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Though the Web  is best known as a vast repository 
of shared documents, it also contains a significant 
amount of structured data covering a complete range 
of topics, from product to financial, public-record, 
scientific, hobby-related, and government. Structured 
data on the Web shares many similarities with the 
kind of data traditionally managed by commercial 
database systems but also reflects some unusual 
characteristics of its own; for example, it is embedded 
in textual Web pages and must be extracted prior to 
use; there is no centralized data design as there is in  
a traditional database; and, unlike traditional 
databases that focus on a single domain, it covers 
everything. Existing data-management systems do  
not address these challenges and assume their data  
is modeled within a well-defined domain. 

This article discusses the nature of Web-embedded 
structured data and the challenges of managing it. To 
begin, we present two relevant research projects 

developed at Google over the past 
five years. The first, WebTables, com-
piles a huge collection of databases 
by crawling the Web to find small re-
lational databases expressed using 
the HTML table tag. By performing 
data mining on the resulting extract-
ed information, WebTables is able to 
introduce new data-centric applica-
tions (such as schema completion 
and synonym finding). The second, 
the Google Deep Web Crawler, at-
tempts to surface information from 
the Deep Web, referring to data on 
the Web available only by filling out 
Web forms, so cannot be crawled by 
traditional crawlers. We describe how 
this data is crawled by automatically 
submitting relevant queries to a vast 
number of Web forms. The two proj-
ects are just the first steps toward ex-
posing and managing structured Web 
data largely ignored by Web search 
engines. 

Web Data 
Structured data on the Web exists in 
several forms, including HTML ta-
bles, HTML lists, and back-end Deep 
Web databases (such as the books 
sold on Amazon.com). We estimate 
in excess of one billion data sets as of 
February 2011. More than 150 million 
sources come from a subset of all Eng-
lish-language HTML tables,4,5 while 
Elmeleegy et al11 suggested an equal 
number from HTML lists, a total that 
does not account for the non-English 
Web. Finally, our experience at Google 
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 key insights
 � �Because data on the Web is about 

everything, any approach that attempts 
to leverage it cannot rely on building a 
model of the data ahead of time but on 
domain-independent methods instead. 

 � �The sheer quantity and heterogeneity of 
structured data on the Web enables new 
approaches to problems involving data 
integration from multiple sources. 

 � �While the content of structured data is 
typically different from what is found in 
text on the Web, each content collection 
can be leveraged to better understand 
other collections.
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suggests the Deep Web alone can gen-
erate more than one billion pages of 
valuable structured data. The result 
is an astounding number of distinct 
structured data sets, most still wait-
ing to be exposed more effectively to 
users. 

This structured data differs from 
data stored in traditional relational 
databases in several ways: 

Data in “page context” must be ex-
tracted. Consider a database embed-
ded in an HTML table (such as local 
coffeehouses in Seattle and the U.S. 
presidents in Figure 1). To the user 
the data set appears to be structured, 
but a computer program must be able 
to automatically distinguish it from, 
say, a site’s navigational bar that also 
uses an HTML table. Similarly, a Web 
form that gives access to an interest-
ing Deep Web database, perhaps con-
taining all Starbucks locations in the 
world, is not that different from a form 
offering simple mailing-list signup. 
The computer program might also 
have to automatically extract schema 
information in the form of column la-
bels sometimes appearing in the first 
row of an HTML table but that some-
times do not exist at all. Moreover, the 
subject of a table may be described in 
the surrounding text, making it diffi-
cult to extract. There is nothing akin 
to traditional relational metadata that 
leaves no doubt as to how many tables 
there are and the relevant schema in-
formation for each table. 

No centralized data design or data-
quality control. In a traditional data-
base, the relational schema provides 
a topic-specific design that must be 
observed by all data elements. The 
database and the schema may also 
enforce certain quality controls (such 
as observing type consistency within 
a column, disallowing empty cells, 
and constraining data values to a cer-
tain legal range). For example, the set 
of coffeehouses may have a column 
called year-founded containing 
integers constrained to a relatively 
small range. Neither data design nor 
quality control exists for Web data; for 
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example, if a year-founded string 
is in the first row, there is nothing to 
prevent the string macchiatone from 
appearing beneath it. Any useful ap-
plication making use of Web data 
must also be able to address uncer-
tain data design and quality. 

Vast number of topics. A tradi-

tional database typically focuses on 
a particular domain (such as prod-
ucts or proteins) and therefore can 
be modeled in a coherent schema. On 
the Web, data covers everything, and 
is also one of its appeals. The breadth 
and cultural variations of data on the 
Web make it inconceivable that any 

manual effort would be able to create 
a clean model of all of it. 

Before addressing the challenges 
associated with accessing structured 
data on the Web, it is important to ask 
what users might do with such data. 
Our work is inspired by the following 
example benefits: 

Improve Web search. Structured 
Web data can help improve Web 
search in a number of ways; for ex-
ample, Deep Web databases are not 
generally available to search engines, 
and, by surfacing this data, a Deep 
Web exploration tool can expand the 
scope and quality of the Web-search 
index. Moreover, the layout structure 
can be used as a relevance signal to 
the search ranker; for example, an 
HTML table-embedded database with 
a column calories and a row latte, 
should be ranked fairly high in re-
sponse to the user query latte cal-
ories. Traditionally, search engines 
use the proximity of terms on a page 
as a signal of relatedness; in this case, 
the two terms are highly related, even 
though they may be distant from each 
other on the page.

Enable question answering. A long-
standing goal for Web search is to 
return answers in the form of facts; 
for example, in the latte calories 
query, rather than return a URL a 
search engine might return an actual 
numerical value extracted from the 
HTML table. Web search engines re-
turn actual answers for very specific 
query domains (such as weather and 
flight conditions), but doing so in a 
domain-independent way is a much 
greater challenge. 

Enable data integration from mul-
tiple Web sources. With all the data 
sets available on the Web, the idea 
of combining and integrating them 
in ad hoc ways is immensely appeal-
ing. In a traditional database setting, 
this task is called data integration; 
on the Web, combining two disparate 
data sets is often called a “mashup.” 
While a traditional database adminis-
trator might integrate two employee 
databases with great precision and at 
great cost, most combinations of Web 
data should be akin to Web search—
relatively imprecise and inexpensive; 
for example, a user might combine 
the set of coffeehouses with a data-
base of WiFi hotspots, where speed 

Figure 1. Typical use of the table tag to describe relational data that has structure never 
explicitly declared by the author, including metadata consisting of several typed and labeled 
columns, but that is obvious to human observers. The navigation bars at the top of the page 
are also implemented through the table tag but do not contain relational-style data. 

Figure 2. Results of a keyword query search for “city population,” returning a relevance-
ranked list of databases. The top result contains a row for each of the most populous 125 
cities and columns for “City/Urban Area,” “Country,” “Population,” and “rank” (by population 
among all the cities in the world). The system automatically generated the image at right, 
showing the result of clicking on the “Paris” row. The title (“City Mayors…”) links to the page 
where the original HTML table is located. 
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is more important than flawless ac-
curacy. Unlike most existing mashup 
tools, we do not want users to be lim-
ited to data that has been prepared for 
integration (such as already available 
in XML). 

The Web is home to many kinds of 
structured data, including embedded 
in text, socially created objects, HTML 
tables, and Deep Web databases. We 
have developed systems that focus on 
HTML tables and Deep Web databas-
es. WebTables extracts relational data 
from crawled HTML tables, thereby 
creating a collection of structured da-
tabases several orders of magnitude 
larger than any other we know of. The 
other project surfaces data obtained 
from the Deep Web, almost all hidden 
behind Web forms and thus inacces-
sible. We have also constructed a tool 
(not discussed here) called Octopus 
that allows users to extract, clean, 
and integrate Web-embedded data.3 
Finally, we built a third system, called 
Google Fusion Tables,13 a cloud-based 
service that facilitates creation and 
publication of structured data on the 
Web, therefore complementing the 
two other projects. 

WebTables 
The WebTables system4,5 is designed 
to extract relational-style data from 
the Web expressed using the HTML 
table tag. Figure 1 is a table listing 
American presidents (http://www.
enchantedlearning.com/history/us/
pres/list.shtml) with four columns, 
each with topic-specific label and type 
(such as President and Term as Presi-
dent) as a date range; also included is 
a tuple of data for each row. Although 
most of the structured-data metadata 
is implicit, this Web page essentially 
contains a small relational database 
anyone can crawl. 

Not all table tags carry relational 
data. Many are used for page layout, 
calendars, and other nonrelational 
purposes; for example, in Figure 1, 
the top of the page contains a table 
tag used to lay out a navigation bar 
with the letters A–Z. Based on a hu-
man-judged sample of raw tables, we 
estimate up to 200 million true rela-
tional databases in English alone on 
the Web. In general, less than 1% of 
the content embedded in the HTML 
table tags represents good tables. In-

deed, the relational databases in the 
WebTables corpus form the largest 
database corpus we know of, by five 
orders of decimal magnitude.a 

WebTables focuses on two main 
problems surrounding these data-
bases: One, perhaps more obvious, 
is how to extract them from the Web 
in the first place, given that 98.9% of 
tables carry no relational data. Once 
we address this problem, we can move 
to the second—what to do with the re-
sulting huge collection of databases. 

Table extraction. The WebTables 
table-extraction process involves two 
steps: First is an attempt to filter out 
all the nonrelational tables. Unfortu-
nately, automatically distinguishing a 
relational table from a nonrelational 
table can be difficult. To do so, the sys-
tem uses a combination of handwrit-
ten and statistically trained classifiers 
that use topic-independent features 
of each table; for example, high-quali-
ty data tables often have relatively few 
empty cells. Another useful feature is 
whether each column contains a uni-
form data type (such as all dates or all 
integers). Google Research has found 
that finding a column toward the left 
side of the table with values drawn 
from the same semantic type (such as 
country, species, and institution) is a 
valuable signal for identifying high-
quality relational tables. 

The second step is to recover meta-
data for each table passing through 
the first filter. Metadata is informa-
tion that describes the data in the da-
tabase (such as number of columns, 
types, and names). In the case of the 
presidents, the metadata contains 
the column labels President, Par-
ty, and so on. For coffeehouses, it 
might contain Name, Speciality, 
and Roaster. Although metadata 
for a traditional relational database 
can be complex, the goal for WebTa-
bles metadata is modest—determine 
whether or not the first row of the ta-

a	 The second-largest collection we know is due 
to Wang and Hu,22 who also tried to gather data 
from Web pages but with a relatively small and 
focused set of input pages. Other research on 
table extraction has not focused on large col-
lections.10,12,23 Our discussion here refers to the 
number of distinct databases, not the number 
of tuples. Limaye et al16 described techniques 
for mapping entities and columns in tables to 
an ontology.

Any useful 
application making 
use of Web data 
must also be able  
to address 
uncertain data 
design and quality.
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ble includes labels for each column. 
When inspecting tables by hand, we 
found 70% of good relational-style ta-
bles contain such a metadata row. As 
with relational filtering, we used a set 
of trained classifiers to automatically 
determine whether or not the schema 
row is present. 

The two techniques together al-
lowed WebTables to recover 125 mil-
lion high-quality databases from a 
large general Web crawl (several bil-
lion Web pages). The tables in this 
corpus contained more than 2.6 mil-
lion unique “schemas,” or unique sets 
of attribute strings. This enormous 
data set is a unique resource we ex-
plore in the following paragraphs. 

Leveraging extracted data. Ag-
gregating data over the extracted 
WebTables data, we can create new 
applications previously difficult or 
impossible through other techniques. 
One such application is structured 
data search. Traditional search en-
gines are tuned to return relevant doc-
uments, not data sets, so users search-
ing for data are generally ill-served. 
Using the extracted WebTables data, 
we implemented a search engine that 
takes a keyword query and returns a 
ranked list of databases instead of 
URLs; Figure 2 is a screenshot of the 
prototype system. Because WebTa-
bles extracted structural information 
for each object in the search engine’s 
index, the results page can be more 
interesting than in a standard search 
engine. Here, the page of search re-
sults contains an automatically drawn 
map reflecting the cities listed in the 
data set; imagine the system being 
used by knowledge workers who want 
to find data to add to a spreadsheet. 

In addition to the data in the ta-
bles, we found significant value in the 
collection of the tabular schemata 
we collected. We created the Attri-
bute Correlation Statistics Database 
(ACSDb) consisting of simple fre-
quency counts for each unique piece 
of metadata WebTables extracts; for 
example, the database of presidents 
mentioned earlier adds a single count 
to the four-element set president, 
party, term-as-president, vice-
president. By summing individual 
attribute counts over all entries in the 
ACSDb, WebTables is able to compute 
various attribute probabilities, given a 

randomly chosen database; for exam-
ple, the probability of seeing the name 
attribute is far higher than seeing the 
roaster attribute. 

WebTables also computes con-
ditional probabilities, so, for ex-
ample, we learn that p(roaster | 
house-blend) is much higher than 
p(roaster | album-title). It 
makes sense that two coffee-related 
attributes occur together much more 
often than a combination of a coffee-
related attribute and, say, a music-
related attribute. Using these proba-
bilities in different ways, we can build 
interesting new applications, includ-
ing these two: 

Schema autocomplete. The database 
schema auto-complete application is 
designed to assist novice database de-
signers. Like the tab-complete feature 
in word processors, schema autocom-
plete takes a few sample attributes 
from the user and suggests additional 
attributes to complete the table; for 
example, if a user types roaster and 
house-blend, the auto-complete 
feature might suggest speciality, 
opening-time and other attributes 
to complete the coffeehouse schema. 
Table 1 lists example outputs from our 
auto-complete tool, which is also use-
ful in scenarios where users should be 
encouraged to reuse existing termi-
nologies in their schemas. 

The auto-complete algorithm is 
easily implemented with probabili-
ties from the ACSDb. The algorithm 
repeatedly emits the attribute from 
the ACSDb to yield the highest prob-
ability, when conditioned on the at-
tributes the user (or algorithm) has 
already suggested. The algorithm ter-
minates when the attribute yielding 
the highest probability is below a tun-
able threshold. 

Synonym finding. The WebTables 
synonym-finding application uses AC-
SDb probabilities to automatically de-
tect likely attribute synonyms; for ex-
ample, phone-number and phone-# 
are two attribute labels that are se-
mantically equivalent. Synonyms play 
a key role in data integration. When 
we merge two databases on the same 
topic created by different people, we 
first need to reconcile the different 
attribute names used in the two da-
tabases. Finding these synonyms is 
generally done by the application de-

An important 
lesson we learned is 
there is significant 
value in analyzing 
collections of 
metadata on the 
Web, in addition  
to the data itself.
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signer or drawn automatically from 
a pre-compiled linguistic resource 
(such as a thesaurus). However, the 
task of synonym finding is compli-
cated by the fact that attribute names 
are often acronyms or word combina-
tions, and their meanings are highly 
contextual. Unfortunately, manually 
computing a set of synonyms is bur-
densome and error-prone. 

WebTables uses probabilities from 
the ACSDb to encode three observa-
tions about good synonyms:

˲˲ Two synonyms should not appear 
together in any known schema, as it 
would be repetitive on the part of the 
database designer;

˲˲ Two synonyms should share 
common co-attributes; for example, 
phone-number and phone-# should 
both appear along with name and ad-
dress; and 

˲˲ The most accurate synonyms are 
popular in real-world use cases. 

WebTables can encode each of 
these observations in terms of attri-
bute probabilities using ACSDb data. 
Combining them, we obtain a formu-
la for a synonym-quality score WebTa-
bles uses to sort and rank every possi-
ble attribute pair; Table 2 lists a series 
of input domains and the output pairs 
of the synonym-finding system. 

Deep Web Databases 
Not all structured data on the Web is 
published in easily accessible HTML 
tables. Large volumes of data stored 
in back-end databases are often made 
available to Web users only through 
HTML form interfaces; for example, a 
large chain of coffeehouses might have 
a database of store locations that are 
retrieved by zip code using the HTML 
form on the company’s Web site, and 
users retrieve data by performing valid 
form submissions. On the back-end, 
HTML forms are processed by either 
posing structured queries over rela-
tional databases or sending keyword 
queries over text databases. The re-
trieved content is published on Web 
pages in structured templates, often 
including HTML tables. 

While WebTables-harvested tables 
are potentially reachable by users 
posing keyword queries on search 
engines, the content behind HTML 
forms was for a long time believed 
to be beyond the reach of search en-

gines; few hyperlinks point to Web 
pages resulting from form submis-
sions, and Web crawlers did not have 
the ability to automatically fill out 
forms. Hence, the names “Deep,” 
“Hidden,” and “Invisible Web” have 
all been used to refer to the content 
accessible only through forms. Berg-
man2 and He et al14 have speculated 
that the data in the Deep Web far ex-
ceeds the data indexed by contem-
porary search engines. We estimate 
at least 10 million potentially useful 
distinct forms18; our previous work17 
has a more thorough discussion of the 
Deep Web literature and its relation to 
the projects described here. 

The goal of Google’s Deep Web 
Crawl Project is to make Deep Web 
content accessible to search-engine 
users. There are two complemen-
tary approaches to offering access to 
it: create vertical search engines for 
specific topics (such as coffee, presi-
dents, cars, books, and real estate) 
and surface Deep Web content. In the 
first, for each vertical, a designer must 
create a mediated schema visible to 
users and create semantic mappings 
from the Web sources to the mediated 
schema. However, at Web scale, this 
approach suffers from several draw-
backs: 

˲˲ A human must spend time and 
effort building and maintaining each 
mapping; 

˲˲ When dealing with thousands of 
domains, identifying the topic rel-
evant to an arbitrary keyword query is 
extremely difficult; and 

˲˲ Data on the Web reflects every 
topic in existence, and topic boundar-
ies are not always clear. 

The Deep Web Crawl project fol-
lowed the second approach to surface 
DeepWeb content, pre-computing the 
most relevant form submissions for 
all interesting HTML forms. The URLs 
resulting from these submissions can 
then be added to the crawl of a search 
engine and indexed like any other 
HTML page. This approach leverages 
the existing search-engine infrastruc-
ture, allowing the seamless inclusion 
of Deep Web pages into Web-search 
results. The system currently surfaces 
content for several million Deep Web 
databases spanning more than 50 lan-
guages and several hundred domains, 
and the surfaced pages contribute re-
sults to more than 1,000 Web-search 
queries per second on Google.com. 
For example, as of the writing of this 
article, a search query for citibank 
atm 94043 will return in the first po-
sition a parameterized URL surfacing 

Table 1. Sample output from the schema autocomplete tool. To the left is a  
user’s input attribute; to the right are sample schemas. 

Input attribute Auto-completer output

name name, size, last-modified, type

instructor instructor, time, title, days, room, course

elected elected, party, district, incumbent, status, opponent, description

ab ab, h, r, bb, so, rbi, avg, lob, hr, pos, batters

sqft sqft, price, baths, beds, year, type, lot-sqft, days-on-market, stories

Table 2. Sample output from the synonym-finding tool. To the left are the input  
context attributes; to the right are synonymous pairs generated by the system. 

Input context Synonym-finder outputs

name e-mail|email, phone|telephone, e-mail address|email address,  
date|last-modified

instructor course-title|title, day|days, course|course-#, course-name|course-title

elected candidate|name, presiding-officer|speaker

ab k|so, h|hits, avg|ba, name|player

sqft bath|baths, list|list-price, bed|beds, price|rent
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results from a database of ATM loca-
tions—a very useful search result that 
would not have appeared otherwise. 

Pre-computing the set of relevant 
form submissions for any given form 
is the primary difficulty with surfac-
ing; for example, a field with label 
roaster should not be filled in with 
value toyota. Given the scale of a 
Deep Web crawl, it is crucial there be 
no human involvement in the process 
of pre-computing form submissions. 
Hence, previous work that either ad-
dressed the problem by constructing 
mediator systems one domain at a 
time8,9,21 or needed site-specific wrap-
pers or extractors to extract docu-
ments from text databases1,19 could 
not be applied. 

Surfacing Deep Web content in-
volves two main technical challenges: 

˲˲ Values must be selected for each 
input in the form; value selection is 
trivial for select menus but very chal-
lenging for text boxes; and 

˲˲ Forms have multiple inputs, and 
using a simple strategy of enumerat-
ing all possible form submissions can 
be wasteful; for example, the search 
form on cars.com has five inputs, and 
a cross product will yield more than 
200 million URLs, even though cars.
com lists only 650,000 cars for sale.7 

The full details on how we ad-
dressed these challenges are in Mad-
havan et al.18 Here, we outline how we 
approach the two problems: 

Selecting input values. A large num-
ber of forms have text-box inputs and 
require valid input values for the re-
trieval of any data. The system must 
therefore choose a good set of values 
to submit in order to surface useful 
result pages. Interestingly, we found 
it is not necessary to have a complete 
understanding of the semantics of 
the form to determine good candidate 
text inputs. To understand why, first 
note that text inputs fall into one of 
two categories: generic search inputs 
that accept most keywords and typed 
text inputs that accept only values in a 
particular topic area. 

For search boxes, the system pre-
dicts an initial set of candidate key-
words by analyzing text from the form 
site, using the text to bootstrap an 
iterative probing process. The sys-
tem submits the form with candidate 
keywords; when valid form submis-

sions result, the system extracts more 
keywords from the resulting pages. 
This iterative process continues un-
til either there are no new candidate 
keywords or the system reaches a pre-
specified target number of results. 
The set of all candidate keywords can 
then be pruned, choosing a small 
number that ensures diversity of the 
exposed database content. Similar it-
erative probing approaches have been 
used to extract text documents from 
specific databases.1,6,15,19,20 

For typed text boxes, the system at-
tempts to match the type of the text 
box against a library of types common 
across topics (such as U.S. zip codes). 
Note that probing with values of the 
wrong type results in invalid submis-
sions or pages with no results. We 
found even a library of just a few types 
can cover a significant number of text 
boxes. 

Selecting input combinations. For 
HTML forms with more than one in-
put, a simple strategy of enumerating 
the entire cross-product of all pos-
sible values for each input will result 
in a huge number of output URLs. 
Crawling too many URLs drains the 
resources of a search engine Web 
crawler while posing an unreason-
able load on Web servers hosting the 
HTML forms. Choosing a subset of 
the cross-product that yields results 
that are nonempty, useful, and dis-
tinct is an algorithmic challenge.18 
The system incrementally traverses 
the search space of all possible sub-
sets of inputs. For a given subset, it 
tests whether it is informative, or ca-
pable of generating URLs with suffi-
cient diversity in their content. As we 
showed in Madhavan et al,18 only a 
small fraction of possible input sets 
must be tested, and, for each sub-
set, the content of only a sample of 
generated URLs must be examined. 
Our algorithm is able to extract large 
fractions of underlying Deep Web da-
tabases without human supervision, 
using only a small number of form 
submissions. Furthermore, the num-
ber of form submissions the system 
generates is proportional to the size 
of the database underlying the form 
site, rather than the number of inputs 
and input combinations in the form. 

Limitations of surfacing. By creat-
ing Web pages, surfacing does not 

preserve the structure or semantics of 
the data gathered from the underly-
ing DeepWeb databases. But the loss 
in semantics is also a lost opportunity 
for query answering; for example, sup-
pose a user searched for “used ford fo-
cus 1993” and a surfaced used-car list-
ing page included Honda Civics, with 
a 1993 Honda Civic for sale, but also 
said “has better mileage than the Ford 
Focus.” A traditional search engine 
would consider such a surfaced Web 
page a good result, despite not being 
helpful to the user. We could avoid 
this situation if the surfaced page had 
a search-engine-specific annotation 
that the page was for used-car listings 
of Honda Civics. One challenge for an 
automated system is to create a set of 
structure-aware annotations textual 
search engines can use effectively. 

Next Steps 
These two projects represent first 
steps in retrieving structured data on 
the Web and making it directly acces-
sible to users. Searching it is not a 
solved problem; in particular, search 
over large collections of data is still an 
area in need of significant research, 
as well as integration with other 
Web search. An important lesson we 
learned is there is significant value in 
analyzing collections of metadata on 
the Web, in addition to the data itself. 

Specifically, from the collections 
we have worked with—forms and 
HTML tables—we have extracted sev-
eral artifacts: 

˲˲ A collection of forms (input 
names that appear together and val-
ues for select menus associated with 
input names); 

˲˲ A collection of several million 
schemata for tables, or sets of column 
names appearing together; and 

˲˲ A collection of columns, each with 
values in the same domain (such as 
city names, zip codes, and car makes). 

Semantic services. Generalizing 
from our synonym finder and schema 
auto-complete, we build from the 
schema artifacts a set of semantic ser-
vices that form a useful infrastructure 
for many other tasks. An example of 
such a service is that, given a name 
of an attribute, return a set of values 
for its column; such a service can au-
tomatically fill out forms in order to 
surface Deep Web content. A second 
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example is, given an entity, return a 
set of possible properties—attributes 
and relationships—that may be as-
sociated with it. Such a service would 
be useful for both information-extrac-
tion tasks and query expansion. 

Structured data from other sourc-
es. Some of the principles of our pre-
vious projects are useful for extracting 
structured data from other growing 
sources on the Web: 

Socially created data sets. These 
data sets (such as encyclopedia ar-
ticles, videos, and photographs) are 
large and interesting and exist main-
ly in site-specific silos, so integrat-
ing them with information extracted 
from the wider Web would be useful; 

Hypertext-based data models. These 
models, in which page authors use 
combinations of HTML elements 
(such as a list of hyperlinks), perform 
certain data-model tasks (such as in-
dicate that all entities pointed to by 
the hyperlinks belong to the same 
set); this category can be considered a 
generalization of the observation that 
HTML tables are used to communi-
cate relations; and 

Office-style documents. These docu-
ments (such as spreadsheets and 
slide presentations) contain their own 
structured data, but because they are 
complicated, extracting information 
from them can be difficult, though it 
also means they are a tantalizing tar-
get. 

Creating and publishing struc-
tured data. The projects we’ve de-
scribed are reactive in the sense that 
they try to leverage data already on 
the Web. In a complementary line of 
work, we created Google Fusion Ta-
bles,13 a service that aims to facilitate 
the creation, management, and pub-
lication of structured data, enabling 
users to upload tabular data files, in-
cluding spreadsheets and CSV, of up 
to 100MB. The system provides ways 
to visualize the data—maps, charts, 
timelines—along with the ability to 
query by filtering and aggregating the 
data. Fusion Tables enables users to 
integrate data from multiple sources 
by performing joins across tables that 
may belong to different users. Users 
can keep the data private, share it with 
a select set of collaborators, or make 
it public. When made public, search 
engines are able to crawl the tables, 

thereby providing additional incen-
tive to publish data. Fusion Tables 
also includes a set of social features 
(such as collaborators conducting 
detailed discussions of the data at 
the level of individual rows, columns, 
and cells). For notable uses of Fusion 
Tables go to https://sites.google.com/
site/fusiontablestalks/stories. 

Conclusion 
Structured data on the Web involves 
several technical challenges: difficult 
to extract, typically disorganized, and 
often messy. The centralized control 
enforced by a traditional database 
system avoids all of them, but central-
ized control also misses out on the 
main virtues of Web data—that it can 
be created by anyone and covers every 
topic imaginable. We are only starting 
to see the benefits that might accrue 
from these virtues. In particular, as il-
lustrated by WebTables synonym find-
ing and schema auto-suggest, we see 
the results of large-scale data mining 
of an extracted (and otherwise unob-
tainable) data set. 

It is often argued that only select 
Web-search companies are able to 
carry out research of the flavor we’ve 
described here. This argument holds 
mostly for research projects involving 
access to logs of search queries, but 
the research described here was made 
easier by having access to a large Web 
index and computational infrastruc-
ture, and much of it can be conducted 
at academic institutions as well, in 
particular when it involves such chal-
lenges as extracting the meaning of 
tables on the Web and finding inter-
esting combinations of such tables. 
ACSDb is freely available to research-
ers outside of Google (https://www.
eecs.umich.edu/ michjc/acsdb.html); 
we also expect to make additional 
data sets available to foster related re-
search. 	
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