
Manimal: Relational Optimization for Data-Intensive
Programs

Michael J. Cafarella
University of Michigan

Ann Arbor, MI 48109-2121
michjc@umich.edu

Christopher Ré
University of Wisconsin

Madison, WI 53706-1685
chrisre@cs.wisc.edu

ABSTRACT
The MapReduce distributed programming framework is very
popular, but currently lacks the optimization techniques that
have been standard with relational database systems for
many years. This paper proposes Manimal, which uses
static code analysis to detect MapReduce program seman-
tics and thereby enable wholly-automatic optimization of
MapReduce programs. For example, a programmer’s map
function that emits data only when an if... statement
holds true is essentially encoding a selection condition; code
analysis can detect and characterize these conditions. If
Manimal has an appropriate index available, it can then
alter MapReduce execution to use it.

Manimal can address many different optimization oppor-
tunities, including projections, structure-aware data com-
pression, and others. However, this paper illustrates the
system by focusing on one: efficient selection. We give a
static analysis algorithm that can detect selections in user
programs, and cover how Manimal can employ a B+Tree to
execute these selections efficiently at runtime. Testing Man-
imal on several standard MapReduce programs, we show
that selection alone can automatically reduce a standard
program’s runtime to 63% of conventional MapReduce exe-
cution time on identical hardware. We also give an in-depth
discussion of other optimization targets and detection tech-
niques.

1. INTRODUCTION
MapReduce is a popular framework for data-intensive pro-

grams that allows programmers to write large distributed
jobs in a familiar UNIX-style development environment. De-
velopers can use common programming languages such as
Java and C++, the programs operate over bytestream-oriented
files rather than relations, and developers do not need to for-
mally declare a schema. The MapReduce framework itself
handles large-scale distribution and error-handling tasks. More-
over, at least one MapReduce implementation (Hadoop) has
been found to be very easy to setup and configure when com-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WebDB ’10 Indianapolis, IN USA
Copyright 2010 ACM 978-1-4503-0186-2/10/06 ...$10.00.

pared to current distributed relational databases [11].
However, MapReduce programming comes at a cost: Pavlo

et al. [11] showed that a MapReduce program can run 2-50x
slower than a relational query that executes the same task
on the same hardware. MapReduce programs can make up
for this inefficiency by using massive numbers of machines,
but they remain very inefficient, posing heavy financial and
other costs. From the literature, one may conclude that a
developer is forced to make a choice: to opt for the strengths
of the MapReduce programming model or to opt for the ef-
ficiency of an RDBMS – but not both. In this work, we
argue that there is a middle ground: we can combine the
MapReduce programming model with many of the efficient
execution techniques commonly used by RDBMSes. Our
Manimal1 system allows MapReduce programs to run un-
changed, while reducing runtime to 63% of previous execu-
tion time using a single optimization type.

A key challenge in building Manimal is in safely apply-
ing optimizations to standard unmodified MapReduce pro-
grams. The central novelty of our work is the application
of static analysis-based techniques to enable relational-style
optimizations in a MapReduce setting. The individual com-
ponents are straightforward: the analysis involves primar-
ily known tasks such as code-reachability testing, and the
optimizations are drawn from past database research. As
we describe in Section 2.1 below, this approach poses some
limitations on the kind of programs that Manimal can suc-
cessfully optimize. However, one hypothesis of this work
is that while programmers can write near-arbitrary code, in
practice they tend to employ a small number of familiar pro-
gramming idioms. This is partly borne out by a brief survey
of MapReduce programs (also discussed below). Moreover,
we have implemented Manimal and we are applying it to
real programs today. We have ideas for extending it to ad-
ditional program types in the future.

From a developer’s perspective, Manimal is almost iden-
tical to conventional MapReduce implementations such as
Hadoop. However, the internals of Manimal are quite differ-
ent. First, while a conventional MapReduce system operates
strictly on the input files indicated by the user, Manimal
may choose alternate forms of the data (such as indexes).
Second, standard MapReduce always scans every byte of the
input data, while Manimal attempts to reduce work by only
processing bytes that actually matter for the user’s output.
Finally, MapReduce systems today execute exactly the com-
piled bytes of the user’s program, but Manimal may choose

1Manimal takes a hybrid approach to RDBMS and MapRe-
duce systems, which is reflected in its name.

to instead execute code that produces identical results but
is more efficient to run.

Other MapReduce Research. There has been a large amount
of recent interest in MapReduce systems. Several research
efforts have explored the problem of scheduling task execu-
tion [8, 14]. Other researchers examined how to manage a
set of machines that run multiple different MapReduce-style
cluster tools simultaneously [7]. Afrati and Ullman [3] in-
vestigated how to efficiently perform joins using the MapRe-
duce framework. Yang, et al. [13] extended the programming
model to Map-Reduce-Merge, allowing the user to express
different join types and algorithms.

None of the work cited here directly addresses the opti-
mizations that we propose with Manimal. Moreover, we
are not aware of any work that proposes a framework for
detecting and applying a large number of optimizations to
MapReduce execution. Indeed, some of the above systems
could be integrated with Manimal, given some modifica-
tions.

One system that initially appears to be quite related to
Manimal is HadoopDB [2], which attempts to combine rela-
tional and MapReduce qualities into a single system. How-
ever, HadoopDB has very different goals from Manimal.
HadoopDB is an effort to build a highly-scalable parallel
database, using a large number of single-machine relational
databases tied together by a MapReduce-based communi-
cations layer. It is a parallel relational database in which
MapReduce is used to address some scaling issues. HadoopDB
users write SQL queries, not arbitrary MapReduce programs,
so HadoopDB’s focus did not fall on the problems associated
with ordinary MapReduce program execution.

There are some systems, such as Pig [10], that compile
higher-level languages into MapReduce for execution. One
may argue that instead of optimizing existing MapReduce
programs, a better approach would be to simply target a
higher-level language. Although we agree that Pig and sim-
ilar systems have wide application and that optimizing their
outputs would be useful, we think that MapReduce pro-
grams themselves are very appealing to users for developer-
interface reasons. Moreover, we believe our lower-level ap-
proach will be useful in the future for a range of MapRe-
duce optimization tasks, including optimizations that ad-
dress multiple jobs simultaneously; it would be surprising to
us to find that these higher-level languages ever constitute
all of the jobs on a highly-used cluster.

Organization and Contribution. The central contribution
of this work is a framework for optimizing MapReduce pro-
grams that allows us to apply many techniques learned from
decades of relational database research. By employing static
analysis to automatically discern some of the semantics of
user code, Manimal can operate on unchanged compiled
MapReduce programs. For clarity of exposition, we present
full details only for the selection operator. Other opera-
tors follow a similar structure, with appropriate modifica-
tions. We show that this one optimization can automatically
yield a program that runs in 63% of the time required by a
standard MapReduce system. We also briefly describe how
Manimal would work with several additional operators.

The remainder of this paper is organized as follows. In
Section 2, we describe a typical execution of the Manimal
pipeline when applied to a small and well-known MapReduce

program. Section 3 shows Manimal’s performance impact.
Finally, we discuss future optimizations and conclude in Sec-
tions 4 and 5.

2. MANIMAL BY EXAMPLE
In this section we describe precisely how the components

from Figure 1 work together to handle a specific program.
In addition to the analyzer, optimizer, and execution
fabric components, Manimal also uses the user’s program,
the catalog, and various on-disk files. We will process the
following map function, which is similar to a MapReduce
program described by both Dean and Ghemawat [6] in their
original MapReduce paper, and by Pavlo, et al. [11], in their
recent comparison of MapReduce and RDBMS performance.

public void map(Text key, Text value,
OutputCollector<Text, LongWritable> output)
throws IOException {

Matcher matcher = pattern.matcher(value.toString());
while (matcher.find()) {
output.collect(new Text(matcher.group(group)),

new LongWritable(1)); } }

This function encodes a simple grep count program, count-
ing the number of lines in a text file that match the regular
expression given by pattern. Like pattern, group is a run-
time user parameter that controls the region of the regular
expression match that is emitted. The reduce function sim-
ply sums the emitted 1 values. We can run this on any text
file. Note that the program has been slightly edited here for
clarity.

If, for a given map input pair, the while statement in the
map code never evaluates to true, then it will not pass any
data to the shuffle/sort/reduce phases. That is, it expresses
a selection test on the value passed into the map function,
which determines if anything is actually emitted. We will
now show how Manimal can automatically detect, and take
advantage, of this selection test in order to improve the pro-
gram’s execution time.

2.1 Step 1: Analysis
Most of Manimal’s novelty lies in the analyzer, whose

job is to determine the set of optimizations that are safe
to apply to a MapReduce program. It takes as input the
4-tuple (C, M, I, P), where:

• C is the complete compiled program, including all meth-
ods that the program may invoke. In this case, it is
simply the above program.

• M is the “main” method of the program, where execu-
tion begins. E.g., the main() function of
org.apache.hadoop.examples.Grep.

• I is the input file path for the program. In this case,
it indicates the text file to be processed.

• P is a set of parameters, in the form of a set of (attr, val)
pairs. In this case, one such pair might describe the
regular expression used to initialize pattern; e.g.,
mapred.mapper.regex might contain a regular expres-
sion that matches all strings that start with b.

Note that for the Hadoop implementation of MapReduce,
the above information can be collected automatically as part
of the job submission process.

varload 'value'
invokevirtual
astore 'text'
...
ifeq ...

Compiled MapReduce code
plus user's parameters

select src.../logs/.log.1.idx/logs/log.1
select src.../logs/.log.2.idx/logs/log.2
.........

Manimal catalog

Analyzer Optimizer Execution
Fabric

numwords 19519

MapReduce program
output file(s)

void map(key, value) {
 emit(regexp(value, "^[b]\S+"),
 value)
}

Index-generation program
for later use.

Optimization
Descriptors

(SELECT, K,
 K.startsWith("b"))

Execution
Descriptor

(SELECT, log1.idx,
 K.startsWith("b"))

Manimal actions
User actions

Figure 1: The three stages of Manimal program execution. The user submits a compiled MapReduce program
to the analyzer, which sends output to the optimizer, which emits instructions for the execution fabric.

The main task of the analyzer is to produce a set of opti-
mization descriptors. These descriptors enable Manimal to
carry out a phase roughly akin to logical rewriting of query
plans in a relational database. The basic “plan” that is ma-
nipulated is the generic MapReduce execution pipeline of
map-sort-shuffle-reduce. The descriptors characterize a set
of potential modifications that remain logically identical to
the original plan.

In the case of selection optimization, the descriptor con-
tains a logical expression that indicates when the map func-
tion must be executed in order to produce the same out-
put as the user’s original program. This expression uses
only constants and a key value pair K′, V ′. This expression
evaluates to true in all cases where the user’s original map
function emits a key, value pair. For example, the grep
program’s map function from the start of this Section yields
a boolean condition of (K’ startsWith ’b’).

The analyzer also emits an index generation program that
can be applied to the input file I. It transforms I into a new
output file I ′, in which each input pair K, V is turned into
K′, V ′. In the case of selection optimization of the above
program, the index generation program yields a B+Tree that
maps the first word of each line to the original full line of
text. This allows the system to efficiently find all entries
where the boolean expression (K’ startsWith ’b’) holds.
Running the program also adds an entry to the catalog.

The analyzer’s full output consists of the input tuple,
plus the set of optimization descriptors O and index gener-
ation program X.

We now focus on how the analyzer actually obtains se-
mantic information about the user’s program, which is crit-
ical to the entire Manimal project.

Static Analysis. Manimal’s analyzer attempts to be as
complete as possible when searching for optimizations, while
making only optimization decisions that are definitely safe.
In other words, it is acceptable - although regrettable - when
the analyzer misses a good optimization opportunity, but it
is unacceptable to find an incorrect optimization that leads

to logically-wrong output.
The analyzer is a best-effort system that will not always

find possible optimizations. Note that traditional optimizing
compilers, which have been very successful, are similar. It
will always be possible for programmers to write code in a
way that sidesteps optimization, but in practice we believe
few will do so. We plan to expand the analyzer to handle
new programming idioms and optimization opportunities as
we observe them in real-life programs.

Detecting the selection optimization in the grep program’s
map function involves two major phases. The first is to
compute a logical expression that must hold whenever the
function emits a tuple.

1. Obtain the control-flow-graph of basic blocks in the
function. A basic block is a region of code in which
there are no flow-of-control transitions; all such tran-
sitions happen between blocks. Finding the control-
flow-graph is a well-known technique drawn from the
programming language community [4].

2. Enumerate all basic blocks that emit a key, value

pair for the next stage of MapReduce processing. This
simply involves examining the instructions in each block.

3. For each such block, trace a path in the graph of basic-
blocks back to the entry point of the function. For
each path, accumulate all of the conditional tests that
permit access to each block in the path, thus yielding
a conjunction of logical expressions. By examining all
the blocks that emit key, value pairs, we obtain a
list of these logical conjunctions. If any one of the
expressions in this list is true - i.e., when a disjunction
of them is true - the map function must be executed.

The resulting disjunction describes when the user’s code
must be executed. If Manimal can detect map inputs under
which the disjunction must be false, then we can safely skip
map execution for those values. For example, in the code
we are analyzing, we can find that invoking map only has
an impact when matcher.find() is true.

The second phase is to examine these logical expressions
in more detail. In particular, we want to describe the com-
ponents of the expressions in terms of a handful of atoms:
program constants, user-given parameters, and key, value

inputs to map.

1. Compute a directed acyclic graph representation of the
code in the map function. This, too, is a standard pro-
gramming languages technique [4]. Each node in this
graph is a statement in the program. An edge be-
tween nodes describes when a node has as an operand
the output of a previous statement.

2. For each portion of the logical test found in the first
phase, find the corresponding statement in the DAG.
Follow the chain of references as far “up” in the pro-
gram as possible. If this chain contains only functional
method calls, it will eventually terminate in the en-
try node for the method. The edges connected to the
entry node will include some combination of program
constants, user parameters, and the map’s key, value

inputs. A functional method call is one in which the
output depends strictly on its inputs. This upward
analysis may extend to code in the initializer for the
user’s program (not seen in the example code here).

3. Test whether the condition is one that can be effi-
ciently handled by one of the available optimization
techniques. Each technique has its own optimization-
specific test.

The second phase plays out as follows on our example:

1. Consider the DAG representation of the while test.
The node that corresponds to this test points to the
invocation of matcher.find(). That statement, in
turn, points to the instantiation of the matcher on the
previous line, which points to the invocation of pat-
tern.matcher().

2. We find that the matcher.find() test involves pat-

tern and v. The value value is given to the map func-
tion. The pattern object is initialized (in the unseen
constructor) using parameter mapred.maper.regex. The
analyzer has built-in information about Java regular
expression methods, and knows that these calls are all
functional.

3. In general, regular expression testing cannot be opti-
mized using a B+Tree index. (Though as mentioned,
other indexing techniques may apply.) However, in the
current case we have a regular expression that tests the
value of the first word in the string, so Manimal can
employ a B+Tree.

When the above analyzer sequence succeeds - the opti-
mization is safe and there is an available optimization tech-
nique - Manimal emits the descriptor and index generation
program for the next step in the pipeline. This analyzer
output is critical in obtaining the performance gain on this
example program that we describe in Section 3.

Analysis Limitations. The two analyzer flaws that con-
cern us are cases where the output may be unsafe, and cases
where the analyzer fails to pick up a possible optimization.

In order for the selection-detection system here to be un-
safe, it must decide to avoid invoking map when doing so is in
fact called for. One possibility arises when the programming
language can goto an arbitrary location computed using ad-
dress arithmetic. In such a case, the original program may
execute code for a block even though the logical conditions
associated with it in the map do not hold true.

Another unsafe condition might arise if Manimal were to
incorrectly evaluate the conditional guard for a basic block.
This might happen if a basic block’s entrance condition deci-
sion employs non-functional method applications that Man-
imal believes, in fact, to be functional. Luckily, this is not a
real concern - Manimal is extremely conservative with tests
of whether a method is functional or not. Right now Man-
imal uses a hard-coded list of functional methods, such as
certain String methods and several relating to regular ex-
pressions. Methods not on that list are assumed to be non-
functional. This approach is flawed, as we cannot expect to
inspect many code libraries by hand. In the future, the ana-
lyzer will attempt to detect functional methods directly by
examining source code, removing the need for a handmade
list.

A different problem is that the analyzer will simply fail to
pick up on potential optimizations. Because the Manimal
analyzer is conservative, it may fail to recognize optimiza-
tion opportunities that are in fact safe. For example, the
analyzer does not currently permit a selection optimiza-
tion if the conditional test involves a public static variable.
This policy exists because external code can silently modify
the static variable, and thus change whether map must be
executed. The eventual solution is to apply the analyzer
to every byte of coded in the program and explicitly test for
such modifications (and not limit the analyzer to a small
set of map, reduce, and related methods).

A brief survey of some MapReduce programs shows that
our current simple analyzer can already find many selection
optimizations. There is not a large amount of open-source
MapReduce code to examine, but we found two sources:
material released by Pavlo, et al. [11]; and the Mahout
project [9] to build machine-learning algorithms on top of
MapReduce. Of the four benchmark programs from Pavlo,et
al., two include a selection-style test in the map function. Of
a random sample of 12 sub-projects drawn from Mahout, we
found two that contain a selection test. Of these programs,
analyzer correctly detected three of the four optimization
opportunities. (It did not detect any unsafe ones.)

The one that Manimal missed is interesting. The“Bench-
mark 4” program from Pavlo, et al., uses a regular expres-
sion to parse its value input into a series of urls, counting
each unique url by keeping a url-count map in a hashtable.
That done, it then iterates through the hashtable, emitting
each url, count pair for the reduce function. This program
could be optimized by only executing the function for inputs
that the regular expression can parse correctly. Our current
analyzer misses any selection opportunity. Because it does
not have any built-in knowledge of the Java Hashtable class,
and because it does not attempt to examine the Hashtable

bytecode directly, the analyzer cannot know that a call to
Hashtable.keySet() returns results only when they have
been previously inserted.

We can address this issue in the future either by giv-
ing Manimal built-in knowledge of Hashtable, or by di-
rectly examining the bytecode for Hashtable and computing

the influence of key, value outside the boundaries of map.
However, note that it is also an example of a larger class of
problems that eventually go beyond what we can reasonably
expect from static analysis. If the map function were to store
the url, count pairs on a remote network service instead
of a Hashtable object, there is nothing the analyzer could
do.

The output of the analyzer contains the original 4 inputs,
plus the index generation program G and the optimization
descriptors O.

2.2 Step 2: Optimization
The optimizer uses the analyzer’s output, plus infor-

mation in the catalog, to determine an execution plan for
Manimal. Its rough relational analogue would be a very
simple rule-based optimizer. The catalog is a simple map-
ping from a filename to zero or more (X, O) pairs, where X
is an index file, and O is an optimization descriptor. It is
built out of records added by executions of index generation
programs. For example, the analyzer for a user program
might yield an index generation program that, when run on
words.txt, emits the index file words.txt.idx, and then adds

(words.txt, words.txt.idx, (selection, K’ startsWith b))

to the catalog. The optimizer’s output contains all of
its input, plus a recommended execution plan X.

The optimizer examines the catalog to see if there is any
entry for input file I. If not, then X simply indicates that
Manimal should run the unchanged user program on I, just
as a standard MapReduce system would. If there is at least
one entry for the input file, and a catalog-associated opti-
mization descriptor is compatible with analyzer-output O,
then the optimizer can choose an execution plan that takes
advantage of the associated index file. The test for index-
compatibility is dependent on the optimization being con-
sidered. For example, in the selection case, a B+Tree index
that is associated with (K’ startsWith [bc]) is compati-
ble with the analyzer’s boolean condition (K’ startsWith

b). An index computed using (K’ startsWith c) would
not be.

The output plan is also optimization-specific. Our current
implementation of optimization for selection uses a B+Tree.
The plan indicates an index file to load, and that the pro-
gram should process any stored data that matches the con-
dition. (A differnt implementation might use an index for
general regular expressions, such as that described by Cho,
et al. [5].)

The user makes the decision whether to run the index
generation program at all. Of course, index creation en-
tails iterating over the entire input dataset and so many
optimizations can be quite costly. The user may require a
workload that requires many scans over the input data for
index-computation to be worth the cost. However, this de-
cision is not unique to Manimal; rather, it is a fact of life
with any index-based optimization approach.

Currently, the optimizer is very basic. As the number
of optimizations in Manimal increases, and the difficulty in
choosing a high-quality plan X increases, we plan to move
to a cost-based model.

2.3 Step 3: Execution
The execution fabric receives a tuple that contains the

execution plan X and all of the output from the analyzer.

Regular Expression Selectivity

ˆ[bcd]\S+ 16.1%
ˆ[bc]\S+ 12.0%
ˆ[b]\S+ 4.6%

Table 1: Observed selectivities for various regular
expressions in the 100GB corpus of text.

Each type of optimization requires dedicated support in this
step. In the case of the selection optimization, the execu-
tion fabric needs B+Tree support in order to carry out X.
In the event that no interesting optimization is possible from
the optimizer step above, the execution fabric simply re-
verts to standard MapReduce execution, involving a scan of
the entire contents of the input file I.

2.4 Other Optimizations
We now discuss two additional optimizations that are in

the Manimal prototype; these optimizations are discovered
and executed using same processing pipeline. The first is
projection. A program that does not use 100% of its input
data performs wasted work - loading, sorting, writing to
network or disk - when processing these ignored bytes. For
example, a program that gathers a list of high-PageRank
URLs from a set of full downloaded Web page objects will
use the pageRank and url portions of the data, but not
pageContent. By using an index that contains only the data
that is useful to the program, Manimal should yield faster
runtimes. The analyzer can detect projections by again
computing a DAG representation of map, examining which
parts of the input key, value pairs are actually used in the
body of the map. The index structure is akin to a view on
the original data, with the useless attributes missing. In
some ways, this optimization resembles a column-store [12].

There are several ways in which Manimal can improve
performance by aggressively compressing data. First, be-
cause there is no semantic information associated with a
bytestream-oriented file, any compression in conventional
MapReduce must be applied to the total set of bytes. By
analyzing how a MapReduce program deserializes its input,
Manimal can attempt a data-sensitive compression of the
file, compressing all the ints together, all the strings, etc.
Second, parts of a MapReduce program may be able to op-
erate directly on compressed data - consider a program that
uses URLs as keys but never emits them would be a good
candidate. By detecting such programs automatically, Man-
imal can keep the data compressed and thereby avoid some
decompression work. Both of these techniques have been
previously known to researchers in an RDBMS setting [1].

3. EXPERIMENTS
We examined the concrete improvements in MapReduce

execution time that Manimal enables. We ran a set of ex-
periments on a cluster of 10 server-class machines. All nodes
had local direct-attached storage and were interconnected
using Gigabit Ethernet. Data was stored using HDFS. We
compared Manimal with Hadoop MapReduce version 0.20.1.

The program we evaluated was the Grep regular-expression
code from Section 1. We tested it using an algorithmically-
generated 100GB text file as input. The file consisted of lines
of text ranging from 5 to 20 words long, each word randomly
drawn from a vocabulary of 1000 different English-language
words. We evaluated several regular expressions that test

Grep Task

0

100

200

300

400

500

600

700

800

^[bcd]\S+ ^[bc]\S+ ^[b]\S+

Regular Expression

E
x
e
cu

ti
o

n
 t

im
e
 (

se
cs

)

Manimal

Hadoop

Figure 2: Conventional Hadoop vs Manimal grep
MapReduce program execution.

the start of each string; although this scenario may seem
obscure, it is very useful for many applications, such as test-
ing the domain of URLs from a crawl. The specific regu-
lar expressions we tested are listed in Table 3, along with
the selectivity of each. We ran each regular expression 5
times on Hadoop and 5 times using Manimal, dropping the
fastest and slowest times, and averaging the remaining 3
runs. Distributed construction of the B+Tree index took
26.5 minutes.

Figure 2 shows the results. As expected, Hadoop’s con-
ventional MapReduce execution time is almost wholly insen-
sitive to the selectivity of the program. Manimal execution
time, in contrast, decreases as the conditional test becomes
more restrictive, dropping to 63% of Hadoop in the case of
ˆ[b]\S+. There is nothing about the Manimal approach
per se that dictates the selectivity level at which index-based
selection optimization should be useful - we are simply ap-
plying a well-known technique to solving the problem. We
believe that Manimal runtimes could be improved further,
if it were not for relatively high job startup costs and the
correct but unoptimized code that performs Manimal’s per-
tuple selection processing.

4. FUTURE OPTIMIZATIONS
There are several other MapReduce programming idioms

we want to detect and optimize, some of which have direct
analogues to optimization in relational databases. We have
already mentioned column-oriented and data-compression
approaches in Section 2.4. Another is conditional emission
of tuples in the reduce function, generally applied to an ag-
gregate of the map outputs. This is akin to a HAVING clause
in a relational GROUPBY operation. If the condition is highly
selective, it suggests that the program’s map function emits
a large number of tuples that are never reflected in the pro-
gram’s output. If we can detect and eliminate these“wasted”
tuples before reduce processing (even imperfectly), Mani-
mal could avoid a substantial amount of work.

We also plan to apply Manimal to non-performance-related
optimization tasks. For example, one version of MapReduce
execution may have excellent recovery properties that can
only be obtained at some fixed performance cost, while an-
other version may have neither recovery properties nor a
fixed associated cost. Depending on the state of the clus-
ter and the current job, Manimal should be able to choose

between these plans. By enabling relational-style optimiza-
tion, Manimal should allow us to make much more inter-
esting tradeoffs for MapReduce execution than have been
previously considered.

5. CONCLUSIONS
We demonstrated Manimal, a framework for applying re-

lational optimizations to MapReduce programs. We also
described a safe and effective technique for detecting selec-
tion optimizations. Finally, we showed large performance
gains on a real-life MapReduce program, running in just
63% of the time otherwise required. Overall, we believe that
Manimal points the way toward a much more sophisticated
model of MapReduce program execution, applying decades
of database research that have until now been deployed pri-
marily in RDBMSes.

Acknowledgments. This work was partially supported by
NSF Grant CRI-0707437. We are grateful to Spyros Blanas,
Daniel Fabbri, H.V. Jagadish, Kristen LeFevre, and Arnab
Nandi for helpful feedback.

6. REFERENCES
[1] D. J. Abadi, S. Madden, and M. Ferreira. Integrating

Compression and Execution in Column-Oriented Database
Systems. In SIGMOD Conference, pages 671–682, 2006.

[2] A. Abouzeid, K. Bajda-Pawlikowski, D. J. Abadi, A. Rasin,
and A. Silberschatz. HadoopDB: An Architectural Hybrid
of MapReduce and DBMS Technologies for Analytical
Workloads. PVLDB, 2(1):922–933, 2009.

[3] F. Afrati and J. Ullman. Optimizing Joins in a
Map-Reduce Environment. In EDBT, 2010.

[4] A. V. Aho, M. Lam, R. Sethi, and J. D. Ullman.
Compilers: Principles, Techniques, and Tools: Second
Edition. Addison-Wesley, 2007.

[5] J. Cho and S. Rajagopalan. A fast regular expression
indexing engine. In ICDE, pages 419–430, 2002.

[6] J. Dean and S. Ghemawat. Mapreduce: Simplified data
processing on large clusters. In OSDI, pages 137–150, 2004.

[7] B. Hindman, A. Konwinski, M. Zaharia, and I. Stoica. A
Common Substrate for Cluster Computing. In HotCloud,
June 2009.

[8] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar,
and A. Goldberg. Quincy: Fair Scheduling for Distributed
Computing Clusters. In SOSP, pages 261–276, 2009.

[9] Mahout. http://lucene.apache.org/mahout/index.html,
2009.

[10] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig Latin: a Not-So-Foreign Language for
Data Processing. In SIGMOD Conference, pages
1099–1110, 2008.

[11] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt,
S. Madden, and M. Stonebraker. A Comparison of
Approaches to Large-Scale Data Analysis. In SIGMOD
Conference, pages 165–178, 2009.

[12] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen,
M. Cherniack, M. Ferreira, E. Lau, A. Lin, S. Madden,
E. J. O’Neil, P. E. O’Neil, A. Rasin, N. Tran, and S. B.
Zdonik. C-Store: A Column-Oriented DBMS. In VLDB,
pages 553–564, 2005.

[13] H.-C. Yang, A. Dasdan, R.-L. Hsiao, and D. S. P. Jr.
Map-Reduce-Merge: Simplified Relational Data Processing
on Large Clusters. In SIGMOD Conference, pages
1029–1040, 2007.

[14] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and
I. Stoica. Improving MapReduce Performance in
Heterogeneous Environments. In OSDI, pages 29–42, 2008.

