faster than any other engine can.
We think researchers and engineers will find Nutch
very appealing. If it becomes the easiest platform for
researchers to experiment on, taking advantage of the
results should be extremely simple.

• Finally, we’ll rely on the traditional advantages of open
source projects. More people from more places should
work on Nutch, which means faster bug finding, more
ideas, and better implementations. In the long term, a
worldwide shared effort supported by research at a num-
ber of institutions should eventually be able to surpass
the private efforts of any company.

Once an open source search solution is as good or
better than proprietary implementations, there should be
little reason for companies to use anything but the open
source version. It will be cheaper to maintain and work as
well.
Spam. A high search ranking can be extremely valuable
to a Web-site owner—so valuable that many sites try to
“spam” search engines with specially formulated content
in an effort to raise their rankings. As with e-mail spam,
the spammer can benefit at a heavy cost to everyday users.

How does this work in practice? Search engines tend
to use a well-known set of guidelines to measure a page’s
relevance to a given query. For example, all other things
being equal, a page that contains the word parrot 10 times
is more about parrots than a page that has the word just
once. A page with lots of incoming links from other sites
is more important than a page with fewer incoming links.

That means it can be fairly easy to trick a naive search

engine. Want to make sure every parrot lover finds your
page? Repeat the word parrot 600 times somewhere on
your page. Want to raise your page’s in-link count? Pay a
type of site known as a “link farm” to add thousands of
links aimed at your page.

Of course, the consequence is that search results can
become choked with sites that are not truly relevant,
but have “gamed” the system successfully. Good search
engines don’t want their results to become useless, so
they do everything possible to detect these spam tricks.
Spammers, in turn, modify their tricks to avoid detection.
The result is an arms race between search engine and
spammer.

Here are some well-known spam techniques, along
with methods to defeat them:
• Web sites write documents that contains long repeti-

tions of certain words. Search engines counter by elimi-
nating terms that appear consecutively more than a certain
number of times.

• Web sites do the same trick, but intersperse the repeated
term along with good-looking intervening text. Search
engines counter by checking whether the statistical distribu-
tion of the words in the document matches the typical Eng-
lish-language profile. If it’s too far afield, the site is marked
as a spammer.

• Web sites that want high rankings regardless of query
put spurious “invisible” text on the page. Say the site
offers a page about electronics, all rendered on a white
background. The very same page might contain a long
essay about, say, Britney Spears, all rendered in white
text. Users won’t see it, but the search engine will.

Search engines counter by
computing the visible portion
of the HTML and tossing the
rest, or even by penalizing
pages that use any invisible
text.
• Web sites use the “User-
Agent” tag to identify the
type of browser. If the
browser is a piece of desk-
top software, the Web site
returns regular content.
If the browser is a crawler
for a search engine, the
Web site returns differ-
ent content that contains
thousands of repetitions of
parrot. Search engines fight
against this by penalizing

WebDB

fetch
lists

updatesup

content indices

indexers

fetchers

searchers

Web serversFIG 1

58 April 2004 QUEUE rants: feedback@acmqueue.com

sites that give substantially different content for different
browser types.

• Web sites use link farms to add to incoming link count.
Search engines find link farms by looking for statistically
unusual link structures. The link farms are thrown away
before computing link counts. Pages that participate in the
farm may also be penalized.

Some of these methods may rely on secrecy for their
effectiveness, so some people ask how an open source
engine could possibly handle spam. With full disclosure
of code, won’t a search engine lose the fight?

It’s true that Nutch code won’t hold any secrets. But
these secrets are brittle anyway—spammers don’t take
long to defeat the latest defense. If search has to rely on
secrecy to beat spam, the spammers will probably win.

In the world of e-mail spam, at least, the days of sim-
ple methods to defeat spammers seem to be over. Many
of the latest techniques to defeat e-mail spam are statistics
driven. With such methods, even intimate knowledge of
the source code may not help spammers much. Although
people may be reluctant to use such probabilistic spam
detectors on e-mail for fear of deleting a single good mes-
sage, the massive redundancy of Web information means
false positives are not so great a tragedy.

Alternatively, the answer may lie in an analogy to
cryptography. It has taken a long time for people to learn
the counterintuitive notion that the most secure cryp-
tographic systems are those that have the most public
scrutiny. Most people who look at these systems are
well motivated and work to improve them rather than
to defeat them. They find problems before they can be
exploited.

The analogy may be flawed, but it can’t be tested
without transparency. Nutch is currently the best shot at
enabling some form of public review for defeating search
engine spam.

DEPLOYMENTS/OPERATIONS
Scalability/Cost Effectiveness. One objection the Nutch
project often hears is that search is simply too resource-
hungry to be a good open source project. In fact, a Web
search engine can be operated for fairly modest sums.

A note on index size: Web search engines make claims
about the sizes of their indexes, but these are not directly
comparable. Some count the number of pages they’ve

fetched; some count the number of URLs that may be
returned, even though they’ve not been fetched but only
referenced by another page. Also, many pages are dupli-
cates: a given site may respond to more than one host
name, giving all of its pages multiple URLs. And although
bigger is almost always better, it may not be much better.
An index with just 100 million pages can perhaps satisfy
99 percent of users’ searches as well as a 5-billion-page
index. So if you are primarily interested in cost-effec-
tive usability, you might build only a 100-million-page
system. But if you are interested in bragging rights and
satisfying rare, obscure searches, then a larger index may
be justified.

Here we will outline Nutch’s operational costs. All
figures are meant to be illustrative, since the performance
and cost of hardware, software, and bandwidth are all
changing.

Nutch deployments use two classes of machines: back-
end machines, for crawling, database, link analysis, and
indexing tasks; and front-end machines, which perform
searches and serve search results.

A typical back-end machine is a single-processor box
with 1 gigabyte of RAM, a RAID controller, and eight hard
drives. The filesystem is mirrored (RAID level 1) and pro-
vides 1 terabyte of reliable storage. Such a machine can be
assembled for a cost of about $3,000.

One such back-end machine is required for every 100
million pages. Thus, to maintain an index of 1 billion
pages requires 10 back-end machines, or about $30,000 in
hardware.

A typical front-end machine is a single-processor box
with 4 gigabytes of RAM and a single hard drive. Such a
machine can be assembled for about $1,000.

The query-handling capacity of front-end machines
varies, depending on how much each must search. For
example, if each front-end machine is given 25 mil-
lion pages to search, then each can perform about two
searches per second. Thus, a 100-million-page index could
be searched with four front-end machines ($4,000) while
a 1-billion-page index requires 40 front-end machines
($40,000), but such configurations could still handle only
two searches per second. In this case, access to a disk-resi-
dent index is the primary bottleneck.

Query handling is more cost effective when primary
index structures fit within RAM. In particular, if each
front-end machine is required to handle only 2 mil-
lion pages, then each can handle perhaps 50 searches
per second. In this configuration a 100-million-page
index would require 50 front-end machines ($50,000)
and a 1-billion-page index would require 500 machines

Building Nutch:

Open Source Search

SearchFO
CU

S

60 April 2004 QUEUE rants: feedback@acmqueue.com QUEUE April 2004 61 more queue: www.acmqueue.com

($500,000). This is half the cost per query of the first case.
Here the bottleneck is primarily the CPU. Further search
software optimizations can make this configuration even
more cost effective.

Note that as traffic increases, front-end hardware
quickly becomes the dominant hardware cost.

Thus far we have discussed only the raw hardware
costs. In addition, there are hosting costs. These are
primarily electricity (as consumed both directly by the
hardware and by the air conditioning required to cool
the hardware), bandwidth, and others (racks, network
equipment, facility rental, etc.). Electricity dominates
these costs, and together, these costs easily dominate raw
hardware costs. For example, you might amortize the
cost of hardware over three years, so that $100,000 of
hardware is less than $3,000 per month; but power, space,
and bandwidth for 100 machines can easily cost more
than that. Since hosting costs are even more variable than
hardware prices, let’s just assume that hosting costs are
approximately the same as three-year amortized hard-
ware costs. Thus, a complete system might cost anywhere
between $800 per month for two-search-per-second per-
formance over 100 million pages, to $30,000 per month
for 50-page-per-second performance over 1 billion pages.

A note on bandwidth consumption: If we assume that
Web pages average around 10 kilobytes, and each must
be re-fetched monthly, then fetching 1 billion pages per
month requires around 40 Mbps (megabits per second)
inbound. Bandwidth costs
are typically symmetric, so
if you have purchased 40
Mbps inbound, you have
also purchased 40 Mbps
outbound. If we further
assume that a search result
page is also around 10 KB,
then, until search traffic
surpasses 400 searches per
second, in a 1-billion-page
system, the crawler’s needs
dominate bandwidth; after
that, search dominates.

In summary, although
it’s true that Google and
Yahoo probably cost a lot

of money to operate, many Web search engines may not
serve nearly as much traffic and need not search nearly
so many pages. In a world with lots of deployed search
engines, the vast majority will serve small audiences.
The costs are also well within reach for research groups,
governmental departments, and small- to medium-size
companies.

One much trickier source of cost savings is automat-
ing most system administration tasks. We believe there is
a lot of ground to be gained here, and Nutch has not yet
started. It’s not clear how to use the open source program-
ming style for something that’s so tied to the deploy-
ment, but we need to do it.
Who Should Run Nutch-Based Web Search Engine(s)?
Nutch.org is dedicated to making the Nutch software bet-
ter for everyone. That might mean running a small demo
site or making a search service available for academic
research, but we do not intend to run a destination search
site. Running such a service would put Nutch in competi-
tion with its users. Instead, we hope that primarily other
institutions will run the Nutch software.

Governments, universities, and nonprofits are terrific
candidates for Nutch. These organizations often have
special obligations that for-profit companies don’t (e.g.,
a seniors’ organization might want to offer search with
a special usability focus), so having the source code to
Nutch is a huge advantage. Further, these groups often
don’t have lots of cash to spend on solutions.

We don’t have great data yet on who is running Nutch.
As far as we can tell, the most active Nutch users are
universities and academic research groups. Some are using
Nutch as part of a class, and some are using it because
their research depends on access to indexed pages that

they can control. Others
are pulling apart the sys-
tem, taking elements that
seem useful. It’s too early
to expect any updates back
from researchers, but we
hope this is coming soon.

One type of nonprofit
in particular that we hope
to see is a PSE (public
search engine), a search
site that is as usable as any
commercial one, but that
operates without advertis-
ing or commercial engage-
ment. These engines will
help make good on Nutch’s

Building Nutch:

Open Source Search

SearchFO
CU

S

If search has to rely on secrecy
to beat spam, the spammers
will probably win.

60 April 2004 QUEUE rants: feedback@acmqueue.com QUEUE April 2004 61 more queue: www.acmqueue.com

promise to make search results more transparent to users.
Conversely, they will make for-profit engines easier to
spot if they adjust rankings for commercial gain.

A PSE might get its funds through donations from
users, corporations, or foundations, just as public broad-
casting channels do. It’s worth noting that PSEs do not
need to process a huge percentage of search queries to be
successful. Their existence will help ensure that search
users always have a good alternative (one that doesn’t
exist today).

What about for-profit corporations? We think lots of
companies will want to run small search engines for in-
house use or on their public Web sites. For most of these
companies, search will be just another item they have to
take care of, not their main focus.

Nutch should also enable small search-technology
companies to be more creative, just as other open source
projects have enlarged what small teams can accomplish.

We hope that Nutch, by providing free, open source
Web search software, will help both to promote transpar-
ency in Web search and to advance public knowledge of
Web-search algorithms. Q

LOVE IT, HATE IT? LET US KNOW
feedback@acmqueue.com or www.acmqueue.com/forums

MIKE CAFARELLA worked as a software engineer at
Silicon Valley startups Marimba Corporation and Tellme
Networks from 1998 to 2002. In 2002 he began work on
the Nutch project, which he continues. In 2003 he started
a Ph.D. program in computer science at the University
of Washington. He graduated from Brown University in
1996. In 1997, he earned a M.A. from the University of
Edinburgh while on a Fulbright scholarship to the United
Kingdom.
DOUG CUTTING has worked on search technology for
more than 15 years. This includes five years at Xerox
PARC, three years at Apple with its Advanced Technol-
ogy Group, and more than four years at Excite. In 1998
he wrote Lucene (http://jakarta.apache.org/lucene/),
an open source search library that subsequently became
part of the Apache Jakarta project. In 2002 he started
Nutch (http://www.nutch.org/), an open source Web
search application.
© 2004 ACM 1542-7730/04/0400 $5.00

���������

��
��
��������������������������

���
���

���
�������� ������������������������������

� ���� � ���������������

� ��������������
� ���������

� ����������������

� ����������� � ������������ ����������������������
� ��
� ����������������������������

��
���

��

��
���������������

���������������������������� �����������������������������������

���
�������� ������

������������������������������������ �������������������

����������������� ���

���������������������� �����

�����������������������������������
�����������������������

������������������������������������ ����������

����������������
������������������

�������������������� �����������������������������������

www.acmqueue.com/forums

