
1

Mencius
Building Efficient Replicated

State Machines for WANs

Presenter: Yile (Michael) Gu
EECS 591

Yanhua Mao, Flavio P. Junqueira
Keith Marzullo

Contents

• Motivation
• Coordinated Paxos
• Deriving Mencius
• Evaluation
• Conclusion

2

Motivation

Modern web services are provided in wide-area network

3

How to provide state machine replication in WAN?

Site A
Site B

Site C

Motivation

Paxos Recap

4

Replica 0

Replica 1

Replica 2

Phase 1: Leader Election

PREPARE ACK

Phase 2: Propose

PROPOSE(x) ACCEPT(x)

Phase 3: Learn

LEARN(x)

[x]

[x]

[x]

Motivation

Paxos Recap

5

Replica 0

Replica 1

Replica 2

PROPOSE(y)

Replicas forward client requests to the leader

FORWARD(y)

Motivation

Paxos Recap

6

Replica 0

Replica 1

Replica 2

PROPOSE(z) ACCEPT(z)

Re-elect leader when old leader is suspected

PREPARE

ACK

PROPOSE(z)

Motivation

Weaknesses of Paxos

Bottleneck at the leader
• Network bandwidth of the leader is saturated first, while

channels between others are idle
• CPU utilization of the leader grows linearly as number of

replicas grows, undermining scalability

Higher learning latency for replicas
• Replicas get delayed due to FWD and LEARN messages

7

Coordinated Paxos

Assumptions

Crash failure
• Servers could fail by crash and later possibly recover

Unreliable failure detector
• Detect server failure by timeouts, may have false positives

Asynchronous FIFO communication channel
• TCP transport protocol makes optimizations possible

8

Coordinated Paxos

Simple Consensus w/ Multiple Instances

• For each instance, only one server is designated as
coordinator

• Coordinator can propose any command in its instances,
while others could only propose no-op in them

• For an unbounded number of instances, assign by modular,
i.e. server 0: {0, 3, 6, … 3n}, server 1: {1, 4, 7, … 3n+1},
server 2: {2, 5, 8, … 3n+2}

9

Coordinated Paxos

The coordinator could perform the following actions

Suggest
• This is just like PROPOSE in Paxos

Skip
• A special PROPOSE message containing no-op

10

Ø Replicas are safe to learn no-op as soon as they receive
Skip from the coordinator!

Coordinated Paxos

Coordinated Paxos

11

Replica 0

Replica 1

Replica 2

Replica 0 suggests for instance 0

SUGGEST(x, 0) ACCEPT(x) LEARN(x)

0 1 2 3

0 1 2 3

0 1 2 3

x

x

x

Replica 1 skips for instance 1

N

SKIP(1)

N

N

Coordinated Paxos

When suspecting that coordinator has failed

Revoke
• A new leader starts Phase 1 for higher view number
• If the majority acknowledges, start Phase 2
• If no value has been chosen, propose SKIP
• Otherwise, propose SUGGEST on chosen value

12

Coordinated Paxos

Coordinated Paxos

13

Replica 0

Replica 1

Replica 2

Replica 0 revokes Replica 2

PREPARE(2) ACK SKIP(2)

0 1 2 3

0 1 2 3

0 1 2 3

x

x

x

N

N

N N

N

Coordinated Paxos

Implementing replicated state machines w/ 4 rules

Rule 1
Each server p maintains an index 𝐼! for the next sequence it
should propose, incrementing the index after it suggests upon
client request.

e.g. Replica 1’s index is 1, after it suggests on 1, increment to 4

14

Ø What if servers generate requests at asymmetric speed?

Coordinated Paxos

Coordinated Paxos

15

Replica 0

Replica 1

Replica 2

Only Replica 1 & 2 are suggesting requests

SUGGEST(x, 1) ACCEPT(x) LEARN(x)

x

x

x

y

y

y

z

z

z
The slowest server bottlenecking commits!

𝐼!: 0

𝐼": 1

𝐼#: 2

𝐼": 4𝐼": 7

𝐼#: 5

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

Coordinated Paxos

Make slow servers skip their turns

Rule 2
Upon receiving SUGGEST for instance i, before sending
ACCEPT message, check if i > 𝐼!
If so, update index 𝐼! to the smallest instance p coordinates,
such that 𝐼!" > i, and executes SKIP for instance in [𝐼!, 𝐼!"] that p
coordinates

16

Coordinated Paxos

Coordinated Paxos

17

Replica 0

Replica 1

Replica 2

Only Replica 2 suggests requests

Ø What if replica 0 or 1 crashes?

SUGGEST(x, 2)
𝐼!: 0

𝐼": 1

𝐼#: 2

𝐼!: 3
SKIP(0) SKIP(1)

𝐼": 4

𝐼#: 5

ACC(x)

ACC(x)

LEARN(x)

0 1 2 3 4
N N x

0 1 2 3 4
N N x

0 1 2 3 4
N N x

Coordinated Paxos

Rule 3
If server p suspects that server q has failed, and suppose 𝐶# is
the smallest instance coordinated by q but not yet learned by p,
p revokes q for instances [𝐶# , 𝐼!] that q coordinates

18

Ø What if server q is falsely suspected, i.e., the network
delays the message?

Rule 4
If server p suggests a value that is not no-op for instance i, but it
learns that no-op is chosen for i, then p suggests the value again

Deriving Mencius

Could we further reduce message complexity?

19

Replica 0

Replica 1

Replica 2

SUGGEST(x, 2)
𝐼!: 3

𝐼": 4

𝐼#: 5

SKIP(0) SKIP(1) ACC(x)

ACC(x)

0 1 2 3 4
N N

0 1 2 3 4
N N

0 1 2 3 4
N N x

Deriving Mencius

Optimization 1
Upon receiving SUGGEST for instance i from q, p does not send
a separate SKIP message to q before ACCEPT. p uses the
ACCEPT message to imply that it would not suggest requests for
instance smaller than i.

Optimization 2
Also, p does not broadcast SKIP to other replicas. p waits for
SUGGEST from other replicas, and uses ACCEPT message to
imply SKIPs similarly

20

Deriving Mencius

If only replica 2 is suggesting values

21

Replica 0

Replica 1

Replica 2

SUGGEST(x, 2)
𝐼!: 0

𝐼": 1

𝐼#: 5

ACC(x)

ACC(x)

0 1 2 3 4
N

0 1 2 3 4

N

0 1 2 3 4
N N

x

𝐼!: 3

𝐼": 4

Deriving Mencius

Idle servers take longer time to make progress

22

Replica 0

Replica 1

Replica 2

SUGGEST(x, 2)
𝐼!: 3

𝐼": 4

𝐼#: 5

ACC(x)

0 1 2 3 4

0 1 2 3 4 5

N

0 1 2 3 4

N

5

5
N N x

SUGGEST(y, 5)

𝐼#: 8

𝐼!: 6

N

x

x

LEARN(x)

𝐼": 7

ACC(y)

yN N

N y

y

Deriving Mencius

Accelerator 1
A server p synchronizes its SKIP messages to server r, if
outstanding SKIPs for r is larger than 𝛼, or deferred time longer
than 𝜏

23

Ø Could we reduce message complexity when a server
crashes?

Deriving Mencius

Rule 3
If server p suspects that server q has failed, and suppose 𝐶# is
the smallest instance coordinated by q but not yet learned by p,
p revokes q for instances [𝐶# , 𝐼!] that q coordinates

24

Rule 4
If server p suggests a value that is not no-op for instance i, but it
learns that no-op is chosen for i, then p suggests the value again

Deriving Mencius

Revoking Replica 0 is repeated

25

Replica 0

Replica 1

Replica 2

𝐼!: 0

𝐼": 1

𝐼#: 2

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

PREPARE(0)

ACK

N

N

SKIP(0)

Deriving Mencius

Revoking Replica 0 is repeated

26

Replica 0

Replica 1

Replica 2

𝐼!: 0

𝐼": 4

𝐼#: 5

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

PREPARE(3)

ACK

N

N

SKIP(3)

x

x

y

y

N

N

Deriving Mencius

Accelerator 1
A server p synchronizes its SKIP messages to server r, if
outstanding SKIPs for r is larger than 𝛼, or deferred time longer
than 𝜏

27

Ø Could we reduce message complexity when a server
crashes?

Optimization 3
If server p suspects that server q has failed, and suppose 𝐶# is
the smallest instance coordinated by q but not yet learned by p,
p revokes q for instances [𝐶# , 𝐼! + 2𝛽] that q coordinates

Evaluation

Experiment Settings

• Use Mencius to implement a read/write register service for K
registers

• Every command could either be read or write
• Every command may contain a payload of 𝜌 bytes
• Three sites simulating three datacenters, each site contains

one server node
• When 𝜌 = 4000, the system is network-bound, and when 𝜌 = 0,

the system is CPU-bound
28

Evaluation

Throughput

• When network-bound, Paxos
is limited by the leader’s
bandwidth

• When CPU-bound, Paxos
reaches 100% CPU
utilization on leader, but 50%
on others. Mencius reaches
100% CPU utilization on all 3
servers

29

2.87x

1.5x

Evaluation

Scalability

• When CPU-bound, Paxos
experiences bottleneck at
leader, while Mencius could
use extra processing power

• When network-bound,
Mencius uses bandwidth
provided by new sites, thus
experiencing smaller
throughput drop

30

33%

79%

Evaluation

Latency

• For Paxos, one third of the
requests has 100ms
commit latency, while 50%
of Mencius has so

• Average commit latency is
167ms for Paxos, and
155ms for Mencius

31

Conclusion

Mencius Summary
• Mencius = Coordinated Paxos + 3 Optimizations + 1 Accelerator
• Adjustable parameters for different network settings
• Similar to Paxos, tolerate f failures for totally 2f + 1 servers
• Higher throughput than Paxos when either CPU-bound or

network bound
• Better scalability and latency than Paxos

32

33

Thank you!

Discussion

• In terms of coordinator and assume no failures, is Mencius
always non-blocking upon receiving a quorum of ACCEPT
messages?

• Despite improved throughput and latency of Mencius
compared to Paxos, it seems that many infrastructures still
use Paxos as the commit protocol. What are some of the
cases where Mencius may not work?

34

