
72 communications of the acm | february 2011 | vol. 54 | no. 2

contributed articles

Though the Web is best known as a vast repository
of shared documents, it also contains a significant
amount of structured data covering a complete range
of topics, from product to financial, public-record,
scientific, hobby-related, and government. Structured
data on the Web shares many similarities with the
kind of data traditionally managed by commercial
database systems but also reflects some unusual
characteristics of its own; for example, it is embedded
in textual Web pages and must be extracted prior to
use; there is no centralized data design as there is in
a traditional database; and, unlike traditional
databases that focus on a single domain, it covers
everything. Existing data-management systems do
not address these challenges and assume their data
is modeled within a well-defined domain.

This article discusses the nature of Web-embedded
structured data and the challenges of managing it. To
begin, we present two relevant research projects

developed at Google over the past
five years. The first, WebTables, com-
piles a huge collection of databases
by crawling the Web to find small re-
lational databases expressed using
the HTML table tag. By performing
data mining on the resulting extract-
ed information, WebTables is able to
introduce new data-centric applica-
tions (such as schema completion
and synonym finding). The second,
the Google Deep Web Crawler, at-
tempts to surface information from
the Deep Web, referring to data on
the Web available only by filling out
Web forms, so cannot be crawled by
traditional crawlers. We describe how
this data is crawled by automatically
submitting relevant queries to a vast
number of Web forms. The two proj-
ects are just the first steps toward ex-
posing and managing structured Web
data largely ignored by Web search
engines.

Web Data
Structured data on the Web exists in
several forms, including HTML ta-
bles, HTML lists, and back-end Deep
Web databases (such as the books
sold on Amazon.com). We estimate
in excess of one billion data sets as of
February 2011. More than 150 million
sources come from a subset of all Eng-
lish-language HTML tables,4,5 while
Elmeleegy et al11 suggested an equal
number from HTML lists, a total that
does not account for the non-English
Web. Finally, our experience at Google

Structured
Data on
the Web

doi:10.1145/1897816.1897839

Google’s WebTables and Deep Web Crawler
identify and deliver this otherwise inaccessible
resource directly to end users.

by Michael J. Cafarella, Alon Halevy,
and Jayant Madhavan

 key insights
 � �Because data on the Web is about

everything, any approach that attempts
to leverage it cannot rely on building a
model of the data ahead of time but on
domain-independent methods instead.

 � �The sheer quantity and heterogeneity of
structured data on the Web enables new
approaches to problems involving data
integration from multiple sources.

 � �While the content of structured data is
typically different from what is found in
text on the Web, each content collection
can be leveraged to better understand
other collections.

February 2011 | vol. 54 | no. 2 | communications of the acm 73

P
hotograph

 by

 M
ax

 W

estby

suggests the Deep Web alone can gen-
erate more than one billion pages of
valuable structured data. The result
is an astounding number of distinct
structured data sets, most still wait-
ing to be exposed more effectively to
users.

This structured data differs from
data stored in traditional relational
databases in several ways:

Data in “page context” must be ex-
tracted. Consider a database embed-
ded in an HTML table (such as local
coffeehouses in Seattle and the U.S.
presidents in Figure 1). To the user
the data set appears to be structured,
but a computer program must be able
to automatically distinguish it from,
say, a site’s navigational bar that also
uses an HTML table. Similarly, a Web
form that gives access to an interest-
ing Deep Web database, perhaps con-
taining all Starbucks locations in the
world, is not that different from a form
offering simple mailing-list signup.
The computer program might also
have to automatically extract schema
information in the form of column la-
bels sometimes appearing in the first
row of an HTML table but that some-
times do not exist at all. Moreover, the
subject of a table may be described in
the surrounding text, making it diffi-
cult to extract. There is nothing akin
to traditional relational metadata that
leaves no doubt as to how many tables
there are and the relevant schema in-
formation for each table.

No centralized data design or data-
quality control. In a traditional data-
base, the relational schema provides
a topic-specific design that must be
observed by all data elements. The
database and the schema may also
enforce certain quality controls (such
as observing type consistency within
a column, disallowing empty cells,
and constraining data values to a cer-
tain legal range). For example, the set
of coffeehouses may have a column
called year-founded containing
integers constrained to a relatively
small range. Neither data design nor
quality control exists for Web data; for

74 communications of the acm | february 2011 | vol. 54 | no. 2

contributed articles

example, if a year-founded string
is in the first row, there is nothing to
prevent the string macchiatone from
appearing beneath it. Any useful ap-
plication making use of Web data
must also be able to address uncer-
tain data design and quality.

Vast number of topics. A tradi-

tional database typically focuses on
a particular domain (such as prod-
ucts or proteins) and therefore can
be modeled in a coherent schema. On
the Web, data covers everything, and
is also one of its appeals. The breadth
and cultural variations of data on the
Web make it inconceivable that any

manual effort would be able to create
a clean model of all of it.

Before addressing the challenges
associated with accessing structured
data on the Web, it is important to ask
what users might do with such data.
Our work is inspired by the following
example benefits:

Improve Web search. Structured
Web data can help improve Web
search in a number of ways; for ex-
ample, Deep Web databases are not
generally available to search engines,
and, by surfacing this data, a Deep
Web exploration tool can expand the
scope and quality of the Web-search
index. Moreover, the layout structure
can be used as a relevance signal to
the search ranker; for example, an
HTML table-embedded database with
a column calories and a row latte,
should be ranked fairly high in re-
sponse to the user query latte cal-
ories. Traditionally, search engines
use the proximity of terms on a page
as a signal of relatedness; in this case,
the two terms are highly related, even
though they may be distant from each
other on the page.

Enable question answering. A long-
standing goal for Web search is to
return answers in the form of facts;
for example, in the latte calories
query, rather than return a URL a
search engine might return an actual
numerical value extracted from the
HTML table. Web search engines re-
turn actual answers for very specific
query domains (such as weather and
flight conditions), but doing so in a
domain-independent way is a much
greater challenge.

Enable data integration from mul-
tiple Web sources. With all the data
sets available on the Web, the idea
of combining and integrating them
in ad hoc ways is immensely appeal-
ing. In a traditional database setting,
this task is called data integration;
on the Web, combining two disparate
data sets is often called a “mashup.”
While a traditional database adminis-
trator might integrate two employee
databases with great precision and at
great cost, most combinations of Web
data should be akin to Web search—
relatively imprecise and inexpensive;
for example, a user might combine
the set of coffeehouses with a data-
base of WiFi hotspots, where speed

Figure 1. Typical use of the table tag to describe relational data that has structure never
explicitly declared by the author, including metadata consisting of several typed and labeled
columns, but that is obvious to human observers. The navigation bars at the top of the page
are also implemented through the table tag but do not contain relational-style data.

Figure 2. Results of a keyword query search for “city population,” returning a relevance-
ranked list of databases. The top result contains a row for each of the most populous 125
cities and columns for “City/Urban Area,” “Country,” “Population,” and “rank” (by population
among all the cities in the world). The system automatically generated the image at right,
showing the result of clicking on the “Paris” row. The title (“City Mayors…”) links to the page
where the original HTML table is located.

contributed articles

February 2011 | vol. 54 | no. 2 | communications of the acm 75

is more important than flawless ac-
curacy. Unlike most existing mashup
tools, we do not want users to be lim-
ited to data that has been prepared for
integration (such as already available
in XML).

The Web is home to many kinds of
structured data, including embedded
in text, socially created objects, HTML
tables, and Deep Web databases. We
have developed systems that focus on
HTML tables and Deep Web databas-
es. WebTables extracts relational data
from crawled HTML tables, thereby
creating a collection of structured da-
tabases several orders of magnitude
larger than any other we know of. The
other project surfaces data obtained
from the Deep Web, almost all hidden
behind Web forms and thus inacces-
sible. We have also constructed a tool
(not discussed here) called Octopus
that allows users to extract, clean,
and integrate Web-embedded data.3
Finally, we built a third system, called
Google Fusion Tables,13 a cloud-based
service that facilitates creation and
publication of structured data on the
Web, therefore complementing the
two other projects.

WebTables
The WebTables system4,5 is designed
to extract relational-style data from
the Web expressed using the HTML
table tag. Figure 1 is a table listing
American presidents (http://www.
enchantedlearning.com/history/us/
pres/list.shtml) with four columns,
each with topic-specific label and type
(such as President and Term as Presi-
dent) as a date range; also included is
a tuple of data for each row. Although
most of the structured-data metadata
is implicit, this Web page essentially
contains a small relational database
anyone can crawl.

Not all table tags carry relational
data. Many are used for page layout,
calendars, and other nonrelational
purposes; for example, in Figure 1,
the top of the page contains a table
tag used to lay out a navigation bar
with the letters A–Z. Based on a hu-
man-judged sample of raw tables, we
estimate up to 200 million true rela-
tional databases in English alone on
the Web. In general, less than 1% of
the content embedded in the HTML
table tags represents good tables. In-

deed, the relational databases in the
WebTables corpus form the largest
database corpus we know of, by five
orders of decimal magnitude.a

WebTables focuses on two main
problems surrounding these data-
bases: One, perhaps more obvious,
is how to extract them from the Web
in the first place, given that 98.9% of
tables carry no relational data. Once
we address this problem, we can move
to the second—what to do with the re-
sulting huge collection of databases.

Table extraction. The WebTables
table-extraction process involves two
steps: First is an attempt to filter out
all the nonrelational tables. Unfortu-
nately, automatically distinguishing a
relational table from a nonrelational
table can be difficult. To do so, the sys-
tem uses a combination of handwrit-
ten and statistically trained classifiers
that use topic-independent features
of each table; for example, high-quali-
ty data tables often have relatively few
empty cells. Another useful feature is
whether each column contains a uni-
form data type (such as all dates or all
integers). Google Research has found
that finding a column toward the left
side of the table with values drawn
from the same semantic type (such as
country, species, and institution) is a
valuable signal for identifying high-
quality relational tables.

The second step is to recover meta-
data for each table passing through
the first filter. Metadata is informa-
tion that describes the data in the da-
tabase (such as number of columns,
types, and names). In the case of the
presidents, the metadata contains
the column labels President, Par-
ty, and so on. For coffeehouses, it
might contain Name, Speciality,
and Roaster. Although metadata
for a traditional relational database
can be complex, the goal for WebTa-
bles metadata is modest—determine
whether or not the first row of the ta-

a	 The second-largest collection we know is due
to Wang and Hu,22 who also tried to gather data
from Web pages but with a relatively small and
focused set of input pages. Other research on
table extraction has not focused on large col-
lections.10,12,23 Our discussion here refers to the
number of distinct databases, not the number
of tuples. Limaye et al16 described techniques
for mapping entities and columns in tables to
an ontology.

Any useful
application making
use of Web data
must also be able
to address
uncertain data
design and quality.

76 communications of the acm | february 2011 | vol. 54 | no. 2

contributed articles

ble includes labels for each column.
When inspecting tables by hand, we
found 70% of good relational-style ta-
bles contain such a metadata row. As
with relational filtering, we used a set
of trained classifiers to automatically
determine whether or not the schema
row is present.

The two techniques together al-
lowed WebTables to recover 125 mil-
lion high-quality databases from a
large general Web crawl (several bil-
lion Web pages). The tables in this
corpus contained more than 2.6 mil-
lion unique “schemas,” or unique sets
of attribute strings. This enormous
data set is a unique resource we ex-
plore in the following paragraphs.

Leveraging extracted data. Ag-
gregating data over the extracted
WebTables data, we can create new
applications previously difficult or
impossible through other techniques.
One such application is structured
data search. Traditional search en-
gines are tuned to return relevant doc-
uments, not data sets, so users search-
ing for data are generally ill-served.
Using the extracted WebTables data,
we implemented a search engine that
takes a keyword query and returns a
ranked list of databases instead of
URLs; Figure 2 is a screenshot of the
prototype system. Because WebTa-
bles extracted structural information
for each object in the search engine’s
index, the results page can be more
interesting than in a standard search
engine. Here, the page of search re-
sults contains an automatically drawn
map reflecting the cities listed in the
data set; imagine the system being
used by knowledge workers who want
to find data to add to a spreadsheet.

In addition to the data in the ta-
bles, we found significant value in the
collection of the tabular schemata
we collected. We created the Attri-
bute Correlation Statistics Database
(ACSDb) consisting of simple fre-
quency counts for each unique piece
of metadata WebTables extracts; for
example, the database of presidents
mentioned earlier adds a single count
to the four-element set president,
party, term-as-president, vice-
president. By summing individual
attribute counts over all entries in the
ACSDb, WebTables is able to compute
various attribute probabilities, given a

randomly chosen database; for exam-
ple, the probability of seeing the name
attribute is far higher than seeing the
roaster attribute.

WebTables also computes con-
ditional probabilities, so, for ex-
ample, we learn that p(roaster |
house-blend) is much higher than
p(roaster | album-title). It
makes sense that two coffee-related
attributes occur together much more
often than a combination of a coffee-
related attribute and, say, a music-
related attribute. Using these proba-
bilities in different ways, we can build
interesting new applications, includ-
ing these two:

Schema autocomplete. The database
schema auto-complete application is
designed to assist novice database de-
signers. Like the tab-complete feature
in word processors, schema autocom-
plete takes a few sample attributes
from the user and suggests additional
attributes to complete the table; for
example, if a user types roaster and
house-blend, the auto-complete
feature might suggest speciality,
opening-time and other attributes
to complete the coffeehouse schema.
Table 1 lists example outputs from our
auto-complete tool, which is also use-
ful in scenarios where users should be
encouraged to reuse existing termi-
nologies in their schemas.

The auto-complete algorithm is
easily implemented with probabili-
ties from the ACSDb. The algorithm
repeatedly emits the attribute from
the ACSDb to yield the highest prob-
ability, when conditioned on the at-
tributes the user (or algorithm) has
already suggested. The algorithm ter-
minates when the attribute yielding
the highest probability is below a tun-
able threshold.

Synonym finding. The WebTables
synonym-finding application uses AC-
SDb probabilities to automatically de-
tect likely attribute synonyms; for ex-
ample, phone-number and phone-#
are two attribute labels that are se-
mantically equivalent. Synonyms play
a key role in data integration. When
we merge two databases on the same
topic created by different people, we
first need to reconcile the different
attribute names used in the two da-
tabases. Finding these synonyms is
generally done by the application de-

An important
lesson we learned is
there is significant
value in analyzing
collections of
metadata on the
Web, in addition
to the data itself.

contributed articles

February 2011 | vol. 54 | no. 2 | communications of the acm 77

signer or drawn automatically from
a pre-compiled linguistic resource
(such as a thesaurus). However, the
task of synonym finding is compli-
cated by the fact that attribute names
are often acronyms or word combina-
tions, and their meanings are highly
contextual. Unfortunately, manually
computing a set of synonyms is bur-
densome and error-prone.

WebTables uses probabilities from
the ACSDb to encode three observa-
tions about good synonyms:

˲˲ Two synonyms should not appear
together in any known schema, as it
would be repetitive on the part of the
database designer;

˲˲ Two synonyms should share
common co-attributes; for example,
phone-number and phone-# should
both appear along with name and ad-
dress; and

˲˲ The most accurate synonyms are
popular in real-world use cases.

WebTables can encode each of
these observations in terms of attri-
bute probabilities using ACSDb data.
Combining them, we obtain a formu-
la for a synonym-quality score WebTa-
bles uses to sort and rank every possi-
ble attribute pair; Table 2 lists a series
of input domains and the output pairs
of the synonym-finding system.

Deep Web Databases
Not all structured data on the Web is
published in easily accessible HTML
tables. Large volumes of data stored
in back-end databases are often made
available to Web users only through
HTML form interfaces; for example, a
large chain of coffeehouses might have
a database of store locations that are
retrieved by zip code using the HTML
form on the company’s Web site, and
users retrieve data by performing valid
form submissions. On the back-end,
HTML forms are processed by either
posing structured queries over rela-
tional databases or sending keyword
queries over text databases. The re-
trieved content is published on Web
pages in structured templates, often
including HTML tables.

While WebTables-harvested tables
are potentially reachable by users
posing keyword queries on search
engines, the content behind HTML
forms was for a long time believed
to be beyond the reach of search en-

gines; few hyperlinks point to Web
pages resulting from form submis-
sions, and Web crawlers did not have
the ability to automatically fill out
forms. Hence, the names “Deep,”
“Hidden,” and “Invisible Web” have
all been used to refer to the content
accessible only through forms. Berg-
man2 and He et al14 have speculated
that the data in the Deep Web far ex-
ceeds the data indexed by contem-
porary search engines. We estimate
at least 10 million potentially useful
distinct forms18; our previous work17
has a more thorough discussion of the
Deep Web literature and its relation to
the projects described here.

The goal of Google’s Deep Web
Crawl Project is to make Deep Web
content accessible to search-engine
users. There are two complemen-
tary approaches to offering access to
it: create vertical search engines for
specific topics (such as coffee, presi-
dents, cars, books, and real estate)
and surface Deep Web content. In the
first, for each vertical, a designer must
create a mediated schema visible to
users and create semantic mappings
from the Web sources to the mediated
schema. However, at Web scale, this
approach suffers from several draw-
backs:

˲˲ A human must spend time and
effort building and maintaining each
mapping;

˲˲ When dealing with thousands of
domains, identifying the topic rel-
evant to an arbitrary keyword query is
extremely difficult; and

˲˲ Data on the Web reflects every
topic in existence, and topic boundar-
ies are not always clear.

The Deep Web Crawl project fol-
lowed the second approach to surface
DeepWeb content, pre-computing the
most relevant form submissions for
all interesting HTML forms. The URLs
resulting from these submissions can
then be added to the crawl of a search
engine and indexed like any other
HTML page. This approach leverages
the existing search-engine infrastruc-
ture, allowing the seamless inclusion
of Deep Web pages into Web-search
results. The system currently surfaces
content for several million Deep Web
databases spanning more than 50 lan-
guages and several hundred domains,
and the surfaced pages contribute re-
sults to more than 1,000 Web-search
queries per second on Google.com.
For example, as of the writing of this
article, a search query for citibank
atm 94043 will return in the first po-
sition a parameterized URL surfacing

Table 1. Sample output from the schema autocomplete tool. To the left is a
user’s input attribute; to the right are sample schemas.

Input attribute Auto-completer output

name name, size, last-modified, type

instructor instructor, time, title, days, room, course

elected elected, party, district, incumbent, status, opponent, description

ab ab, h, r, bb, so, rbi, avg, lob, hr, pos, batters

sqft sqft, price, baths, beds, year, type, lot-sqft, days-on-market, stories

Table 2. Sample output from the synonym-finding tool. To the left are the input
context attributes; to the right are synonymous pairs generated by the system.

Input context Synonym-finder outputs

name e-mail|email, phone|telephone, e-mail address|email address,
date|last-modified

instructor course-title|title, day|days, course|course-#, course-name|course-title

elected candidate|name, presiding-officer|speaker

ab k|so, h|hits, avg|ba, name|player

sqft bath|baths, list|list-price, bed|beds, price|rent

78 communications of the acm | february 2011 | vol. 54 | no. 2

contributed articles

results from a database of ATM loca-
tions—a very useful search result that
would not have appeared otherwise.

Pre-computing the set of relevant
form submissions for any given form
is the primary difficulty with surfac-
ing; for example, a field with label
roaster should not be filled in with
value toyota. Given the scale of a
Deep Web crawl, it is crucial there be
no human involvement in the process
of pre-computing form submissions.
Hence, previous work that either ad-
dressed the problem by constructing
mediator systems one domain at a
time8,9,21 or needed site-specific wrap-
pers or extractors to extract docu-
ments from text databases1,19 could
not be applied.

Surfacing Deep Web content in-
volves two main technical challenges:

˲˲ Values must be selected for each
input in the form; value selection is
trivial for select menus but very chal-
lenging for text boxes; and

˲˲ Forms have multiple inputs, and
using a simple strategy of enumerat-
ing all possible form submissions can
be wasteful; for example, the search
form on cars.com has five inputs, and
a cross product will yield more than
200 million URLs, even though cars.
com lists only 650,000 cars for sale.7

The full details on how we ad-
dressed these challenges are in Mad-
havan et al.18 Here, we outline how we
approach the two problems:

Selecting input values. A large num-
ber of forms have text-box inputs and
require valid input values for the re-
trieval of any data. The system must
therefore choose a good set of values
to submit in order to surface useful
result pages. Interestingly, we found
it is not necessary to have a complete
understanding of the semantics of
the form to determine good candidate
text inputs. To understand why, first
note that text inputs fall into one of
two categories: generic search inputs
that accept most keywords and typed
text inputs that accept only values in a
particular topic area.

For search boxes, the system pre-
dicts an initial set of candidate key-
words by analyzing text from the form
site, using the text to bootstrap an
iterative probing process. The sys-
tem submits the form with candidate
keywords; when valid form submis-

sions result, the system extracts more
keywords from the resulting pages.
This iterative process continues un-
til either there are no new candidate
keywords or the system reaches a pre-
specified target number of results.
The set of all candidate keywords can
then be pruned, choosing a small
number that ensures diversity of the
exposed database content. Similar it-
erative probing approaches have been
used to extract text documents from
specific databases.1,6,15,19,20

For typed text boxes, the system at-
tempts to match the type of the text
box against a library of types common
across topics (such as U.S. zip codes).
Note that probing with values of the
wrong type results in invalid submis-
sions or pages with no results. We
found even a library of just a few types
can cover a significant number of text
boxes.

Selecting input combinations. For
HTML forms with more than one in-
put, a simple strategy of enumerating
the entire cross-product of all pos-
sible values for each input will result
in a huge number of output URLs.
Crawling too many URLs drains the
resources of a search engine Web
crawler while posing an unreason-
able load on Web servers hosting the
HTML forms. Choosing a subset of
the cross-product that yields results
that are nonempty, useful, and dis-
tinct is an algorithmic challenge.18
The system incrementally traverses
the search space of all possible sub-
sets of inputs. For a given subset, it
tests whether it is informative, or ca-
pable of generating URLs with suffi-
cient diversity in their content. As we
showed in Madhavan et al,18 only a
small fraction of possible input sets
must be tested, and, for each sub-
set, the content of only a sample of
generated URLs must be examined.
Our algorithm is able to extract large
fractions of underlying Deep Web da-
tabases without human supervision,
using only a small number of form
submissions. Furthermore, the num-
ber of form submissions the system
generates is proportional to the size
of the database underlying the form
site, rather than the number of inputs
and input combinations in the form.

Limitations of surfacing. By creat-
ing Web pages, surfacing does not

preserve the structure or semantics of
the data gathered from the underly-
ing DeepWeb databases. But the loss
in semantics is also a lost opportunity
for query answering; for example, sup-
pose a user searched for “used ford fo-
cus 1993” and a surfaced used-car list-
ing page included Honda Civics, with
a 1993 Honda Civic for sale, but also
said “has better mileage than the Ford
Focus.” A traditional search engine
would consider such a surfaced Web
page a good result, despite not being
helpful to the user. We could avoid
this situation if the surfaced page had
a search-engine-specific annotation
that the page was for used-car listings
of Honda Civics. One challenge for an
automated system is to create a set of
structure-aware annotations textual
search engines can use effectively.

Next Steps
These two projects represent first
steps in retrieving structured data on
the Web and making it directly acces-
sible to users. Searching it is not a
solved problem; in particular, search
over large collections of data is still an
area in need of significant research,
as well as integration with other
Web search. An important lesson we
learned is there is significant value in
analyzing collections of metadata on
the Web, in addition to the data itself.

Specifically, from the collections
we have worked with—forms and
HTML tables—we have extracted sev-
eral artifacts:

˲˲ A collection of forms (input
names that appear together and val-
ues for select menus associated with
input names);

˲˲ A collection of several million
schemata for tables, or sets of column
names appearing together; and

˲˲ A collection of columns, each with
values in the same domain (such as
city names, zip codes, and car makes).

Semantic services. Generalizing
from our synonym finder and schema
auto-complete, we build from the
schema artifacts a set of semantic ser-
vices that form a useful infrastructure
for many other tasks. An example of
such a service is that, given a name
of an attribute, return a set of values
for its column; such a service can au-
tomatically fill out forms in order to
surface Deep Web content. A second

contributed articles

February 2011 | vol. 54 | no. 2 | communications of the acm 79

example is, given an entity, return a
set of possible properties—attributes
and relationships—that may be as-
sociated with it. Such a service would
be useful for both information-extrac-
tion tasks and query expansion.

Structured data from other sourc-
es. Some of the principles of our pre-
vious projects are useful for extracting
structured data from other growing
sources on the Web:

Socially created data sets. These
data sets (such as encyclopedia ar-
ticles, videos, and photographs) are
large and interesting and exist main-
ly in site-specific silos, so integrat-
ing them with information extracted
from the wider Web would be useful;

Hypertext-based data models. These
models, in which page authors use
combinations of HTML elements
(such as a list of hyperlinks), perform
certain data-model tasks (such as in-
dicate that all entities pointed to by
the hyperlinks belong to the same
set); this category can be considered a
generalization of the observation that
HTML tables are used to communi-
cate relations; and

Office-style documents. These docu-
ments (such as spreadsheets and
slide presentations) contain their own
structured data, but because they are
complicated, extracting information
from them can be difficult, though it
also means they are a tantalizing tar-
get.

Creating and publishing struc-
tured data. The projects we’ve de-
scribed are reactive in the sense that
they try to leverage data already on
the Web. In a complementary line of
work, we created Google Fusion Ta-
bles,13 a service that aims to facilitate
the creation, management, and pub-
lication of structured data, enabling
users to upload tabular data files, in-
cluding spreadsheets and CSV, of up
to 100MB. The system provides ways
to visualize the data—maps, charts,
timelines—along with the ability to
query by filtering and aggregating the
data. Fusion Tables enables users to
integrate data from multiple sources
by performing joins across tables that
may belong to different users. Users
can keep the data private, share it with
a select set of collaborators, or make
it public. When made public, search
engines are able to crawl the tables,

thereby providing additional incen-
tive to publish data. Fusion Tables
also includes a set of social features
(such as collaborators conducting
detailed discussions of the data at
the level of individual rows, columns,
and cells). For notable uses of Fusion
Tables go to https://sites.google.com/
site/fusiontablestalks/stories.

Conclusion
Structured data on the Web involves
several technical challenges: difficult
to extract, typically disorganized, and
often messy. The centralized control
enforced by a traditional database
system avoids all of them, but central-
ized control also misses out on the
main virtues of Web data—that it can
be created by anyone and covers every
topic imaginable. We are only starting
to see the benefits that might accrue
from these virtues. In particular, as il-
lustrated by WebTables synonym find-
ing and schema auto-suggest, we see
the results of large-scale data mining
of an extracted (and otherwise unob-
tainable) data set.

It is often argued that only select
Web-search companies are able to
carry out research of the flavor we’ve
described here. This argument holds
mostly for research projects involving
access to logs of search queries, but
the research described here was made
easier by having access to a large Web
index and computational infrastruc-
ture, and much of it can be conducted
at academic institutions as well, in
particular when it involves such chal-
lenges as extracting the meaning of
tables on the Web and finding inter-
esting combinations of such tables.
ACSDb is freely available to research-
ers outside of Google (https://www.
eecs.umich.edu/ michjc/acsdb.html);
we also expect to make additional
data sets available to foster related re-
search. 	

References
1.	 Barbosa, L. and Freire, J. Siphoning Hidden-Web data

through keyword-based interfaces. In Proceedings
of the Brazilian Symposium on Databases, 2004 ,
309–321.

2.	 Bergman. M.K. The Deep Web: Surfacing hidden value.
Journal of Electronic Publishing 7, 1 (2001).

3.	 Cafarella, M.J., Halevy, A.Y., and Khoussainova, N. Data
integration for the relational Web. Proceedings of the
VLDB Endowment 2, 1 (2009), 1090–1101.

4.	 Cafarella, M.J., Halevy, A.Y., Wang, D.Z., Wu, E., and
Zhang, Y. WebTables: Exploring the power of tables
on the Web. Proceedings of the VLDB Endowment 1, 1

(Aug. 2008), 538–549.
5.	 Cafarella, M.J., Halevy, A.Y., Zhang, Y., Wang, D.Z., and

Wu, E. Uncovering the relational Web. In Proceedings
of the 11th International Workshop on the Web and
Databases (Vancouver, B.C., June 13, 2008).

6.	 Callan, J.P. and Connell, M.E. Query-based sampling
of text databases. ACM Transactions on Information
Systems 19, 2 (2001), 97–130.

7.	 Cars.com (faq); http://siy.cars.com/siy/qsg/
faqgeneralinfo.jsp#howmanyads

8.	 Cazoodle apartment search; http://apartments.
cazoodle.com/

9.	 Chang, K.C.-C., He, B., and Zhang, Z. Toward
large-scale integration: Building a metaquerier
over databases on the Web. In Proceedings of the
Conference on Innovative Data Systems Research
(Asilomar, CA, Jan. 2005).

10.	 Chen, H., Tsai, S., and Tsai, J. Mining tables from
large-scale html texts. In Proceedings of the
18th International Conference on Computational
Linguistics (Saarbrucken, Germany, July 31–Aug. 4,
2000), 166–172.

11.	 Elmeleegy, H., Madhavan, J., and Halevy, A. Harvesting
relational tables from lists on the Web. Proceedings of
the VLDB Endowment 2, 1 (2009), 1078–1089.

12.	 Gatterbauer, W., Bohunsky, P., Herzog, M., Krüupl,
B., and Pollak, B. Towards domain-independent
information extraction from Web tables. In
Proceedings of the 16th International World Wide Web
Conference (Banff, Canada, May 8–12, 2007), 71–80.

13.	 Gonzalez, H., Halevy, A., Jensen, C., Langen, A.,
Madhavan, J., Shapley, R., Shen, W., and Goldberg-
Kidon, J. Google Fusion Tables: Web-centered data
management and collaboration. In Proceedings of the
SIGMOD ACM Special Interest Group on Management
of Data (Indianapolis, 2010). ACM Press, New York,
2010, 1061–1066.

14.	 He, B., Patel, M., Zhang, Z., and Chang, K.C.-C.
Accessing the Deep Web. Commun. ACM 50, 5 (May
2007), 94–101.

15.	 Ipeirotis, P.G. and Gravano, L. Distributed search over
the Hidden Web: Hierarchical database sampling and
selection. In Proceedings of the 28th International
Conference on Very Large Databases (Hong Kong, Aug.
20–23, 2002), 394–405.

16.	 Limaye, G., Sarawagi, S., and Chakrabarti, S.
Annotating and searching Web tables using entities,
types, and relationships. Proceedings of the VLDB
Endowment 3, 1 (2010), 1338–1347.

17.	 Madhavan, J., Ko, D., Kot, L., Ganapathy, V.,
Rasmussen, A., and Halevy, A.Y. Google’s Deep Web
Crawl. Proceedings of the VLDB Endowment 1, 1
(2008), 1241–1252.

18.	 Madhavan, J., Cohen, S., Dong, X.L., Halevy, A.Y.,
Jeffery, S.R., Ko, D., and Yu, C. Web-scale data
integration: You can afford to pay as you go. In
Proceedings of the Second Conference on Innovative
Data Systems Research (Asilomar, CA, Jan. 7–10,
2007). 342–350.

19.	 Ntoulas, A., Zerfos, P., and Cho, J. Downloading
textual Hidden Web content through keyword queries.
In Proceedings of the Joint Conference on Digital
Libraries (Denver, June 7–11, 2005), 100–109.

20.	 Raghavan, S. and Garcia-Molina, H. Crawling the
Hidden Web. In Proceedings of the 27th International
Conference on Very Large Databases (Rome, Italy,
Sept. 11–14, 2001), 129–138.

21.	 Trulia; http://www.trulia.com/
22.	 Wang, Y. and Hu, J. A machine-learning-based

approach for table detection on the Web. In
Proceedings of the 11th International World Wide Web
Conference (Honolulu, 2002), 242–250.

23.	 Zanibbi, R., Blostein, D., and Cordy, J. A survey of table
recognition: Models, observations, transformations,
and inferences. International Journal on Document
Analysis and Recognition 7, 1 (2004), 1–16.

Michael J. Cafarella (michjc@umich.edu) is an assistant
professor of computer science and engineering at the
University of Michigan, Ann Arbor, MI.

Alon Halevy (halevy@google.com) is Head of the
Structured Data Management Research Group, Google
Research, Mountain View, CA.

Jayant Madhavan (jayant@google.com) a senior
software engineer at Google Research, Mountain View, CA.

© 2011 ACM 0001-0782/11/0200 $10.00

