MapReduce: Simplified Data
Processing on Large Clusters

Authors: Jeffrey Dean and Sanjay Ghemawat

Presented by: Luna (Lilong) Teng

Outline

Motivation & Overview

Word Count Example & Implementation
Structure & Execution Overview

Fault Tolerance

Refinements

Performance

Outline

Motivation & Overview

Word Count Example & Implementation
Structure & Execution Overview

Fault Tolerance

Refinements

Performance

Motivation

e Large amount of raw data to process

e Conceptually straightforward computation

e Distributed computations — Finish in reasonable time

e Problems:
o Parallelize computations
o Distribute data
o Handle failures

MapReduce: Overview

e A programming model & an associated implementation
for processing and generating large data sets.

MapReduce: Overview

e First version in 2003 by Google
e Significant growth of usage

e Applications:

©)

O O O O O

O

1000 —
800
600 —

400 —
Large-scale machine learning problems
Clustering problems for the Google News
Extraction of data in queries & 0
Extraction of properties of web pages

Large-scale graph computations

200 —

Number of instances in source tree

£0/€00¢

90/€00C _
60/€00C
C1/€00T
£0/¥00C
90/+00C _
60/00C _

Figure 4: MapReduce instances over time

Rewrite the production indexing system for the
Google web search service

What is MapReduce

e Inspired by the map and reduce primitives
o In Lisp & other languages

e Advantages:
o Allow user defined computations
o Hides messy details in a library:
m Parallelization
m Fault-tolerance
m Data distribution
m Load balancing

Main idea

e Map operation:
o Each Input record — key/value pair

e Reduce operation:
o (same key) values — Derived data

®:|

®:2
o:\ o\ o:2
o:\ 0:2

I

Map Function

e User specified

o In: An input pair
e Out: Asetof intermediate key/value pairs

Intermediate key/value pairs

e MapReduce library groups
intermediate values with
same key /

Reduce Function

e User specified 1y 0:2

e In: Intermediate key / and a set of values for key /
e Out: Smaller set of values

e Typically O or 1 output value per Reduce invocation

User specification

e Map & Reduce functions
e Names of input & output files
e Optional tuning parameters

Outline

Motivation & Overview

Word Count Example & Implementation
Structure & Execution Overview

Fault Tolerance

Refinements

Performance

Example: Word Count pocC\ poC2
ey aesnent pone ABC 2Y.YaYs

// value: document contents

for each word w in value:
EmitIntermediate(w, "1");

\ntermediotes

A\ A:
81 a
A-
B

\

\

.\ ‘
C: :

Example: Word Count

map (String key, String wvalue):
// key: document name

// value: document contents
for each word w in wvalue:

EmitIntermediate (w, "1");

reduce (String key,
// key: a word

// values: a list of counts
int result = 0;

for each v in values:

result += Parselnt (v);
Emit (AsString(result));

Iterator values):

\nermediaves

Ccor

SEERE

Implementation of MapReduce

e Many possible implementations depend on the environment

e Here: A MapReduce interface tailored towards Google’s
cluster-based computing environment

o Build on Commodity PCs connected with switched Ethernet
o Machine failures are common

Outline

Motivation & Overview

Word Count Example & Implementation
Structure & Execution Overview

Fault Tolerance

Refinements

Performance

Structure

e Single master
e A set of workers

Structure

e M: Partition input data into M splits
o Typically 16-64 MB per piece

e R: Partition intermediate key space into R pieces
o Using a partitioning function
o E.g. (hash(key) mod R)

e All specified by user
npwt: — |
M=12 e min

R=3 |Wor\t¢.rl | lWorkv.rl' |WQrk¢.r3|
Local [
Dioks

Execution Overview

i e One master program
' ' o The rest are workers
, o . o Master assign map/reduce tasks
i mivs. to idle workers

map

split 0 @wite [0y
sl (5) remote read WORKEE file 0
split 2 (3) read @ (4) local write I

@ output
file 1

split 3
split 4
<> Il
Input Map Intermediate files Reduce Output
files phase (on local disks) phase files

Figure 1: Execution overview

Execution Overview

e One master program
o The rest are workers

MasYer o Master assign map/reduce tasks

1 to idle workers

\

Execution Overview

User
Program

1) fork .* ;
v o.r" (1) fork (1) fork

,) '

@ assign

map

split 0 I

Split 1 (5) femote read
split 2 |(3)read| - (@) local write ||
split 3
split 4
<> Il
Input Map Intermediate files
files phase (on local disks)

Figure 1: Execution overview

_assign reduce .

e Workers perform Map task
o Intermediate key/value pairs buffered in
memory
o Periodically write buffered pairs into local disk
o Locations of buffered pairs — Master

(6) write output
worker file 0

@ output
file 1

Reduce Output
phase files

Execution Overview
e Workers perform Map task

| Masnr] o Intermediate key/value pairs buffered in
o B memory

o Periodically write buffered pairs into local disk
o Locations of buffered pairs — Master

@-M Eor Ker IJ | wWorker3 I
e\ [T7T [T LCOT1

Execution Overview

User
Program

1) fork .* ;
v o.r" (1) fork (1} fork

,) '

@ assign

) .assign reduce .

map

Master sends these locations to reduce workers
Reduce worker reads intermediate data

Sorts data by intermediate keys —
Intermediates with same key group together
If intermediate data too large:

O
O
O
o External sort is used

(6) write output
VQ‘D—* file 0 ¢
split 2 MO (4) local write I
worker

@ output
file 1

Atomically renames
temporary output file —

split 0
split 1
split 3
split 4

<> Il
Input Map Intermediate files
files phase (on local disks)

Figure 1: Execution overview

Reduce
phase files

Final output file

e Final file system: Data
from one execution of
each reduce task

e Therefore, R output files

Output

Execution Overview

Loca\
Pioks

Workeri

MasTer I

)y

Worker2

Master sends these locations to reduce workers
Reduce worker reads intermediate data

o O O O

workc.r3

8-\

Sorts data by intermediate keys —
Intermediates with same key group together
If intermediate data too large:

External sort is used

Execution Overview e Master sends these locations to reduce workers

e Reduce worker reads intermediate data

MasTer o Sorts by intermediate keys —
e l. o Intermediates with same key group together
\ o If intermediate data too large:
l o External sort is used
worker| worker2 worker?
Local | |
Dioks 8- T

Reduce B:\

Execution Overview

MasTer .
] I. O
l o
worker| worker2 Workerz) ©
Loca\ | °
Disks 8- 1\
|
Reduce B:\
Outer

EARGARGE

£e

e Master sends these locations to reduce workers
Reduce worker reads intermediate data

Sorts by intermediate keys —

Intermediates with same key group together
If intermediate data too large:

External sort is used

e Atomically renames
temporary output file —
Final output file

e Final file system: Data
from one execution of
each reduce task

e Therefore, R output files

Execution Overview

User
Program

Mok 0 fork

.| e When all tasks completed
@ o e Master wakes up the user program

(1) fork -

@ ’ assign
_.assign reduce .
map

split 0 @wite [0y
sl (5) remote read WORKEE file 0
split 2 (3) read @ (4) local write I

file 1

split 3
split 4
<> Il
Input Map Intermediate files Reduce Output
files phase (on local disks) phase files

Figure 1: Execution overview

Execution Overview

(1) fork . g .
1 @fox {L) fork
1 (2)
@) assign
) _assign reduce .

map

split 0

(6) write output
(5) remote read worker file O

SO |
split 1
split 2 (3) read @ (4) local write I
split 3

@ output
file 1

split 4
<> Il
Input Map Intermediate files Reduce Output
files phase (on local disks) phase files

Figure 1: Execution overview

@)

e Master data structures:
rogram
> g o State of each map & reduce task:

m Idle, in-progress, completed

|dentity of worker
machine

R intermediate file
locations for each
completed map task

Outline

Motivation & Overview

Word Count Example & Implementation
Structure & Execution Overview

Fault Tolerance

Refinements

Performance

Fault Tolerance

e \Why important:
o Commodity machines: Failures are common
o Hundreds and thousands of machines: Tolerate faults gracefully

e Primary mechanism: Re-execution

e \Worker Failure
e Master Failure

Fault Tolerance

Worker Failure

Master pings worker periodically
No response — Mark worker failed

Reset Map task completed by failed
worker — idle state

Reset in-progress Map and Reduce
tasks by failed worker — idle state

|dle tasks — eligible for rescheduling

User
Program

(l)fo_rk- : (1) fork .'(l}fork
. v O]
3 @ assig
B assign reduc
map
split 0
N output
split 1 file O
split 2 |-G)read (@) local write I
split 3 :g (;iultslln
split 4
<>]
Input Map Intermediate files Reduce Output
files phase (on local disks) phase files

Figure 1: Execution overview

Fault Tolerance

Worker Failure

Master pings worker periodically
No response — Mark worker failed

Reset Map task completed by failed
worker — idle state
Reset in-progress Map and Reduce

W -bunsy
W1 -busy
W3:ide

tasks by failed worker — idle state E"‘- 2_"\"'.".'_'3

]

ldle tasks — eligible for rescheduling E

B:|

| Mms‘\'erl

|Wor\&¢.r1

|work¢x3 '

Fault Tolerance

Worker Failure

Master pings worker periodically

No response — Mark worker failed
Reset Map task completed by failed
worker — idle state

Reset in-progress Map and Reduce
tasks — idle state

|dle tasks — eligible for rescheduling

Wie:E

W1 :busy
W3:ide

I MasTer I

wWarkeri

\d\e

B-\\

[worker:]

[Workerz)
L

Fault Tolerance

Worker Failure

Master pings worker periodically

No response — Mark worker failed
Reset Map task completed by failed
worker — idle state

Reset in-progress Map and Reduce
tasks — idle state

|dle tasks — eligible for rescheduling

Wi: &
W2 :busy
W3:ide

\n -progress (W3)

| Moss'\'zrl

|work¢.r1 l

[Worker3)

Fault Tolerance [mster)
Worker Failure \I
e Completed Map tasks are re-executed on failure |@ Worker2] [worker?)
o Map outputs: on local disks of workers Loca\ — —
e Completed Reduce tasks do not need i \ (|

o Reduce outputs: in global file system

e All the workers will be notified of a ;
re-execution Reduce

o Reduce worker read data from new location nE o
e Resilient to large-scale worker failures @.to \ s \ \ D

Fault Tolerance asTer

Worker Failure \ |
M
e Completed Map tasks are re-executed on failure wé\rke.y/ Worker Worker?
o Map outputs: on local disks of workers Local
Disks
e Completed Reduce tasks do not need / \ T

o Reduce outputs: in global file system

e All the workers will be notified of a

re-execution Reduce
o Reduce worker read data from new location

e Resilient to large-scale worker failures O::E" b= \B‘\ s Ii___

Fault Tolerance

Master Failure
Program

T Rk (Dfork

Single master, rare failure

If master fails, aborts the MapReduce =g

computation e I

. . ©write |- Gutput
. split 1 () remote read worker file 0
Client can retry i | 02, 0 e [T]

@ output
file 1

split 3
split 4
< [l
Input Map Intermediate files Reduce Output
files phase (on local disks) phase files

Figure 1: Execution overview

Semantics in the Presence of Failures

e Deterministic Map/Reduce Functions

o Atomic commit task output:
m guarantee no duplicates of Map results
o Atomic rename operation:
m guarantee no duplicates of Reduce results

e Non-deterministic Functions
o Weaker but still reasonable semantics

Outline

Motivation & Overview

Word Count Example & Implementation
Structure & Execution Overview

Fault Tolerance

Refinements

Performance

Locality

Scarce resource: Network bandwidth

Solution: Store input data (managed by GFS) on
local disks of machines that makes up the cluster

GFS:

o Divides data into 64 MB blocks
o Replicates data in different machines (usually 3)

Master: Assign map tasks to machines
contains the data or close to data
locations (e.g. same network switch)

Refinements

Customizable Partitioning Function
Ordering Guarantees

Input and Output Types

Auxiliary additional outputs
Skipping bad records

Local Execution

Status information

Counters

Refinements

e Optional Combiner Function

o Partial merging of data at the
end of Map

o Typically same code as
Reduce

o E.x. <the, 1> in Zipf
distributed word count task

|Worker| Iworkc.rz | Worker3
8:|
1) Combiner

Iworke.n |

|work¢.\'1 I

8|

[Worker? |

Outline

Motivation & Overview

Word Count Example & Implementation
Structure & Execution Overview

Fault Tolerance

Refinements

Performance

Performance

2 computation tasks:

e Search through appx. 1 terabytes data —
rare 3-character pattern (Grep)

o Extract small amount of interesting data
from large dataset

o Input — 64 MB pieces (M = 15000)
o Qutputin 1file (R=1)

Grep
e Peaks at~ 30 GB/s

l o 1764 Workers

7 30000 — Map task finishing

S~ .

== e ~ 1 min startup

2, 20000

= overhead

E.. 10000 — o Program propagation to

2 l workers
< > 0 == 2'0 ' 4'0 ' 6|0 T 8IO ' 1(')0 Delays when interacting
~ 1 min startup with GFS for locality

Seconds optimization

Figure 2: Data transfer rate over time

Performance

2 computation tasks:

e Sort appx. 1 terabyte of data (Sort)

o Shuffles data from one representation to another

o Modeled after the TeraSort benchmark

o Map — word, text line
o Reduce — Built-in Identity function

Performance

2 computation tasks:

e Sort appx. 1 terabyte of data (Sort)

o Input — 64 MB pieces (M = 15000)

o Final output: A set of 2-way replicated GFS files
o R =4000

Sort Performance

Shuffle (MB/s) Input (MB/s)

Output (MB/s)

20000
15000
10000

5000

20000
15000
10000

5000

20000
15000
10000

5000

Done
""" SR I I
500 1000
/J\ﬁ/,‘vj\, e,
500 1000
500 1000

Seconds

(a) Normal execution

Input rate:
o Inputis read

Shuffle rate:

o Data sent from map tasks
to reduce tasks

Output rate

o Sorted data written to final
output files by reduce tasks

Higher input rate
o Locality optimization

Sort Performance
Peaks at ~13 GB/s

20000

._. ,_.

8 wn

(e}

(=) S

(s o
| [|

Input (MB/s)
3
S
I

Do

ne

o

500

Sort input rate

e Input rate less than that for grep
o Spend half of time & bandwidth writing

intermediates

1000

30000 —

20000 —

Input (MB/s)
S
S
1

o

20

|

L

40 60 80

Seconds

Grep input rate

T
100

Sort Performance

Shuffle (MB/s) Input (MB/s)

Output (MB/s)

20000 —
15000 —
10000 —

5000 —

20000 —

* o Shuffle rate:

o Data sent from map tasks
to reduce tasks

500

150004 First batch

20000
15000
10000

5000

10000 —
5000
0 —

1000

of ~ 1700 reduce workers

Some of the first batch finish,

500

—— Start shuffling for remaining
1000
reduce tasks

Seconds

(a) Normal execution

20000 —
Sort Performance 2 o0 e ¢ Qutput rate
:2_; 10000 o Sorted data written to final
= . output files by reduce tasks
500 1000
. 20000 —
§ 1004 First batch of ~ 1700 reduce workers
o 10000 —
g so00- jf Some of the first batch finish,
Z g ——— Start shuffling for remaining
500 1000
reduce tasks
R 20000
§ 15000 Delay due to busy sorting of intermediates
S 10000 Finishes at ~850s
£ 5002 i M* ,(8-9-18 including the startup overhead)
500 1000

Seconds

(a) Normal execution

Backup Task

Shuffle (MB/s) Input (MB/s)

Output (MB/s)

20000 —
Done
15000 4
10000 —
5000 —
0 T & 5| F] T
500 1000
20000 —
15000 <
10000
"L
0 —r—————
500 1000
20000 —
15000 —
10000 —
5000 — M
O 71
500 1000
Seconds

(a) Normal execution

e “Stragglers™ machines take

20000 - unusually long time
s000 - e Solution:
0 1000 o Map/Reduce close to
. completion
1000 o Master schedule backups for
A B e N remaining in-progress tasks
om0 e 44% longer time when no
- / backup tasks
Seeonds \ait for 5 “stragglers” from 960s
(b) No backup tasks

Machine Failure
o000 - e Killed 200 out of 1746 workers

g] o | o ~11.5% workers

55002_ T R BT Y ’ Ak s00 | 1000

20000 20000 1 e 5% increase of execution

§ 10000: 1000 tlme

g o0] e Neg values: Map work need
g 10000 .

ER to be redone in dead

5 Bd—s M / o /

0 1000 S s 100 workers

Seconds Seconds

(a) Normal execution (c) 200 tasks killed

Sort Performance

e Entire computation takes 891s
e Comparable to best reported results (1057s) for the TeraSort
Benchmark

Conclusion

e Mapreduce is easy to use
o Hides details of
m Parallelization
m Fault-tolerance
m Locality optimization
m Load balancing

e Powerful
o Alarge variety of problems are expressible as MapReduce
computations
e Scalable

o Implementation of MapReduce using large cluster of machines

Thank you!

Questions?

