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Motivation

e Large amount of raw data to process

e Conceptually straightforward computation

e Distributed computations — Finish in reasonable time

e Problems:
o Parallelize computations
o Distribute data
o Handle failures



MapReduce: Overview

e A programming model & an associated implementation
for processing and generating large data sets.



MapReduce: Overview

e First version in 2003 by Google
e Significant growth of usage

e Applications:
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Figure 4: MapReduce instances over time

Rewrite the production indexing system for the
Google web search service



What is MapReduce

e Inspired by the map and reduce primitives
o In Lisp & other languages

e Advantages:
o Allow user defined computations
o Hides messy details in a library:
m Parallelization
m Fault-tolerance
m Data distribution
m Load balancing



Main idea

e Map operation:
o Each Input record — key/value pair

e Reduce operation:
o (same key) values — Derived data
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Map Function

e User specified

o In: An input pair
e Out: Asetof intermediate key/value pairs




Intermediate key/value pairs

e MapReduce library groups
intermediate values with
same key /



Reduce Function

e User specified 1y 0:2

e In: Intermediate key / and a set of values for key /
e Out: Smaller set of values

e Typically O or 1 output value per Reduce invocation



User specification

e Map & Reduce functions
e Names of input & output files
e Optional tuning parameters
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Example: Word Count pocC\ poC2
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// value: document contents

for each word w in value:
EmitIntermediate(w, "1");

\ntermediotes

A\ A:
81 a
A-
B

\

\

.\ ‘
C: :



Example: Word Count

map (String key, String wvalue):
// key: document name

// value: document contents
for each word w in wvalue:

EmitIntermediate (w, "1");

reduce (String key,
// key: a word

// values: a list of counts
int result = 0;

for each v in values:

result += Parselnt (v);
Emit (AsString(result));

Iterator values):
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Implementation of MapReduce

e Many possible implementations depend on the environment

e Here: A MapReduce interface tailored towards Google’s
cluster-based computing environment

o Build on Commodity PCs connected with switched Ethernet
o Machine failures are common
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Structure

e Single master
e A set of workers



Structure

e M: Partition input data into M splits
o Typically 16-64 MB per piece

e R: Partition intermediate key space into R pieces
o Using a partitioning function
o E.g. (hash(key) mod R)

e All specified by user
npwt: — |
M=12 e min

R=3 |Wor\t¢.rl | lWorkv.rl' |WQrk¢.r3|
Local [
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Execution Overview

i e One master program
' ' o The rest are workers
, o . o Master assign map/reduce tasks
i mivs. to idle workers

map
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sl (5) remote read WORKEE file 0
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file 1
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Figure 1: Execution overview



Execution Overview

e One master program
o The rest are workers

MasYer o Master assign map/reduce tasks

1 to idle workers
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Execution Overview

User
Program

1) fork .* ;
v o.r" (1) fork (1) fork
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split 0 I
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Figure 1: Execution overview

_assign reduce .

e Workers perform Map task
o Intermediate key/value pairs buffered in
memory
o Periodically write buffered pairs into local disk
o Locations of buffered pairs — Master

(6) write output
worker file 0

@ output
file 1

Reduce Output
phase files



Execution Overview
e Workers perform Map task

| Masnr] o Intermediate key/value pairs buffered in
o B memory

o Periodically write buffered pairs into local disk
o Locations of buffered pairs — Master
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Execution Overview

User
Program

1) fork .* ;
v o.r" (1) fork (1} fork
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@ assign

) .assign reduce .

map

Master sends these locations to reduce workers
Reduce worker reads intermediate data

Sorts data by intermediate keys —
Intermediates with same key group together
If intermediate data too large:

O
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o External sort is used
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Figure 1: Execution overview

Reduce
phase files

Final output file

e Final file system: Data
from one execution of
each reduce task

e Therefore, R output files

Output



Execution Overview
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Master sends these locations to reduce workers
Reduce worker reads intermediate data
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Sorts data by intermediate keys —
Intermediates with same key group together
If intermediate data too large:

External sort is used



Execution Overview e Master sends these locations to reduce workers

e Reduce worker reads intermediate data

MasTer o Sorts by intermediate keys —
e l. o Intermediates with same key group together
\ o If intermediate data too large:
l o External sort is used
worker| worker2 worker?
Local | |
Dioks 8- T

Reduce B:\



Execution Overview
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e Master sends these locations to reduce workers
Reduce worker reads intermediate data

Sorts by intermediate keys —

Intermediates with same key group together
If intermediate data too large:

External sort is used

e Atomically renames
temporary output file —
Final output file

e Final file system: Data
from one execution of
each reduce task

e Therefore, R output files



Execution Overview

User
Program

Mok 0 fork

.| e When all tasks completed
@ o e Master wakes up the user program

(1) fork -
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split 0 @wite [0y
sl (5) remote read WORKEE file 0
split 2 (3) read @ (4) local write I
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Figure 1: Execution overview



Execution Overview
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e Master data structures:
rogram
> g o State of each map & reduce task:

m Idle, in-progress, completed

|dentity of worker
machine

R intermediate file
locations for each
completed map task
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Fault Tolerance

e \Why important:
o Commodity machines: Failures are common
o Hundreds and thousands of machines: Tolerate faults gracefully

e Primary mechanism: Re-execution

e \Worker Failure
e Master Failure



Fault Tolerance

Worker Failure

Master pings worker periodically
No response — Mark worker failed

Reset Map task completed by failed
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Fault Tolerance

Worker Failure

Master pings worker periodically
No response — Mark worker failed
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Fault Tolerance

Worker Failure

Master pings worker periodically

No response — Mark worker failed
Reset Map task completed by failed
worker — idle state
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Fault Tolerance

Worker Failure

Master pings worker periodically

No response — Mark worker failed
Reset Map task completed by failed
worker — idle state

Reset in-progress Map and Reduce
tasks — idle state

|dle tasks — eligible for rescheduling
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Fault Tolerance [mster)
Worker Failure \I
e Completed Map tasks are re-executed on failure |@ Worker2]  [worker?)
o Map outputs: on local disks of workers Loca\ — —
e Completed Reduce tasks do not need i \ (|

o Reduce outputs: in global file system

e All the workers will be notified of a ;
re-execution Reduce

o Reduce worker read data from new location nE o
e Resilient to large-scale worker failures @.to \ s \ \ D




Fault Tolerance asTer

Worker Failure \ |
M
e Completed Map tasks are re-executed on failure wé\rke.y/ Worker Worker?
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Fault Tolerance

Master Failure
Program

T Rk (Dfork
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Figure 1: Execution overview



Semantics in the Presence of Failures

e Deterministic Map/Reduce Functions

o Atomic commit task output:
m guarantee no duplicates of Map results
o Atomic rename operation:
m guarantee no duplicates of Reduce results

e Non-deterministic Functions
o Weaker but still reasonable semantics
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Locality

Scarce resource: Network bandwidth

Solution: Store input data (managed by GFS) on
local disks of machines that makes up the cluster

GFS:

o Divides data into 64 MB blocks
o Replicates data in different machines (usually 3)

Master: Assign map tasks to machines
contains the data or close to data
locations (e.g. same network switch)



Refinements

Customizable Partitioning Function
Ordering Guarantees

Input and Output Types

Auxiliary additional outputs
Skipping bad records

Local Execution

Status information

Counters



Refinements

e Optional Combiner Function

o Partial merging of data at the
end of Map

o Typically same code as
Reduce

o E.x. <the, 1> in Zipf
distributed word count task

|Worker| Iworkc.rz | Worker3
8:|
1) Combiner

Iworke.n |

|work¢.\'1 I

8|

[Worker? |
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Performance

2 computation tasks:

e Search through appx. 1 terabytes data —
rare 3-character pattern (Grep)

o Extract small amount of interesting data
from large dataset

o Input — 64 MB pieces (M = 15000)
o Qutputin 1file (R=1)



Grep
e Peaks at~ 30 GB/s

l o 1764 Workers

7 30000 — Map task finishing

S~ .

== e ~ 1 min startup

2, 20000

= overhead

E.. 10000 — o Program propagation to

2 l workers
< > 0 == 2'0 ' 4'0 ' 6|0 T 8IO ' 1(')0 Delays when interacting
~ 1 min startup with GFS for locality
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Figure 2: Data transfer rate over time



Performance

2 computation tasks:

e Sort appx. 1 terabyte of data (Sort)

o Shuffles data from one representation to another

o Modeled after the TeraSort benchmark

o Map — word, text line
o Reduce — Built-in Identity function



Performance

2 computation tasks:

e Sort appx. 1 terabyte of data (Sort)

o Input — 64 MB pieces (M = 15000)

o Final output: A set of 2-way replicated GFS files
o R =4000




Sort Performance

Shuffle (MB/s) Input (MB/s)

Output (MB/s)
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(a) Normal execution

Input rate:
o Inputis read

Shuffle rate:

o Data sent from map tasks
to reduce tasks

Output rate

o Sorted data written to final
output files by reduce tasks

Higher input rate
o Locality optimization



Sort Performance
Peaks at ~13 GB/s
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Sort Performance
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20000 —
Sort Performance 2 o0 e ¢ Qutput rate
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Backup Task
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Machine Failure
o000 - e Killed 200 out of 1746 workers

g ] o | o ~11.5% workers
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Sort Performance

e Entire computation takes 891s
e Comparable to best reported results (1057s) for the TeraSort
Benchmark



Conclusion

e Mapreduce is easy to use
o Hides details of
m Parallelization
m Fault-tolerance
m Locality optimization
m Load balancing

e Powerful
o Alarge variety of problems are expressible as MapReduce
computations
e Scalable

o Implementation of MapReduce using large cluster of machines



Thank you!

Questions?



