
MapReduce: Simplified Data
Processing on Large Clusters

Authors: Jeffrey Dean and Sanjay Ghemawat

Presented by: Luna (Lilong) Teng

Outline

● Motivation & Overview
● Word Count Example & Implementation
● Structure & Execution Overview
● Fault Tolerance
● Refinements
● Performance

Outline

● Motivation & Overview
● Word Count Example & Implementation
● Structure & Execution Overview
● Fault Tolerance
● Refinements
● Performance

Motivation

● Large amount of raw data to process

● Conceptually straightforward computation

● Distributed computations → Finish in reasonable time

● Problems:
○ Parallelize computations
○ Distribute data
○ Handle failures

MapReduce: Overview

● A programming model & an associated implementation
for processing and generating large data sets.

MapReduce: Overview

● First version in 2003 by Google
● Significant growth of usage

○ Rewrite the production indexing system for the
Google web search service

● Applications:
○ Large-scale machine learning problems
○ Clustering problems for the Google News
○ Extraction of data in queries &
○ Extraction of properties of web pages
○ Large-scale graph computations
○ …

What is MapReduce

● Inspired by the map and reduce primitives
○ In Lisp & other languages

● Advantages:
○ Allow user defined computations
○ Hides messy details in a library:

■ Parallelization
■ Fault-tolerance
■ Data distribution
■ Load balancing

Main idea

● Map operation:
○ Each Input record → key/value pair

● Reduce operation:
○ (same key) values → Derived data

Map Function

● User specified

● In: An input pair
● Out: A set of intermediate key/value pairs

Intermediate key/value pairs

● MapReduce library groups
intermediate values with
same key I

Reduce Function

● User specified

● In: Intermediate key I and a set of values for key I
● Out: Smaller set of values

● Typically 0 or 1 output value per Reduce invocation

User specification

● Map & Reduce functions
● Names of input & output files
● Optional tuning parameters

Outline

● Motivation & Overview
● Word Count Example & Implementation
● Structure & Execution Overview
● Fault Tolerance
● Refinements
● Performance

Example: Word Count

Example: Word Count

Implementation of MapReduce

● Many possible implementations depend on the environment

● Here: A MapReduce interface tailored towards Google’s
cluster-based computing environment

○ Build on Commodity PCs connected with switched Ethernet
○ Machine failures are common

Outline

● Motivation & Overview
● Word Count Example & Implementation
● Structure & Execution Overview
● Fault Tolerance
● Refinements
● Performance

Structure

● Single master
● A set of workers

Structure

● M: Partition input data into M splits
○ Typically 16-64 MB per piece

● R: Partition intermediate key space into R pieces
○ Using a partitioning function
○ E.g. (hash(key) mod R)

● All specified by user

Execution Overview

● One master program
○ The rest are workers
○ Master assign map/reduce tasks

to idle workers

Execution Overview

● One master program
○ The rest are workers
○ Master assign map/reduce tasks

to idle workers

Execution Overview
● Workers perform Map task

○ Intermediate key/value pairs buffered in
memory

○ Periodically write buffered pairs into local disk
○ Locations of buffered pairs → Master

Execution Overview
● Workers perform Map task

○ Intermediate key/value pairs buffered in
memory

○ Periodically write buffered pairs into local disk
○ Locations of buffered pairs → Master

Execution Overview ● Master sends these locations to reduce workers
● Reduce worker reads intermediate data

○ Sorts data by intermediate keys →
○ Intermediates with same key group together
○ If intermediate data too large:
○ External sort is used

● Atomically renames
temporary output file →
Final output file

● Final file system: Data
from one execution of
each reduce task

● Therefore, R output files

Execution Overview ● Master sends these locations to reduce workers
● Reduce worker reads intermediate data

○ Sorts data by intermediate keys →
○ Intermediates with same key group together
○ If intermediate data too large:
○ External sort is used

Execution Overview ● Master sends these locations to reduce workers
● Reduce worker reads intermediate data

○ Sorts by intermediate keys →
○ Intermediates with same key group together
○ If intermediate data too large:
○ External sort is used

Execution Overview ● Master sends these locations to reduce workers
● Reduce worker reads intermediate data

○ Sorts by intermediate keys →
○ Intermediates with same key group together
○ If intermediate data too large:
○ External sort is used

● Atomically renames
temporary output file →
Final output file

● Final file system: Data
from one execution of
each reduce task

● Therefore, R output files

Execution Overview

● When all tasks completed
● Master wakes up the user program

Execution Overview
● Master data structures:

○ State of each map & reduce task:
■ Idle, in-progress, completed

○ Identity of worker
machine

○ R intermediate file
locations for each
completed map task

Outline

● Motivation & Overview
● Word Count Example & Implementation
● Structure & Execution Overview
● Fault Tolerance
● Refinements
● Performance

Fault Tolerance

● Primary mechanism: Re-execution

● Worker Failure
● Master Failure

● Why important:
○ Commodity machines: Failures are common
○ Hundreds and thousands of machines: Tolerate faults gracefully

Fault Tolerance
Worker Failure

● Reset Map task completed by failed
worker → idle state

● Reset in-progress Map and Reduce
tasks by failed worker → idle state

● Idle tasks → eligible for rescheduling

● Master pings worker periodically
● No response → Mark worker failed

Fault Tolerance
Worker Failure

● Reset Map task completed by failed
worker → idle state

● Reset in-progress Map and Reduce
tasks by failed worker → idle state

● Idle tasks → eligible for rescheduling

● Master pings worker periodically
● No response → Mark worker failed

Fault Tolerance
Worker Failure

● Master pings worker periodically
● No response → Mark worker failed
● Reset Map task completed by failed

worker → idle state
● Reset in-progress Map and Reduce

tasks → idle state

● Idle tasks → eligible for rescheduling

Fault Tolerance
Worker Failure

● Master pings worker periodically
● No response → Mark worker failed
● Reset Map task completed by failed

worker → idle state
● Reset in-progress Map and Reduce

tasks → idle state

● Idle tasks → eligible for rescheduling

Fault Tolerance
Worker Failure

● Completed Map tasks are re-executed on failure
○ Map outputs: on local disks of workers

● Completed Reduce tasks do not need
○ Reduce outputs: in global file system

● All the workers will be notified of a
re-execution

○ Reduce worker read data from new location
● Resilient to large-scale worker failures

Fault Tolerance
Worker Failure

● Completed Map tasks are re-executed on failure
○ Map outputs: on local disks of workers

● Completed Reduce tasks do not need
○ Reduce outputs: in global file system

● All the workers will be notified of a
re-execution

○ Reduce worker read data from new location
● Resilient to large-scale worker failures

Fault Tolerance
Master Failure

● Single master, rare failure

● If master fails, aborts the MapReduce
computation

● Client can retry

Semantics in the Presence of Failures
● Deterministic Map/Reduce Functions

○ Atomic commit task output:
■ guarantee no duplicates of Map results

○ Atomic rename operation:
■ guarantee no duplicates of Reduce results

● Non-deterministic Functions
○ Weaker but still reasonable semantics

Outline

● Motivation & Overview
● Word Count Example & Implementation
● Structure & Execution Overview
● Fault Tolerance
● Refinements
● Performance

Locality
● Scarce resource: Network bandwidth

● Solution: Store input data (managed by GFS) on
local disks of machines that makes up the cluster

● GFS:
○ Divides data into 64 MB blocks
○ Replicates data in different machines (usually 3)

● Master: Assign map tasks to machines
contains the data or close to data
locations (e.g. same network switch)

Refinements

● Customizable Partitioning Function
● Ordering Guarantees
● Input and Output Types
● Auxiliary additional outputs
● Skipping bad records
● Local Execution
● Status information
● Counters

Refinements

● Optional Combiner Function
○ Partial merging of data at the

end of Map

○ Typically same code as
Reduce

○ E.x. <the, 1> in Zipf
distributed word count task

Outline

● Motivation & Overview
● Word Count Example & Implementation
● Structure & Execution Overview
● Fault Tolerance
● Refinements
● Performance

Performance

2 computation tasks:

● Search through appx. 1 terabytes data →
rare 3-character pattern (Grep)

○ Extract small amount of interesting data
from large dataset

○ Input → 64 MB pieces (M = 15000)
○ Output in 1 file (R = 1)

Grep

Map task finishing

~ 1 min startup

● Peaks at ~ 30 GB/s
○ 1764 Workers

● ~ 1 min startup
overhead
○ Program propagation to

workers
○ Delays when interacting

with GFS for locality
optimization

Performance

2 computation tasks:

● Sort appx. 1 terabyte of data (Sort)

○ Shuffles data from one representation to another

○ Modeled after the TeraSort benchmark

○ Map → word, text line
○ Reduce → Built-in Identity function

Performance

2 computation tasks:

● Sort appx. 1 terabyte of data (Sort)

○ Input → 64 MB pieces (M = 15000)

○ Final output: A set of 2-way replicated GFS files
○ R = 4000

Sort Performance ● Input rate:
○ Input is read

● Shuffle rate:
○ Data sent from map tasks

to reduce tasks

● Output rate
○ Sorted data written to final

output files by reduce tasks

● Higher input rate
○ Locality optimization

Sort Performance

● Input rate less than that for grep
○ Spend half of time & bandwidth writing

intermediates

Grep input rateSort input rate

Peaks at ~13 GB/s

Sort Performance

First batch of ~ 1700 reduce workers

Some of the first batch finish,
Start shuffling for remaining
reduce tasks

● Shuffle rate:
○ Data sent from map tasks

to reduce tasks

Sort Performance

First batch of ~ 1700 reduce workers

Some of the first batch finish,
Start shuffling for remaining
reduce tasks

● Output rate
○ Sorted data written to final

output files by reduce tasks

Delay due to busy sorting of intermediates
Finishes at ~850s
(891s including the startup overhead)

Backup Task

Wait for 5 “stragglers” from 960s

● “Stragglers”: machines take
unusually long time

● Solution:
○ Map/Reduce close to

completion
○ Master schedule backups for

remaining in-progress tasks

● 44% longer time when no
backup tasks

Machine Failure
● Killed 200 out of 1746 workers

○ ~ 11.5% workers

● 5% increase of execution
time

● Neg values: Map work need
to be redone in dead
workers

Sort Performance

● Entire computation takes 891s
● Comparable to best reported results (1057s) for the TeraSort

Benchmark

Conclusion
● Mapreduce is easy to use

○ Hides details of
■ Parallelization
■ Fault-tolerance
■ Locality optimization
■ Load balancing

● Powerful
○ A large variety of problems are expressible as MapReduce

computations

● Scalable
○ Implementation of MapReduce using large cluster of machines

Thank you!

Questions?

