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Macro-cell and module placement 
by genetic adaptive search with 
bitmap-represented chromosome 

Heming Chan i, p. Mazumder and K. Shahookar 
Department of Electrical Engineering and Computer Science, The University of Michigan, 
Ann Arbor, MI 48109, USA 

Abstract. The genetic algorithm has been applied to the VLSI module placement problem. 
This algorithm is an iterative, evolutional approach. A placement configuration is repre- 
sented by a set of primitive features such as location and orientation, and the features are 
arranged in the form of a two-dimensional bitmap chromosome. The representation is 
flexible, and can handle arbitrarily shaped cells, and pads, and is applicable to the 
placement of macro cells, and gate arrays. Three new versions of genetic operators, namely, 
crossover, inversion and mutation, are used to explore the solution space. Crossover creates 
new configurations by combining attributes from a pair of existing configurations. This 
feature passing scheme constitutes the primary difference between our genetic approach 
and the other traditional searching techniques. Inversion enables more uniform inheritance 
of features from one generation to the next, and mutation prevents the algorithm from 
getting trapped at local optima. We have pointed out that the bitmap representation 
enables the algorithm to divide the entire solution space into a set of feature-equivalent 
classes, or schemata where each class contains a set of solutions with common physical 
attributes. We show that the genetic algorithm adaptively biases the search based on the 
past observed fitness of the schemata. We also demonstrated the power of the genetic 
algorithm experimentally for macro cell placement, and obtained satisfactory results. 

Keywords. VLSI, placement, layout, macro cell, floorplanning, integrated circuit (IC) design, 
genetic algorithm, adaptive search, combinatorial optimization. 

I. Introduction 

Predesigned and highly optimized digital and analog circuit modules or macro 
blocks are frequently used in custom VLSI circuits. The placement of arbitrarily 
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s h a p e d  and  sized cells has, t he r e fo re ,  b e c o m e  increas ingly  i m p o r t a n t  in V L S I  
layout  a u t o m a t i o n .  In  this p a p e r ,  the  p l a c e m e n t  of  func t iona l  m o d u l e s  wi th  
var ious  shapes ,  sizes and  o r i en t a t i ons  is cons ide red ,  and  it is shown tha t  an 
adap t ive  op t imiza t i on  t echn ique ,  the  G e n e t i c  A lgo r i t hm,  can  p rov ide  a high 
qual i ty  p l a c e m e n t  in a r e a s o n a b l e  run  t ime.  T h e  object ive  is to min imize  the  
to ta l  wire  l eng th  of  the  i n t e r connec t i on s  and  to p lace  the  cells such tha t  the  chip  
a r ea  is min imized .  M a n y  heur i s t ic  s t ra teg ies  for  m a c r o  cell p l a c e m e n t  b a s e d  on  
i te ra t ive  i m p r o v e m e n t  have  b e e n  r e p o r t e d  recent ly .  E x a m p l e s  a re  fo r ce -d i r ec t ed  
p l a c e m e n t  [1,2,28], ra in-cut  p l a c e m e n t  [3,4,29], s imu la t ed  a n n e a l i n g  [5-7] ,  and  

pass ive  resis t ive op t imiza t i on  [8]. S imu la t ed  annea l ing  is one  of  the  la tes t  
t echn iques  be ing  used  for  cell p l a c e m e n t .  T h e  heur is t ic  o f  s i m u l a t e d  a n n e a l i n g  
is b a s e d  on  stat is t ical  mechan ics .  T h e  bas ic  p r o c e d u r e  is to accep t  all m o v e s  
which  resul t  in a d e c r e a s e  in cost,  and  to accep t  those  moves  which  resul t  in an 
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increase in cost with a Boltzmann acceptance probability that monotonically 
decreases with time. It yields good placement solutions [5,6]. However, simu- 
lated annealing is a very time-consuming process. Moreover, the efficiency of 
simulated annealing also depends strongly on the annealing schedule. The 
general problem of finding an optimal cooling schedule for a given netlist is still 
open for research. Although much effort has been spent to parallelize simulated 
annealing [9,10], it is known to be a serial algorithm which cannot be efficiently 
parallelized in the distributed workstation environment. 

This paper applies the genetic algorithm to macro cell placement for VLSI 
design. The idea of using biological evolution has been applied recently to 
standard cell placement [11,12,30]. In their approach, a list of cells is used as a 
chromosome to represent the linear ordering of cells. However, their approach 
is not suitable for macro cell placement where cells of arbitrary sizes and shapes 
have to be placed at any location inside a frame. Moreover, the genetic 
operations defined in their approach are informally heuristic, and no analytical 
model exists. In this paper, a new bitmap chromosomal representation is 
proposed for representing cells that can be placed at any arbitrary locations and 
orientations inside a frame. This representation is flexible enough to handle 
various aspects of cell placement under different design methodologies such as 
customized macro cell, standard cell and gate array design methods. The 
placement problem is first mapped to a function optimization problem. Instead 
of using the traditional bit-string genetic representation [13] the possible solu- 
tion is encoded in the form of a chromosome with a set of genes arranged in a 
two-dimensional array. This two-dimensional representation benefits from a 
divide-and-conquer methodology, which reduces the amount of computation 
time, as compared to the conventional bit-string representation. Three genetic 
operators, namely, crossover, inversion and mutation are then applied to a set of 
chromosomes called population. Crossover is used primarily to generate new 
configurations by combining physical attributes (genes) from a pair of chromo- 
somes existing in the current population. Inversion is used to decouple the 
correlation among genes so that genes can be passed to their offspring with less 
dependence on their relative grouping, and mutation is used to increase the 
diversity of the genes in a population. The concept of feature-equivalent classes, 
or schemata, provides an insight into the powerful adaptive property of the 
algorithm. We show that the algorithm automatically divides the solution space 
into subsets called schemata on the basis of the physical features and adaptively 
selects possible configurations from classes that have good estimated quality. 

This paper is organized as follows. Section 2 introduces the concept of the 
genetic algorithm and the criteria for applying it to engineering problems. 
Section 3 describes how the macro cell placement problem can be mapped to 
the function optimization problem and how the chromosomal representation 
and the genetic operators are constructed. Section 4 discusses the adaptive 
strategy of the algorithm. Experiments and implementation are reported in 
Section 5. 
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2. The concept of the genetic algorithm 

The genetic algorithm (GA), developed at the University of Michigan by 
Holland [13] and his colleagues [14,26] is a search strategy based on the 
mechanics of natural selection and natural reproduction in a biological system 
[15,16]. It represents complicated systems by decomposing them into their 
fundamental components, and uses randomized information exchange opera- 
tions to guide efficient, self-adaptive searching. As a result, a chromosome that 
survives under the genetic algorithm's survival o f  the fittest strategy represents a 
globally optimal (or near-optimal) solution. The genetic algorithm differs from 
the other stochastic search techniques by being able to encode and exploit past 
information efficiently during a search. This learning ability provides the genetic 
algorithm with a guiding capability for searching efficiently through a complex 
multi-dimensional search space. 

A number of biologists [17-19] and AI researchers [20-22] studied the 
searching capability of the genetic algorithm. DeJong [14] and Brindle [27] 
undertook a systematic study of the genetic algorithm in the context of function 
optimization. These in-depth studies show that the genetic algorithm exploits 
information about the environment in an attempt to shorten the duration and 
improve the efficiency of a search. This feedback information consists of the 
fitness or performance of the solutions, and the stored information regarding 
solutions already investigated. This stored information allows the GA to learn 
from the history of the past search, and, therefore, it is adaptive in seeking new 
searching paths. Many optimization and searching algorithms, such as the 
hill-climbing, gradient-based methods and simulated annealing, fail to store and 
exploit past experience and simply enumerate points in a search space, in a 
predetermined or random order. 

The concept of schemata provides an insight into the powerful adaptive 
property of the genetic algorithm. A schema is a subset of chromosomes with 
some common values on the selected attributes. Thus, a schema denotes a class 
of structures, where the elements have some attributes in common. The genetic 
operators search through the space of schemata in an attempt to find combina- 
tions of attributes contributing to the structure's fitness. This searching in the 
space of schemata marks one of the primary differences between genetic 
adaptive search and the other searching techniques. A single evaluation of a 
new structure refines the estimated fitness of all schemata represented by the 
structure. The ability to process enormous numbers of schemata, by manipulat- 
ing a small set of chromosomes, is called intrinsic parallelism. This parallelism 
marks another powerful property unique to the genetic algorithm. A simple 
version of the genetic algorithm is shown below: 

Procedure GENETIC ALGORITHM 
Step 1: Randomly form a population of chromosomes. 
Step 2: Select pairs of chromosomes as parents, chromosomes with higher 

fitness are more likely to be selected. 
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Step 3: Apply genetic operators to the pairs to create offspring. 
Step 4: Replace the least lit chromosome with offspring. Go to step 2. 

END Procedure 

In order to fully exploit the efficiency of the genetic search, certain criteria 
should be met while designing the genetic algorithm for specific engineering 
applications. These criteria are explained in detail by Holland [13] and Goldberg 
[23], and are briefly summarized as follows: 
• The cardinality of the alphabet used to represent a gene should be as small as 

possible. 
• The genetic operators should produce legal solutions in each generation. 
• The algorithm should be adaptive in nature. 

In the next section, we will show how the proposed bit-map chromosomal 
representation and genetic operators are designed to meet the above three 
criteria. 

3. GAMPmA genetic approach to macro cell placement 

3.1. Function optimization formulation 

The Cell Placement Problem consists of placing a set of L predefined circuit 
modules on a chip such that a certain objective function is minimized. We show 
that the cell placement problem is equivalent to the problem of optimizing a 
one-dimensional function. We start by formulating the mathematical entities 
involved. Let R = {1, 2, 3 , . . . ,  L} be an index set of the blocks to be placed; let 
C be the set of all possible placement configurations, or the configuration space. 
A block placement configuration c ~ C can be completely represented by three 
L-dimensional vectors, namely, the x-coordinate vector x, the y-coordinate 
vector y and the orientation transformation vector o. For each i ~ B, the ith 
component of x (y) stands for the x (y) coordinates of the ith cell in a 
configuration. The ith component of o denotes one of the eight permissible 
Manhattan orientations of the ith cell. The three-bit codes for the eight 
Manhattan transforms are fixed as shown in Fig. 1. 

In this paper, we have adopted the semi-perimeter wire length as the quality 
of a placement configuration, since it gives a reasonable indication as to how 
expensive it is to construct the detailed routing of the wires after the blocks have 
been placed [5,6,9]. The blocks are allowed to overlap with one another as an 
intermediate solution to the final configuration. Penalties for overlapping area 
among blocks and the total area of the chips are also used as criteria for 
optimization. We assume that the routing area for each cell has been included 
within the perimeter of the cell itself. The problem to solve is, therefore, to pack 
the cells as tightly as possible, and to minimize the estimated wire length. 
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Input L shaped cell 

(a) 

0 0 0  0 0 1  0 1 0  OI 1 I 0 0  I 0 1  I I 0  I I 1 

8 Manhattan transforms 

(D) 

Fig. 1. (a) An input L-shaped cell; (b) eight Manhat tan orientations and their binary codes. 

Hence,  the cost of a placement configuration c E C is defined as the following 
weighted sum of four factors [5] 

Cost(c)  = K I C  1 + K b C  b + K o C  o + K a C  a. 

Here,  C~ is the estimated total wire length, where the length of a net is 
estimated by computing the half-perimeter of the bounding box enclosing all the 
pins connected to the net [6]. C b is the bounding area, which is the area of the 
smallest rectangle enclosing all the cells, C o is a penalty function for the total 
overlapping area between cells. C a is the outside area, i.e. the area of cells lying 
outside given bounds. While the bounding area term minimizes the actual 
bounding area of the chip, the outside area term ensures that entire placement  
lies within the given bounding area, and is of the right aspect ratio. The overlap 
and outside area terms have to be zero at the end of the algorithm, to achieve a 
feasible placement.  Kb, Kl, Ko, and K a are non-negative weights that are 
experimentally adjusted. The fitness f ( c )  of a placement configuration c is 
defined as the weighted reciprocal of its cost, that is, 

K 

f ( c )  = C o s t ( c ) '  

where K is a constant. Let nx,  ny,  n o be the number  of binary bits used to 
represent  the x-coordinate, y-coordinate and orientation of a module,  respec- 
tively. Let rn = nx + ny + n o be the resolution of a placement  problem, and let T 
be a transformation defined as 

T ( c )  = T ( x ,  y ,  o ) = x  1 : X2 " " " XL : Y l :  YZ " " " YL :O1 :O2 " "" OL, 

where x i, Yi, oi are the ith components  of the corresponding vectors repre- 
sented in a binary form, and: (the colon mark) denotes concatenation. The range 
of T is a set of binary strings S of length L × m. Hence  for c ~ C and s ~ S, the 
fitness of a configuration is related to the string as below: 

f ( c )  = f ( T - l ( s ) )  = f * ( s ) .  
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Thus, the cell placement problem can be conceived as a function optimization 
problem, which can be stated as: 

Given the cells and the net list of a placement problem, find a binary string s in 
S that maximizes the function f*(s) .  

Observation 1. For sufficiently large m, the cell placement problem is equivalent 
to the one-dimensional function optimization problem. 

This is a direct consequence of the fact that T is a one-to-one mapping. In this 
way, a block placement problem can be transformed to a function optimization 
problem. Traditional approaches based on gradient or local searching tech- 
niques can only be useful if the search space is small and the optimized function 
is smooth. The search space S of the function optimization problem is a set of 
binary strings of length L x m. Hence there are  2 Lxm search points in S. The 
function optimization problem can be shown to be NP-complete. Any at tempt to 
enumerate  search points in S will greatly exceed the computational bounds as 
the problem size (i.e., number  of blocks, L and the desired resolution, m) 
become large. 

3.2. Chromosomal representation 

The genetic algorithm is a useful optimization heuristic for solving a bit-string 
representable problem. Its robustness and convergence properties have been 
extensively studied by analysis [13,24] and by simulation [14]. However, theoreti- 
cal studies focused on the proof of the search efficiency fail to realize that the 
reproductive time (time to generate offspring) in the genetic algorithm is large 
as the size of a problem increases. Most experimental studies on the genetic 
algorithm are on small problems (typically 32-100 bits). The run time efficiency 
of the genetic algorithm for a problem that involves more than one thousand 
bits of information for each configuration, is degraded because of the extensive 
time used for reproduction. Hence, bit-string representation is not suitable for 
solving large problems. We present a new bit-map chromosomal representation 
for solving the cell placement problem. A bit-map chromosome is obtained by 
rearranging the genes from the bit-string to form a two-dimensional array. This 
divide-and-and-conquer strategy allows the genetic algorithm to generate new 
configurations faster without degrading its search efficiency. We first formulate 
the idea of the bit-map chromosomal representation. A feature detector is a 
device for detecting the existence of a particular feature in a configuration. Let 
Ds, A be a set of feature detectors. Each detector di, , ~ DB, n is defined by 

de, n • C ~ {0, 1}, 

where i ~ B ,  r l ~ A = { x o ,  x l , . . . , x n ,  Yo, Y~ . . . .  , y , ,  o0 , . . . ,%o}.  In other 
words, di," is a binary function that maps a configuration c ~ C to a yes-or-no 



56 H. Chan et al. / Module placement by genetic adaptive search 

answer. Detectors in DB, a can be grouped into three categories. The first group 
is called x-coordinate detectors and the mapping is defined as: 

1, if the j th  bit in the binary representat ion of 

di,,~(c) = the x coordinate of cell i in configuration c is 1 

0, otherwise. 

The second group is called y-coordinate detectors and the mapping is defined 
as: 

1, if the j th  bit in the binary representat ion of 

di,y,(c ) = the y coordinate of cell i in configuration c is 1 

0, otherwise. 

The last group of detectors is called orientation detectors. The mapping is 
defined as: 

1, if the j th  bit in the binary representat ion of 

d~,o~(C) = the orientation of cell i in configuration c is 1 

0, otherwise. 

The detectors defined above can be arranged in the following matrix form: 

di,m,(c ) di,.,2(c ) "'" di~.,,, ' ,(c) di,,nm(c ) 

di2m,(c) di2,,2(c) "'" di2,,m_,(C ) di>n~(c) 
= 

d, , , ,n ,(c)  di,_~,n2(c ) "'" 

d,,.,,(c) di,,n2(c ) " '"  

We define the range of [di..]l×,.(c) as a matrix of tuples 

[ ( ¢ , , ,  6i,,)],xm 

(di,..,,6i,,n,) ( d , , . . 2 ,  . . .  

(did.n,, '5i2,.,) ( di2,.~, 6,2,.~) " .  

d,,,,nm_,(c) di, lmm(C) 
di,,nm_,(C) di,mm(c) 

(dil,~m, ~ia,-o. ,) 

(di2,n,., ~i2,n,.) 

(dil-l,~l' ~il I,~l) (di/-l,'02' all 1,'02) "'" (dil l,~rn' all 1, ~m) 

(di,,n,, ¢~i,,r),) (dit,~o 2, ¢~il,rl2) " '" (dit,.m, ~it,~l.) 

where di, n is the feature detector  name and 6i. n is the response of the detector. 

Definition 1. A bit-map chromosomal representat ion for a cell placement  
problem is a mapping [di,n]l×m(C) from the set of configurations C to the set of 
chromosomes S. 

[di , . l ,×m(c ) • C ~ [(di, ", a i . . ) ] ,×m=S ,  
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where [di,n]txm(C) is a matrix of detectors formed by the elements in the set 

DI, a and di,n(¢)= ~i,n E {0, 1}. 

Observation 2. A cell configuration c ~ C represented by a bit-map chromo- 
some s ~ S is invariant under  arbitrary numbers  of row and column inter- 
changes of s. 

This follows from the fact that the detector  and response are coupled 
together  as an ordered  pair. If a pair is moved to a different row or column, the 
same detector  will still have the same response. In other  words, row and column 
interchanges change the coding of the configuration as a chromosome,  but do 
not change the cell placement.  
Example 1. Suppose there are four cells (L  = 4) to be placed on a chip of grid 
size 8 x 8 (i.e., n x = ny = 3) in eight possible orientations (n o = 3). This implies 
that m = 9. Let the four cells be as shown in Fig. 2(a). Figure 2(b) shows a 
particular bit-map chromosome representat ion and its corresponding placement  
configuration. 

The physical analogy to genetics is made when we note that each feature 
(di,n, t~i, n) in a placement  configuration is a gene in the chromosome, and they 
are arranged physically in the form of an array [(di, n, •i,n)]lxm. Each gene in a 
chromosome thus carries a particular feature that exists in the corresponding 
configuration. The alphabet of  the gene used here is binary and, therefore,  it 
satisfies one of the criteria for efficient search as we listed above. The details of 
the algorithm are shown in Fig. 3. 

3.3. Bit-map crossover operator 

Crossover is the primary genetic operator  for reproduction. It produces new 
configurations, called offspring, by randomly combining the current  configura- 
tions, called the parents. During the process of crossover, genes that carry good 
placement  propert ies from both parents will have a chance to combine forming 
bet ter  solutions. Hence,  this operat ion will cause the quality of solutions in a 
population to improve. However, the design of the chromosomal representat ion 
and the genetic operator  must ensure that the chromosome produced after a 
crossover operat ion does not contain any identical genes (i.e., a cell does not 
duplicate due to random cut and paste). Any postprocessing to eliminate 
duplication of genes will cause a degradation in search efficiency [13] and is 
undesirable. In this paper, a new genetic crossover operator  is introduced. Each 
chromosome it produces corresponds to a legal p lacement  solution and, there- 
fore, our operator  is conflict-free, and satisfies the second criterion for efficient 
search listed in Section 2. 

The crossover operation consists of two parts. Let two chromosomes which 
combine to form an offspring be A and B (the parents). It may be noted that 
due to previous crossover and other  transformations, the positions of the 
detectors in A may not be the same as in B. A homologous reordering 
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Cell 1 Cel l  2 Cell  3 Cell 4 

(a) 

(d1,.2, O) (d1,~1, O) 

(d2,.2, i) (d2,.1, 1) 

(d3.~2, 1) (d3,~,, 0) 

(d4,x2, t) (d4,xl, 1) 

(d,,.o, 1) (d,,~2, O) (d,,u,, 1) (d,,vo, 1) (dx,o2, 1) 

(d2,.o, O) (d2,~2, O) (d~,~,, 1) (d2,uo, O) (d2.o2, O) 

(d~,~o, O) (d3.u2, 1) (d3,~, 1) (d3,~o, O) (d3,o2, O) 

(d4.~o, O) (d4,~2, 1) (d4,~,, 1) (d4,~o, O) (d4,o2, O) 

(dl,ol, 0) (dl,oO, 0) 

(d2,o,, O) (d2,oo, 1) 

(d~,o,, 0) (d~,oo, 1) 

(d~,o,, o) (d~,oo, ~) 

I 
• • - - r - - - r - - - 

Fig. 2. (a) Input cells; (b) a bitmap representation and its corresponding cell configuration. 

operation [13] is, therefore, applied first to chromosome B. The effect of this 
operation is to alter the position of its detectors such that both A and B are 
homologous, or have the same arrangement of detectors. The operation consists 
of a number of pairwise row and column interchanges. Observation 2 points out 
that this operation will not change the physical configuration and, therefore, it 
will not affect the efficiency of the search. Since the reordering operation 
requires sorting, it is easy to see that the time complexity with a bit-map 
representation is g(L + m), where g(x)  is the time for sorting x elements. This 
time complexity is much smaller than g(L × m) which is required if a bit-string 
representation is used. After the reordering operation is performed to rearrange 
the detectors, two points, say l* and m*,  are picked randomly with uniform 
probability between 1 and l - 1, and 1 and m - 1, respectively. A vertical and a 
horizontal line are drawn on the bit-map of A and B along row l* and column 
m* respectively. Both A and B are then divided into four sub-bitmaps by these 
lines. The intersection of these lines is called a crosspoint (l*, m*). The 
offspring is formed by combining the upper-left and lower-right sub-bitmaps 
from A, and the lower-right and upper-left sub-bitmaps from B. The detailed 
procedure for crossover is given below. An example is shown in Fig. 4. Figure 5 
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P R O C E D U R E  GAMP 
beg in  

Input cell geometry and net-list; 
Initialize population by randomly generating 

M solutions P(0) = {Sl(0), S~(0), . . . ,  SM-I(O), SM(0)} ; 
Evaluate the fitness F(O) = {fl(O), f~(O),-.., fM-l(O), fM(O)} ; 
Calculate the average fitness of population P(O) 

.fp(0) = EM=IA(O)/M ; 
for i = 0 to G {Number of generation.} 
beg in  

for j = 0 to O {No of offspring.} 
beg in  

Define a random variable Rand on [ = {1,2, 3- . . ,  M} by 
assigning each m E I n probability f,n(i)/fp(i) , 
draw a number Rand(j) E I from Rand ; 

Define a random variable Unif on I = {1, 2, 3 . . . ,  M} 
by assigning each m E I an equal probability 1/M. 
Draw a number Unif(j) from Uuif; 

Apply crossover with probability Pc to parents 
Sran~(i)(i) , Sunq(D(i) from population P(i) ; 

Select one of the offspring equilikely, and let it be Sc ; 
Apply inversion with probability Pt to Sc to form Se~ ; 
Apply mutation with probability PM to Sel to form Sj(i) ; 
Add the offspring Sj(i) in 

P' = {S'~(i), S'~(i),..., ~(i)};  
end ;  

Evaluate the fitness {ls;,fs•,'" ",fs o } of P '  ; 

Find the first M best solutions from the set P(i) U P', 
assign them to the next generation P(i + 1) and update 
current fitness F(i+ l) ; 

Calculate the average performance of population P(i + 17 , 
L,:,(i + 1) = EM=ofk(i+ 1)/M ; 

end;  
Output the best solution from population P(G) ; 

end;  

Fig. 3. G e n e t i c  a l g o r i t h m  for  cell  p l a c e m e n t s .  

shows the configurations of the offspring when the crossover operation is 
performed on two parents. It is worthwhile to point out that the configurations 
of the parents do not change before and after the reordering operation, as 
described in Observation 2. Figure 5 also shows the process of feature passing 
between generations. Here, the location and the orientation of cell 1 in off- 
spring 1 is the result of combining the location feature from cell 1 in parentl and 
the orientation feature from cell 1 in parent 2. Similar feature combination 
occurred for cell 2. Furthermore, the x-coordinate of cell 4 in parent~ is 
combined with the y-coordinate of cell 4 in parent 2 to form the new location of 
cell 4 in offspring 1. This example shows the usefulness of passing features by 
crossover which constitutes the primary difference between our genetic ap- 
proach and the other search techniques. 

Procedure CROSSOVER(A,  B) 
Step 1: Reorder B to make it homologous to A. 
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~ 
" ' ' , ' t  

. ° . , . . . ° . . . , . . .  ,V---1 

parent 

i [ ~ i  . . . . .  "4 

* "IF--" ~ 

. . . . .  I - 1 - D - .  

D ..... p..  
parent 2 

Homologous 

-- - - I - 1 - D - -  

31 " "  "n 
Offspring Offspring 2 

Fig. 5. An example to show how the crossover operation in Fig. 4 reproduces offspring. 

Step 2: Randomly pick two points l* and m* between 1 and l - 1" and 1 and 
m - 1, respectively. 

Step 3: Split A and B into four sub-bit-maps at crosspoint (l*,  m*).  

Step 4: Produce two offspring. 

END 

Boo B01 ] 

IAoo Boll [~oo Ao,] 
01 = [-Bl~llV-z41?j, 02  = [Alo-~- /~ l?  j 
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3.4. Bitmap inversion operator 

If only crossover is used, a gene will be inherited by the offspring with a 
probability that depends on where the gene is placed in a chromosome and 
which genes are in its neighbourhood. Holland [13] showed that the inversion 
operator is useful for dealing with this clustering effect among genes in a 
chromosome. Inversion shuffles the arrangement of genes in a chromosome by 
exchanging its rows and columns randomly. It weakens the linkage among genes 
in a chromosome which permits more uniform propagation of features from 
parents to offspring during reproduction. After inversion is applied, each gene 
will have an equal opportunity to be inherited by the offspring, less dependent 
on where the gene is placed and which gene is in its neighborhood. Informally, it 
prevents a bad gene from continuously tagging along with a good gene, which 
happens to be next to it in the matrix. By shuffling the entries in the matrix, 
inversion allows various combinations of genes to be passed from the parents to 
the offspring. A detailed procedure for inversion is given below. 

Procedure INVERSION(,4) 
Step 1: Randomly pick two points l~ and l~' between 1 and l -  1. 
Step 2: Let a i be the ith row of `4, then ,4 can be split into three parts 

,4 = [a l ,  az,... ,al?, al?+l,...,at~, at~+l , . . . ,a l ]  T. 
Step 3: Perform column inversion, B = ta 1, a2,...,al~,, az~, atf_ 1 . . . .  , az?+~, 

al~ + l, . . . , a l ]  y 
Step 4: Randomly pick two points m~ and m~ between 1 and m - 1. 
Step 5: Let b i be the ith column of B, then B can be split into three parts 

B = [ b l ,  bz , . . . ,bm~( ,  b r n , + l , . . . , b m ,  , bm~J+l,.. . ,bm]. 
Step 6: Perform row inversion. C' = [b~, b 2 . . . .  , bm~(, bm~, b m , _ l , . . .  , bm~+l, 

bm~+l , . . . ,  bm]. 
Step 7: Output C. 

END Procedure 

3.5. Bit-map mutation operator 

Mutation serves as a background operator that supplies new genetic material 
during reproduction by randomly changing genes in a chromosome at a rate 
pre-defined by the algorithm. Since the number of chromosomes represented in 
a population is finite, it is possible that a particular feature detector, say d~j, 
responds to zero (or one) for all the chromosomes presented in a population. If 
this happens, the gene is said to be lost from a population. Both crossover and 
inversion cannot recover it. In other words, crossover and inversion cannot 
generate all possible placement solutions for trial. The algorithm will be trapped 
in local maximum if only crossover and inversion are used. Mutation, therefore, 
provides a way to widen the range of genes in a population to ensure that no 
gene permanently disappears from the population. However, the random flip- 
ping of the genes causes loss of information acquired from the previous 
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generations and, therefore, it distracts the algorithm from finding the optimal 
solution. Hence, the mutation rate is kept very low in practice. The mutation 
operation is described as follows: 

Procedure MUTA TIO N(A)  
for each gene in A. 

Step 1: Pick a point p uniformly between 0 and 1. 
Step 2: If p ~< PM, the mutation rate, then invert the bit value of the gene. 

END Procedure 

4. Theoretical aspects of GAMP 

In order to direct the search towards the goal, an efficient algorithm should 
identify features in an intermediate solution that contribute to its goodness, and 
this knowledge should be exploited properly to guide the search. Although the 
basic procedure of the genetic algorithm is very simple, it has been shown that it 
does have this learning capability [13,23]. In brief, the genetic algorithm divides 
the search space into schemata having some common features. During each 
generation, it estimates the average fitness of the various classes, and favors the 
selection of members from the classes having higher fitness values. The current 
estimated fitness of the classes thus provides a basis for controlling the search 
direction at each generation. 

First, we see how the classes are formed by identifying the common features. 
Since genes in a chromosome determine a set of features that are related to the 
locations in a configuration, it is easy to see that each gene imposes a restriction 
on the region where a cell can be placed. For each gene (d~.j, 6), we define the 
constraint region A(a~) for cell i in configuration c as the entire region, where 
the detector dij(c) gives the value ~ whenever cell i is placed inside the region. 
Hence, the definition of the y e s / n o  detector mapping can be restated recur- 
sively, in terms of constraint regions, as follows: 

1, cell i located inside constraint region A(al,j,1) 

di,j(c) = 0, cell i located inside constraint region A(d,.,o ). 

In order to decompose the search space C into subsets, where each configura- 
tion in a subset shares common features, let the symbol [] be a don't  care 
symbol. Then (di,j, []) indicates that we "don' t  care" what value occurs at the 
output  of the detector, di, i. Thus [(d~,,~, 1)(d1,,2, 1)(d~,~, []) . . . (dl . ,m, ~3)] des- 
ignates a subset of all configurations in C having cell 1 placed inside the 
intersection of constraint regions A(a ' 1) and A, a 1,. The set of all schemata 
involving the combination of [], 0, an'~'l form tl~e~']~roduct set £ --- [(di, j, Aij)], 
which is a matrix with elements being tuples containing detector names, and 
Aij ~ {0, 1, []}. We formalize the idea as follows: 
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Definition 2. A schema ~ in a bi tmap chromosome representat ion,  is an l x m 
matrix [(di, n, A~,n)]l× m where  each e lement  in the matrix is a tuple. The  first 
e lement  in the tuple is a detector 's  name d~,n ~ Dt, a while the second e lement  is 
a symbol Ai, ~ ~ {0, 1, D}. 

The  relationship of chromosomes  in S can be defined as follows: 

Definition 3. Two chromosomes  A and B in a bi tmap chromosomal  representa-  
tion are said to be e lements  of schema s c =[(di ,  ", Ai,n)]lx m, if for all i ~ l, r / ~  A, 
1. Whenever  (di,~, Ai, j) = (di,j, D) 

di,i(A), d i j (B)  can be of any value. 
2. Whenever  (dij ,  Aij) 4: (di,j, D) 

di j (A)  = di,j(B) = Ai, j. 
We denote  this relation by saying that  A, B ~ ~. 

A schema, therefore,  corresponds to the set of solutions that  are selected from 
its resultant  constraint  regions, which are obta ined by the intersection of the 
constraint  regions defined by each individual element.  

The  following example illustrates the concept  of a schema. Let the schema, 
of four arbitrary cells be given by Fig. 6(a). For  this example, let the x and y 
coordinates consist of three bits, n s = ny = 3 and n o = 0. The  first row of ~ has 
all six detectors  defined,  and it gives the x, y coordinates for cell 1 as (2, 5). 
This is shown by the single shaded square in Fig. 6(b). The  o ther  rows of ~: 
contain don ' t  cares. For  example, the second row specifies only that  the high 
order  bit of y = 1. This is shown by the large shaded region for cell 2 in Fig. 
6(b). The  constraint  regions for cells 3 and 4 are also shown. The  various 
configurations constructed by cells being picked up from the corresponding 
shaded regions belong to the same class. Thus  for this example, there are 
al together 1 x 32 x 16 x 16 = 8192 different configurations in this schema, since 
cells 1 - . - 4  can occupy respectively 1, 32, 16, and 16 possible locations, as 
indicated by the size of the shaded regions. 

In order  to search efficiently, the genetic algori thm divides the search space 
into many schemata  having some impor tant  common  features, and it adaptively 
selects solutions from these schemata  by estimating the fitness or quality of the 
classes. Since equivalence classes are constraint  regions in our p lacement  
problem, the genetic algori thm generates  more  solutions with cells coming from 
constraint  regions that  have higher es t imated average performance.  The  follow- 
ing theorem illustrates this idea. 

Theorem 1. By using bitmap crossouer operator in the genetic algorithm, the 
expected proportion of an l x m schema ~ represented in the population at time 
t + l  is 

^ 

M~(t + 1) = (1 - Z(~)Pc) (a  - PM) °¢~)f~(t) f ( t )  Me(t) .  



H. Chan et al. / Module placement by genetic adaptive search 65 

= 
(d~.:,aO) (d~.=-,O) (d,.=30) (d~.uxl) (d~.,~Cl) (d~.,on) 

(d~,=xl) (dz,=~O) (dz,xsO) (dz,,, n) (d~,,~l) (dz,~oO) 

(d,,~l 0 ) (d,,x20) (d,,,3 n ) (d,,~l 0 ) (d,,u21) (d,,l~3 r'l ) 

(a) 

A y  A Y  

I I |@i!iii:::¥ii::lii::iii!l #li::::ii:,ii~l:j~!| 

" " " ' 1 1 1  I I  I I I I I  
I I  x I l i l l i l l  x 
I I .... I~-  I I I I I I I I .... 

C e l l  1 C e l l  2 

AY ~. Y 

I[ ~l~l~i~!H l~i~li~i~| ~I~ II I I I I I  I I I  I I I  
I I  I l i l  I I l l  i l  I I  I 

i l  
l i  I I I l l  x I I I  i l l l J  x 
I I  I I I I I....D.,. I I I  I I I I  I .... I ~ -  

Cell 3 Cell 4 

(b) 

Fig. 6. (a) An equivalent class ~; (b) the constraint regions whichconta in  a solution set of 8192 
different configurations. 

where Me(t) îs the expected number of  solutions in the current population that 
belong to ~; re(t) is the estimated fitness of  ~; f ( t )  is the estimated average fitness 
of  the population at time t; Z(~) is the linkage among genes which is class 
dependent; Pc is the crossover rate; P~4 is the mutation rate; o( ~ ) is the number of  
non- [] elements in ~. 

P r o o f .  Let A be a chromosome in the current population. Since parents selected 
for reproduction are based on the fitness of chromosomes, the expected number 
of chromosomes produced from A in one generation is PcfA/ f ( t ) ,  where fA is 
the fitness of A. Therefore, the expected number of offspring produced from a 
schema s c in one generation using only crossover is 

eeL, ec (t) 
E - M e ( t ) - -  

A e~,Aee(t) f ( t )  f ( t )  

where Me(t) is the expected number of chromosomes belonging to ~ at time t. 
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^ 

It is worthwhile to notice that f~(t) is an estimate of the average fitness of s c 
based on finite observations of solutions existing in the current population. 
Supposing A ~ : ,  it is easy to see that the offspring from A might not 
necessarily belong to ~:. Let this possibility be Z(~C), and is determined by the 
relative arrangement among elements in the schema s c. If mutation is applied, 
the expected number of solutions which do not belong to s c in the next 
generation will be 

^ 

eo/ ( t ) 
M¢,) f ( t )  Z(sC)(1- 

Therefore, the expected number of chromosomes that belong to s c in the next 
generation is 

^ 

q.e.d. 

Remark 1. Since inversion randomly alters the relative positions of genes by 
exchanging rows and columns, the term Z(s c) tends to be constant as inversion is 
applied. Thus, Theorem 1 provides a direct relation between the number of 
chromosomes belonging to a particular class at two consecutive generations. 
That is, if the current estimated average fitness of a schema s c is above (below) 
average, the number of solutions taken from s c will increase (decrease) in the 
next generation. Hence, the genetic algorithm has the ability to bias the future 
construction of solutions using the past observed information. 

Remark 2. The estimated fitness ~ ( t )  is based on a finite number of observa- 
tions of solutions that belong to s c at time t. For each fitness evaluation of a 
chromosome, it is found that a number of aM 3 classes will be estimated 
simultaneously [25], where a is a constant and M is the population size. The 
estimated fitness f¢(t)  of a large number of classes will, therefore, be refined in 
each generation. 

Remark 3. Assuming that the term Z(~:) is constant and PM is small, and also 
assuming that the fraction of the estimated performance of ¢ to the overall 
performance is constant and is equal to k for t generations, then, we have 

M (t + = 

Hence, the genetic algorithm will exponentially increase the number of solutions 
that belong to the class s c in the population if the factor k is greater than one. 
Therefore, it has the ability to explore the promising parts of the solution space 
more deeply. 
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5. Simulation results 

The genetic algorithm was used for macro cell placement  for five M C N C  
benchmark circuits. Experiments indicate that our algorithm converges rapidly 
during the early phase of  the run. All computat ions were carried out  on a SUN 
Sparkstation 1 + desktop workstation. The program was writ ten in C, using 2000 
lines of  code. 

In our algorithm, the populat ion in the next generation is obtained by keeping 
the best configurations among the parents  and their offspring. An alternative 
way is to select configurations probabilistically based on their fitness. That  is, 
the configuration with higher fitness has a greater  chance of being selected for 
the next generation. However,  experiments showed that our replacement  strat- 
egy obtained a bet ter  result. In our selection strategy for crossover, the first 
parent  is selected based on its fitness, while the second parent  is a random trial 
from the population. Experiments show that the algorithm converges to local 
minimum if both parent  are selected among good configurations. This is because 
good parents  have too many features in common and their offspring will not 
have enough diversity in their genes. 

Experiments were run to determine the appropriate  values of crossover, 
inversion and mutat ion probabilities. These experiments were run on the 33 cell 
M C N C  benchmark circuit ami33. The performance measure  was the final fitness 
obtained after a fixed number  of  generations. The number  of  generations (1500 
for this circuit) was chosen such that there is little or no further improvement  if 
the algorithm is run for a longer time. Table 1 shows the result of  varying the 
mutat ion rate. Low mutat ion rates such as 0.001 or 0.005 give the best perfor- 
mance. Table 2 shows the result of  different inversion rates and Table 3 shows 

Table 1 
Effect of mutation rate on fitness 

Mutation rate Fitness Wire length 

0.005 0.141 35490 
0.001 0.179 27728 
0.002 0.155 32237 
0.003 0.143 34691 
0.004 0.162 29366 
0.005 0.168 29565 
0.006 0.147 34057 
0.007 0.161 30862 
0.008 0.146 33718 
0.009 0.156 31114 
0.01 0.137 36481 
0.015 0.137 34052 
0.02 0.123 36993 
0.03 0.115 32485 
0.04 0.106 36984 
0.05 0.105 29857 
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Table 2 
Effect  of  inversion rate on fitness 

Inversion rate Fitness  Wire length 

0.05 0.143 32637 
0.1 0.152 32271 
0.15 0.145 33331 
0.2 0.146 33208 
0.25 0.169 29081 
0.3 0.162 30862 
0.4 0.145 337.18 
0.5 0.157 30555 

the effect of crossover rate. The relationship between the inversion rate and the 
final fitness is a little less pronounced, and the effect of varying the crossover 
rate appears to be almost random. For further experiments, we picked the best 
values of the parameters as follows. 

Crossover rate: 0.8, inversion rate: 0.25, mutation rate: 0.01. 
Note from the results that the final wire length is not a good measure of the 

performance of the genetic algorithm. For a given fitness, it is possible to get 
different wire lengths, since the fitness also depends on the chip bounding area. 
If the genetic algorithm is optimized to obtain the best possible final fitness, 
then adjusting the relative weights for wire length, bounding area penalties 
provides a good compromise between wire length and area. 

Figure 7 shows plots of the data in Tables 1-3. Figure 8 shows the effect of 
the mutation rate on the fitness throughout the run, and Fig. 9 shows similar 
results for the inversion rate. 

With these values of the parameters, more experiments were run on the 5 
MCNC benchmark circuits (Table 4) to determine the final wire length and chip 
area of the routed chip. The cells were placed using GAMP. The routing and 
compaction was done using the Mosaico CAD system. Table 4 gives the results. 
Figure 10 shows the wire length, chip bounding area, cell overlap area, and 
outside area for the 33 cell ami33 circuit. The outside area is the area of the 

Table 3 
Effect  of  crossover rate on fitness 

Crossover rate Fitness Wire length 

0.99 0.179 28001 
0.95 0.138 35670 
0.9 0.179 27816 
0.8 0.197 25312 
0.7 0.160 31104 
0.6 0.161 30798 
0.5 0.160 30144 
0.4 0.174 27501 
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cells lying outside the given boundary, and like overlap area should be reduced 
to zero. The bounding area is the minimal bounding area of the cells at any 
time. Figure 11 shows the fitness. This increases monotonically, since a good 
solution is never rejected in favor of an inferior one. 

The evaluation of fitness takes most of the computation time for our algo- 
rithm, about 95% of the total processing time. The run time efficiency of our 
algorithm, therefore, depends on how efficiently the cost evaluation is done. In 
our implementation, the wire length is estimated by the half-perimeter of the 
smallest rectangle enclosing the pins of the net. The computation of the exact 
overlapping area of the cells is very costly. We estimated it by dividing the chip 
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into a 256 X 256 grid. All the grid squares covered by each macro cell are 
scanned. The first time a square is visited, it is marked as occupied. Each 
successive time the same square is visited, it is counted as an overlap. The total 
overlap area is equal to the overlap square count times the area of each square. 
This overlap determination algorithm has a complexity O(AT),  where A T is the 
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Table 4 
Performance statistics of GAMP for five MCNC Benchmark circuits 

Circuit Cells Nets Final wire Final chip 
length area 

apte 9 97 590.6K 61.8M 
xerox 10 203 1038K 32.6M 
hp 11 83 365K 42.9M 
ami33 33 123 278.5K 1.23M 
ami49 49 408 2077K * - 

* Bounding rectangle wire length 

Table 5 
CPU time usage of GAMP 

Circuit Total Evaluation Crossover Mutation Inversion 
CPU sec. % % % % 

apte 1692 97 0.8 0.6 0.04 
xerox 4099 98 0.6 0.5 0.03 
hp 2408 97 1.0 0.8 0.05 
ami33 6692 95 1.8 1.7 0.06 
ami49 21552 95 1.6 1.5 0.05 
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total area of the macro cells (not the chip area available). Experiments showed 
that the resolution of grid we used is fine enough for accurate overlapping area 
estimation. 

Table 5 shows the run time and its division among the genetic operators.  Due  
to the use of 2-dimensional bit-map chromosomes,  the crossover, inversion and 
mutat ion operators  are very fast, and take a negligible amount  of  time compared  
to the evaluation. This disproves the usual argument that genetic operators  are 
complex and CPU-intensive. 

Fig. 12. Placement result for the "xerox" netlist. 
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Figures 12 and 13 show the placement results of two MCNC benchmarks. 
Figure 14 shows the evolution of the placement as the algorithm proceeds. 

6. Conclusions 

This paper presents new insights into the application of the genetic algorithm 
in block and module placement. A new bit-map chromosome representation and 
a set of genetic operators for the placement problem are presented. This 
chromosome representation divides the entire search space into a large set of 



1t. Chan et aL / Module placement by genetic adaptive search 75 

o 

(el 

- r: l 

n (b) (g) 

I'h ~ (h) 

o ,(c) ~oo ot~ (,) 

o ~n(~ (d) 
Fig. 14. Evolution of circuit 1 from (a) initial placement to (j) final placement. 

feature-equivalent classes or schemata where each class designates a set of 
solutions with cells selected from the designated regions. The genetic algorithm 
adaptively biases the search based on the current estimated performance of 
schemata that exist in a finite population. By arranging genes in a two-dimen- 
sional fashion, the bit-map chromosome reduces the amount of time used by the 
genetic algorithm, as compared to the bit-string representation. Future work will 
focus on the integration of floorplanning, standard cell and macro block place- 
ment using the bit-map representation. 

Our implementation suffered from non-linear interactions between the genes, 
and the resultant degrading of search efficiency, and we need to find a better 
genetic coding for the placement problem. 

We conclude that the genetic algorithm is a promising searching method for 
the cell placement problem that warrants further investigation. 
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