Resilient Distributed Datasets: A
Fault-Tolerant Abstraction for
In-Memory Cluster Computing

Paper by Matei Zaharia et al

Presented by Jiaxing Yang

Spark

e Aunified analytics engine for general purpose data processing
o lterative Machine Learning APACHE
o Page-rank computation S Q K
o Datamining p ™
o Etc.
e Theoriginal team of the Spark project founded Databricks in @
2013

e RDDisacore conceptin Spark dqtqbricks

Motivation

e Cluster computing frameworks are widely adopted for large-scale data analytics
e MapReduce and Dryad lack abstractions for leveraging distributed memories
o Shared data through disks are inefficient
o Badfor tasks needs to reuse data
e Distributed shared memory, key-value stores, databases, and etc offer fine-grained shared
state update interfaces
o Fault tolerance requires replication -- expensive for data intensive tasks
e Need an efficient, fault-tolerant method for data sharing through memory

RDD Abstraction >

Partition O
RDD is a read-only, partitioned collection of records: >
e Read-only: RDDs are immutable once generated Partition 1
e Partitioned: An RDD consists of multiple partitions -
o Partitions can be stored by different machines (
Partition 2
S
RDD

RDD Abstraction

RDDs can only be created through deterministic operations on
either (1) datain stable storage or (2) other RDDs

e Such deterministic operations are called transformations
o Coarse-grained operations
o map, filter, join, and etc.
e AnRDD has enough information called lineage to compute
itself from stable data

-

Partition O

NS

-

Partition 1

NS

Partition 2

RDD

Spark Programming Interface

Spark exposes RDDs through a set of APIs:

e Define RDDs with transformations

e Usedata by actions on defined RDDs
o count,collect, ...

e Execute transformations only when being used in an action
o To pipeline transformations

Spark Programming Interface

To use Spark:

e Developers write adriver program
o Connect to workers
o Track RDDs’ lineage
o Assume no failure
m Actually easy to be replicated

Spark Programming Interface

[EY

Example: Console Log Mining

O W oo Jo Ul dxwWwbh

lines = spark. textFile ("hdfs://...")

errors = lines. filter (.startsWith ("ERROR"))
errors.persist ()

errors.count ()

// Count errors mentioning MySQL:

errors. filter (_.contains ("MySQL")) .count ()

// Return the time fields of errors mentioning
// HDFS as an array (assuming time is field

// number 3 in a tab-separated format) :

[

lines

)

A 4

filter(_.startsWith(“ERROR”))

[

errors

)

y filter(_.contains(“HDFS”)))

[

HDFS errors]

$ map(_.split(\t)(3))

[

time fields

)

errors. filter (.contains ("HDFS")) .map(.split ("\t’) (3)) .collect ()

Spark Programming Interface

map(f:T=U)

filter(f . T = Bool)
flatMap(f : T = Seq[U])
sample(fraction : Float)

RDDI[T] = RDD[U]
RDD|T] = RDDIT]
RDD[T] = RDD[U]
RDD[T] = RDD[T] (Deterministic sampling)

lookup(k : K)
save(path : String)

groupByKey() RDDI[(K, V)] = RDD[(K, Seq[V])]
reduceByKey(f : (V,V)=V) RDDI(K, V)] = RDD[(K, V)]
Transformations union() (RDD|[T].RDD[T]) =+ RDD|T]
Jjoin() (RDD[(K, V)],RDDI[(K, W)]) = RDDI[(K, (V. W))|
cogroup() (RDD[(K, V)],RDD[(K, W)]} = RDD[(K, (Seq[V], Seq[W]))]
crossProduct() (RDD|T|.RDD|U]J) = RDDI(T, U)]
mapValues(f : V = W) RDDI[(K, V)] = RDD[(K, W)] (Preserves partitioning)
sort(c : Comparator|K]) RDDI[(K. V)] = RDDJ(K, V)]
partitionBy(p : Partitioner[K]) : RDD[(K, V)] = RDD[(K, V)]
count() RDDI[T] = Long
collect() RDD[T] = Seq[T]
Actions reduce(f : (T,T)=T) RDD[T]=T

RDD[(K, V)] = Seq[V] (On hash/range partitioned RDDs)
Outputs RDD to a storage system, e.g., HDFS

RDD Advantages

e Coarse-grained transformations allow efficient
fault tolerance
o No checkpoint required
o Only lost partitions need recomputation
e RDDs'immutable nature enable slow nodes
mitigation
o Run backup tasks
o Hard todo with DSM because copies of the
task will access the same addresses and can
interfere with each other

Aspect RDDs Distr. Shared Mem.
| Reads Coarse- or fine-grained | Fine-grained
' Writes Coarse-grained Fine-grained

| Consistency

Trivial (immutable)

Up to app / runtime

Fault recovery

Fine-grained and low-
overhead using lineage

Requires checkpoints
and program rollback

Straggler Possible using backup | Difficult

mitigation tasks

Work Automatic based on Up to app (runtimes
placement data locality aim for transparency)

| Behavior if not
‘enough RAM

Similar to existing data
flow systems

Poor performance
(swapping?)

Applications Not Suitable for RDDs

e Applications requiring fine-grained updates on shared state.
o Web crawler

Representing RDDs

Spark proposes representing RDDs through an
interface with:

e Aset of partitions

e Asetof dependencies on parent RDDs
A function for computing the dataset from the
parents

e Metadata about partitioning scheme and data
placement

Operation

Meaning

partitions()

Return a list of Partition objects

preferredLocations(p)

List nodes where partition p can be
accessed faster due to data locality

dependencies()

Return a list of dependencies

iterator(p, parentlters)

Compute the elements of partition p
given iterators for its parent partitions

partitioner()

Return metadata specifying whether
the RDD is hash/range partitioned

Representing RDDs

Dependencies between RDDs

Narrow dependencies

O

O

One parent partition is used by at most
one child partition
map, filter, etc.

Wide dependencies

O

O

One parent partition is used by multiple
child partitions
join, etc.

Narrow Dependencies:

—
-
L

map, filter

BEE

union

join with inputs
co-partitioned

Wide Dependencies:

groupByKey

join with inputs not
co-partitioned

Representing RDDs

Narrow dependencies are preferred:

Narrow dependencies:

O

O

Pipelined execution on one cluster node to
compute the parent partition

Only the lost parent partitions need to be
recomputed

Wide dependencies:

O

O

All parent partitions are required to be available
and and to be shuffled across nodes
A node failure may cause a complete re-execution

Narrow Dependencies:

BEE

—
-
L

map, filter

union

join with inputs
co-partitioned

Wide Dependencies:

groupByKey

join with inputs not
co-partitioned

Spark Implementation

e ~14000 lines of Scala when paper published
o Jobscheduler
o Sparkinterpreter
o Memory management
o Support for checkpointing

Job Scheduling

e Build a DAG of stages from RDD’s lineage graph
o Boundaries of stages are
m wide dependencies
m already computed partitions
e Assign tasks based on locality
o Send atask to where the data are
e For wide dependencies, materialize intermediate records
o Easier fault recovery

Memory Management

Three options for storage of persistent RDDs:

e In-memory, deserialized objects
o Fastest performance
e [n-memory, serialized data
o Memory efficiency
e On-disk
o Limited memory
e LRU for partition eviction
o Evict a partition of the least recently used RDD
m Unlessis the same RDD of the newly computed partition

Support for Checkpointing

e Checkpointingis helpful for RDDs with very long lineage
graphs and wide dependencies
o Hardtorecompute
e For RDDs with short lineage graphs and narrow
dependencies, checkpointing may never be worthwhile
o Efficient to recompute
o Disk I/O and usage may be too expensive
e RDDs areread-only
o Bewritten out in the background

[inputﬁle }m_a;[links] [ranks,]
join
contribs,
reduce + map
ranks,

contribs

ranks

contribs

Evaluation

e Spark outperforms Hadoop by up to 20x in iterative machine learning and graph
applications
o Speedup comes from avoiding I/O and deserialization
e Customized applications perform and scale well with Spark
e Spark recover quickly when nodes fail
e Sparkcanbeusedtoquery 1-TBdatain5-7s

Iteration time (s)

Iterative Machine Learning Applications

240 -
200 -
160 -
120 -

H
o O

First Ite

B | ater lterations

H 139

(o]
~

1 80

A
© ©
. :

ration

182

106

N~
o]

— 115

™

H 82

33

o

Hadoop HadoopBM Spa

Logistic Regression

rk ‘ Hadoop HadoopBM

K-Means

Spark

300 - " Hadoop
= HadoopBinMem
3250* < Spark
©200 1 =

25 50 100
Number of machines

(a) Logistic Regression

—_
7
~

me

iont

Iterat

300 -
250

n
o
o

150 -
100 -

(6]
o O

E ®Hadoop
HadoopBinMem
5 ™Spark
) 5
< S
— & g
= o = N~
[o]
(D =
(3]
0]
25 50 100

Number of machines

(b) K-Means

Iterative Machine Learning Applications

e Minimum overhead of the Hadoop software stack
o ~25sminimum overhead
e Overhead of HDFS while serving data
o Memory copies, checksum
e Deserialization cost to convert binary records to usable in-memory Java objects

20

<
w 7\ =L - Text Input
~ ™
g 15 ‘ = x ®Binary Input

s

£ A &
£10] o ©
S . o o
1 i .
s, , | ™

In-mem HDFS In-mem local file Spark RDD

Page Rank

)

N
o
o

150 1
100 -

Iteration time (s
(&)
(@]

o

171

o
AN
N~ (e 0]
I

23

Q
A <
=1—

30 60
Number of machines

®Hadoop
Basic Spark

® Spark + Controlled
Partitioning

Fault Recovery

"No Failure

119

~ 140

® 100 ® Failure in the 6th Iteration
£ 100 o

© ©
2 © o

80
60
40
20

0

(o)) (@)]
5 w B o

57

Iteratrion tim

1 2 3 4 5 6 7 8 9 10
Iteration

Behavior with Insufficient Memory

Iteration time (s)

100 -
80 -
B0
40 -
20 A

°°.

11.5

0

0% 25% 50% 75% 1 00%
Percent of dataset in memory

Expressing Existing Programming Models

MapReduce \
DryadLINQ

SQL

Pregel

Iterative MapReduce

Batched Stream Processing J

> Apply the same operation to many records

Conclusion

e Resilient distributed dataset (RDD)
o Efficient, general-purpose, fault-tolerant data abstraction
o Can express awide range of parallel applications
o Use coarse-grained transformations to recover from faults
o Implemented in Spark that outperforms Hadoop

The End

Thank You!

