
Resilient Distributed Datasets: A 
Fault-Tolerant Abstraction for 
In-Memory Cluster Computing

Paper by Matei Zaharia et al

Presented by Jiaxing Yang



Spark
● A unified analytics engine for general purpose data processing

○ Iterative Machine Learning
○ Page-rank computation
○ Data mining
○ Etc.

● The original team of the Spark project founded Databricks in 
2013

● RDD is a core concept in Spark



Motivation

● Cluster computing frameworks are widely adopted for large-scale data analytics

● MapReduce and Dryad lack abstractions for leveraging distributed memories

○ Shared data through disks are inefficient

○ Bad for tasks needs to reuse data

● Distributed shared memory, key-value stores, databases, and etc offer fine-grained shared 

state update interfaces

○ Fault tolerance requires replication -- expensive for data intensive tasks

● Need an efficient, fault-tolerant method for data sharing through memory



RDD Abstraction

RDD is a read-only, partitioned collection of records:

● Read-only: RDDs are immutable once generated

● Partitioned: An RDD consists of multiple partitions

○ Partitions can be stored by different machines

RDD

Partition 0

Partition 1

Partition 2



RDD Abstraction

RDDs can only be created through deterministic operations on 

either (1) data in stable storage or (2) other RDDs

● Such deterministic operations are called transformations
○ Coarse-grained operations

○ map, filter, join, and etc.
● An RDD has enough information called lineage to compute 

itself from stable data RDD

Partition 0

Partition 1

Partition 2



Spark Programming Interface

Spark exposes RDDs through a set of APIs:

● Define RDDs with transformations
● Use data by actions on defined RDDs

○ count, collect, …

● Execute transformations only when being used in an action

○ To pipeline transformations



Spark Programming Interface

To use Spark:

● Developers write a driver program

○ Connect to workers

○ Track RDDs’ lineage

○ Assume no failure

■ Actually easy to be replicated



Spark Programming Interface

Example: Console Log Mining

1. lines = spark.textFile("hdfs://..." )
2. errors = lines.filter(_.startsWith("ERROR"))
3. errors.persist()
4. errors.count()
5. // Count errors mentioning MySQL:
6. errors.filter(_.contains("MySQL")).count()
7. // Return the time fields of errors mentioning
8. // HDFS as an array (assuming time is field
9. // number 3 in a tab-separated format):

10. errors.filter(_.contains("HDFS")).map(_.split(’\t’)(3)).collect()



Spark Programming Interface



RDD Advantages

● Coarse-grained transformations allow efficient 

fault tolerance

○ No checkpoint required

○ Only lost partitions need recomputation

● RDDs’ immutable nature enable slow nodes 

mitigation

○ Run backup tasks

○ Hard to do with DSM because copies of the 

task will access the same addresses and can 

interfere with each other



Applications Not Suitable for RDDs

● Applications requiring fine-grained updates on shared state.

○ Web crawler



Representing RDDs

Spark proposes representing RDDs through an 

interface with:

● A set of partitions

● A set of dependencies on parent RDDs

● A function for computing the dataset from the 

parents

● Metadata about partitioning scheme and data 

placement



Representing RDDs

Dependencies between RDDs

● Narrow dependencies
○ One parent partition is used by at most 

one child partition
○ map, filter, etc.

● Wide dependencies
○ One parent partition is used by multiple 

child partitions
○ join, etc.



Representing RDDs

Narrow dependencies are preferred:

● Narrow dependencies:
○ Pipelined execution on one cluster node to 

compute the parent partition
○ Only the lost parent partitions need to be 

recomputed
● Wide dependencies:

○ All parent partitions are required to be available 
and and to be shuffled across nodes

○ A node failure may cause a complete re-execution



Spark Implementation

● ~14000 lines of Scala when paper published

○ Job scheduler

○ Spark interpreter

○ Memory management

○ Support for checkpointing



Job Scheduling

● Build a DAG of stages from RDD’s lineage graph

○ Boundaries of stages are 

■ wide dependencies

■ already computed partitions

● Assign tasks based on locality

○ Send a task to where the data are

● For wide dependencies, materialize intermediate records

○ Easier fault recovery



Memory Management

Three options for storage of persistent RDDs:

● In-memory, deserialized objects

○ Fastest performance

● In-memory, serialized data

○ Memory efficiency

● On-disk

○ Limited memory

● LRU for partition eviction

○ Evict a partition of the least recently used RDD

■ Unless is the same RDD of the newly computed partition



Support for Checkpointing

● Checkpointing is helpful for RDDs with very long lineage 

graphs and wide dependencies

○ Hard to recompute

● For RDDs with short lineage graphs and narrow 

dependencies, checkpointing may never be worthwhile

○ Efficient to recompute

○ Disk I/O and usage may be too expensive

● RDDs are read-only

○ Be written out in the background



Evaluation

● Spark outperforms Hadoop by up to 20x in iterative machine learning and graph 

applications

○ Speedup comes from avoiding I/O and deserialization

● Customized applications perform and scale well with Spark

● Spark recover quickly when nodes fail

● Spark can be used to query 1-TB data in 5 - 7s



Iterative Machine Learning Applications



Iterative Machine Learning Applications

● Minimum overhead of the Hadoop software stack

○ ~25s minimum overhead

● Overhead of HDFS while serving data

○ Memory copies, checksum

● Deserialization cost to convert binary records to usable in-memory Java objects



Page Rank



Fault Recovery



Behavior with Insufficient Memory



Expressing Existing Programming Models

● MapReduce

● DryadLINQ

● SQL

● Pregel

● Iterative MapReduce

● Batched Stream Processing

Apply the same operation to many records



Conclusion

● Resilient distributed dataset (RDD)

○ Efficient, general-purpose, fault-tolerant data abstraction

○ Can express a wide range of parallel applications

○ Use coarse-grained transformations to recover from faults

○ Implemented in Spark that outperforms Hadoop



The End

Thank You!


