
Presenter: Armin Vakil

IronFleet: Proving Practical
Distributed Systems Correct
Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch
Bryan Parno, Michael L. Roberts, Srinath Setty, Brian Zill
Microsoft Research

2

2

2

Implementing correct distributed protocols is notoriously difficult.

2

Examples of bug disruptions

3

Examples of bug disruptions

3

Verification to the Rescue

4

Verification to the Rescue
• Automated proof for correctness

4

Verification to the Rescue
• Automated proof for correctness

4

Contributions

5

Contributions

• First mechanically-checked proof of implementation

5

Contributions

• First mechanically-checked proof of implementation

❌ Unit-tests

5

Contributions

• First mechanically-checked proof of implementation

❌ Unit-tests
✅ Run once verified

5

Contributions

• First mechanically-checked proof of implementation
• IronRSL - Replicated state library

❌ Unit-tests
✅ Run once verified

5

Contributions

• First mechanically-checked proof of implementation
• IronRSL - Replicated state library

• IronKV- Sharded Key-Value Store

❌ Unit-tests
✅ Run once verified

5

Contributions

• First mechanically-checked proof of implementation
• IronRSL - Replicated state library

• IronKV- Sharded Key-Value Store

• Liveness proof along with safety

❌ Unit-tests
✅ Run once verified

5

Contributions

• First mechanically-checked proof of implementation
• IronRSL - Replicated state library

• IronKV- Sharded Key-Value Store

• Liveness proof along with safety
• Reasonable proof-to-code ratio

❌ Unit-tests
✅ Run once verified

5

Outline
• Safety
• Parallelism

• Liveness
• Evaluation
• Conclusion

6

How verification works?

Implementation

7

How verification works?

Implementation

Specification

7

How verification works?

Implementation

Specification

=

7

How verification works?

Implementation

Specification

=

7

What about
specification?

Example: Hash Table

8

Example: Hash Table

K V

- -

- -

- -

- -

8

Example: Hash Table

K V

- -

- -

- -

- -

K V

- -

6 A

- -

- -

8

Example: Hash Table

K V

- -

- -

- -

- -

K V

- -

6 A

- -

- -

K V

- -

6 A

- -

11 B

8

Example: Hash Table

K V

- -

- -

- -

- -

K V

- -

6 A

- -

- -

K V

- -

6 A

- -

11 B

K V

1 C

6 A

- -

11 B

8

Example: Hash Table

K V

- -

- -

- -

- -

K V

- -

6 A

- -

- -

K V

- -

6 A

- -

11 B

K V

1 C

6 A

- -

11 B

-

8

Example: Hash Table

K V

- -

- -

- -

- -

K V

- -

6 A

- -

- -

K V

- -

6 A

- -

11 B

K V

1 C

6 A

- -

11 B

- 6->A

8

Example: Hash Table

K V

- -

- -

- -

- -

K V

- -

6 A

- -

- -

K V

- -

6 A

- -

11 B

K V

1 C

6 A

- -

11 B

- 6->A 6->A
11->B

8

Example: Hash Table

K V

- -

- -

- -

- -

K V

- -

6 A

- -

- -

K V

- -

6 A

- -

11 B

K V

1 C

6 A

- -

11 B

- 6->A 6->A
11->B

6->A
11->B
1->C

8

Sharded Hash Table

9

Sharded Hash Table

K V

- -

- -

K V

- -

- -

Host 1

Host 2

9

Sharded Hash Table

K V

- -

- -

K V

- -

- -

Host 1

Host 2

K V

- -

- -

K V

6 A

- -

Host 1

Host 2

9

Sharded Hash Table

K V

- -

- -

K V

- -

- -

Host 1

Host 2

K V

- -

- -

K V

6 A

- -

Host 1

Host 2

K V

- -

- -

K V

6 A

11 B

Host 1

Host 2

9

Sharded Hash Table

K V

- -

- -

K V

- -

- -

Host 1

Host 2

K V

- -

- -

K V

6 A

- -

Host 1

Host 2

K V

- -

- -

K V

6 A

11 B

Host 1

Host 2

K V

- -

6 A

K V

- -

11 B

Host 1

Host 2

9

Sharded Hash Table
-

K V

- -

- -

K V

- -

- -

Host 1

Host 2

K V

- -

- -

K V

6 A

- -

Host 1

Host 2

K V

- -

- -

K V

6 A

11 B

Host 1

Host 2

K V

- -

6 A

K V

- -

11 B

Host 1

Host 2

9

Sharded Hash Table
- 6->A

K V

- -

- -

K V

- -

- -

Host 1

Host 2

K V

- -

- -

K V

6 A

- -

Host 1

Host 2

K V

- -

- -

K V

6 A

11 B

Host 1

Host 2

K V

- -

6 A

K V

- -

11 B

Host 1

Host 2

9

Sharded Hash Table
- 6->A 6->A

11->B

K V

- -

- -

K V

- -

- -

Host 1

Host 2

K V

- -

- -

K V

6 A

- -

Host 1

Host 2

K V

- -

- -

K V

6 A

11 B

Host 1

Host 2

K V

- -

6 A

K V

- -

11 B

Host 1

Host 2

9

Sharded Hash Table
- 6->A 6->A

11->B
6->A
11->B

K V

- -

- -

K V

- -

- -

Host 1

Host 2

K V

- -

- -

K V

6 A

- -

Host 1

Host 2

K V

- -

- -

K V

6 A

11 B

Host 1

Host 2

K V

- -

6 A

K V

- -

11 B

Host 1

Host 2

9

Sharded Hash Table
- 6->A 6->A

11->B
6->A
11->B

K V

- -

- -

K V

- -

- -

Host 1

Host 2

K V

- -

- -

K V

6 A

- -

Host 1

Host 2

K V

- -

- -

K V

6 A

11 B

Host 1

Host 2

K V

- -

6 A

K V

- -

11 B

Host 1

Host 2

9

Sharded Hash Table
- 6->A 6->A

11->B
6->A
11->B

K V

- -

- -

K V

- -

- -

Host 1

Host 2

K V

- -

- -

K V

6 A

- -

Host 1

Host 2

K V

- -

- -

K V

6 A

11 B

Host 1

Host 2

K V

- -

6 A

K V

- -

11 B

Host 1

Host 2

10

Sharded Hash Table
- 6->A 6->A

11->B
6->A
11->B

K V

- -

- -

K V

- -

- -

Host 1

Host 2

K V

- -

- -

K V

6 A

- -

Host 1

Host 2

K V

- -

- -

K V

6 A

11 B

Host 1

Host 2

K V

- -

6 A

K V

- -

11 B

Host 1

Host 2

10

Sharded Hash Table
- 6->A 6->A

11->B
6->A
11->B

K V

- -

- -

K V

- -

- -

Host 1

Host 2

K V

- -

- -

K V

6 A

- -

Host 1

Host 2

K V

- -

- -

K V

6 A

11 B

Host 1

Host 2

K V

- -

6 A

K V

- -

11 B

Host 1

Host 2

10

Sharded Hash Table
- 6->A 6->A

11->B
6->A
11->B

K V

- -

- -

K V

- -

- -

Host 1

Host 2

K V

- -

- -

K V

6 A

- -

Host 1

Host 2

K V

- -

- -

K V

6 A

11 B

Host 1

Host 2

K V

- -

6 A

K V

- -

11 B

Host 1

Host 2

10

Sharded Hash Table
- 6->A 6->A

11->B
6->A
11->B

K V

- -

- -

K V

- -

- -

Host 1

Host 2

K V

- -

- -

K V

6 A

- -

Host 1

Host 2

K V

- -

- -

K V

6 A

11 B

Host 1

Host 2

K V

- -

6 A

K V

- -

11 B

Host 1

Host 2

10

Sharded Hash Table
- 6->A 6->A

11->B
6->A
11->B

K V

- -

- -

K V

- -

- -

Host 1

Host 2

K V

- -

- -

K V

6 A

- -

Host 1

Host 2

K V

- -

- -

K V

6 A

11 B

Host 1

Host 2

K V

- -

6 A

K V

- -

11 B

Host 1

Host 2

10

Sharded Hash Table
- 6->A 6->A

11->B
6->A
11->B

K V

- -

- -

K V

- -

- -

Host 1

Host 2

K V

- -

- -

K V

6 A

- -

Host 1

Host 2

K V

- -

- -

K V

6 A

11 B

Host 1

Host 2

K V

- -

6 A

K V

- -

11 B

Host 1

Host 2

10

Induction

11

Induction

11

Base

Induction

11

Base

Induction

11

Base v

Induction

11

Base v v’

Induction

11

Base v v’

??

Refinement Proof by Induction (Base)

12

Refinement Proof by Induction (Base)

12

Base

Refinement Proof by Induction (Base)
function Abstraction(L:Variables) : H.Variables

12

Base

Refinement Proof by Induction (Base)
function Abstraction(L:Variables) : H.Variables

12

Base

Refinement Proof by Induction (Base)
function Abstraction(L:Variables) : H.Variables
predicate Safe(v:Variables)

12

Base

Refinement Proof by Induction (Base)
function Abstraction(L:Variables) : H.Variables
predicate Safe(v:Variables)

lemma RefinementInit(v:Variables)

12

Base

Refinement Proof by Induction (Base)
function Abstraction(L:Variables) : H.Variables
predicate Safe(v:Variables)

lemma RefinementInit(v:Variables)
requires Init(v)

12

Base

Refinement Proof by Induction (Base)
function Abstraction(L:Variables) : H.Variables
predicate Safe(v:Variables)

lemma RefinementInit(v:Variables)
requires Init(v)
ensures Safe(v) // Safe base case

12

Base

Refinement Proof by Induction (Base)
function Abstraction(L:Variables) : H.Variables
predicate Safe(v:Variables)

lemma RefinementInit(v:Variables)
requires Init(v)
ensures Safe(v) // Safe base case
ensures MapSpec.Init(Abstraction(v)) // Refinement base case

12

Base

Refinement Proof by Induction (Step)

13

Refinement Proof by Induction (Step)

13

v v’

Refinement Proof by Induction (Step)
lemma RefinementNext(v:Variables, v':Variables)

13

v v’

Refinement Proof by Induction (Step)
lemma RefinementNext(v:Variables, v':Variables)
 requires Next(v, v')

13

v v’

Refinement Proof by Induction (Step)
lemma RefinementNext(v:Variables, v':Variables)
 requires Next(v, v')
 requires Safe(v)

13

v v’

Refinement Proof by Induction (Step)
lemma RefinementNext(v:Variables, v':Variables)
 requires Next(v, v')
 requires Safe(v)
 ensures Safe(v’) // Safe inductive step

13

v v’

Refinement Proof by Induction (Step)
lemma RefinementNext(v:Variables, v':Variables)
 requires Next(v, v')
 requires Safe(v)
 ensures Safe(v’) // Safe inductive step
 ensures MapSpec.Next(Abstraction(v), Abstraction(v’))

13

v v’

??

Refinement Proof by Induction (Step)
lemma RefinementNext(v:Variables, v':Variables)
 requires Next(v, v')
 requires Safe(v)
 ensures Safe(v’) // Safe inductive step
 ensures MapSpec.Next(Abstraction(v), Abstraction(v’))
 || Abstraction(v) == Abstraction(v')

13

v v’

??

Other implementation subtleties

14

Other implementation subtleties
Subtleties of distributed

protocols

14

Other implementation subtleties
Subtleties of distributed

protocols

Implementation difficulties

14

Other implementation subtleties
Subtleties of distributed

protocols

Implementation difficulties

Maintaining safety invariants

14

Other implementation subtleties
Subtleties of distributed

protocols

Implementation difficulties

Maintaining safety invariants

Concurrent Hosts

14

Other implementation subtleties
Subtleties of distributed

protocols

Implementation difficulties

Maintaining safety invariants

Concurrent Hosts Liveness

14

Other implementation subtleties
Subtleties of distributed

protocols

Implementation difficulties

Maintaining safety invariants

Concurrent Hosts Liveness

Memory management

14

Other implementation subtleties
Subtleties of distributed

protocols

Implementation difficulties

Maintaining safety invariants

Concurrent Hosts Liveness

Efficient Data structures

Memory management

14

Other implementation subtleties
Subtleties of distributed

protocols

Implementation difficulties

Maintaining safety invariants

Concurrent Hosts Liveness

Efficient Data structures

Memory management

Integer overflow

14

Other implementation subtleties
Subtleties of distributed

protocols

Implementation difficulties

Maintaining safety invariants

Concurrent Hosts Liveness

Efficient Data structures

Memory management

Integer overflow

14

Two-level Refinement

15

Two-level Refinement

I0 I1 I2 I3

15

Impl.

Two-level Refinement

P0 P1 P2 P3

I0 I1 I2 I3

15

Impl.

Protocol

Two-level Refinement

P0 P1 P2 P3

I0 I1 I2 I3

15

Impl.

Protocol

Two-level Refinement
S0 S1 S2 S3 S4 S5

P0 P1 P2 P3

I0 I1 I2 I3

15

Impl.

Protocol

Spec.

Two-level Refinement
S0 S1 S2 S3 S4 S5

P0 P1 P2 P3

I0 I1 I2 I3

15

Impl.

Protocol

Spec.

Outline
• Safety
• Parallelism

• Liveness
• Evaluation
• Conclusion

16

Parallelism between hosts

Host A

Host B

Compute

Receive Send
17

Parallelism between hosts

Host A

Host B

Compute

Receive Send
17

Parallelism between hosts

Host A

Host B

Compute

Receive Send
17

Parallelism between hosts

Host A

Host B

Compute

Receive Send
17

Parallelism between hosts

Host A

Host B

Compute

Receive Send

Reasoning about concurrency is extremely difficult.
Enormous number of possible interleaving

17

Enforce all receives precede sends

Host A

Host B

Compute

Receive Send
18

Enforce all receives precede sends

Host A

Host B

Compute

Receive Send
18

❌

Enforce all receives precede sends

Host A

Host B

Compute

Receive Send
18

❌

Enforce all receives precede sends

Host A

Host B

Compute

Receive Send
18

❌

Assume all steps are atomic

Enforce all receives precede sends

Host A

Host B

Compute

Receive Send
18

❌

Assume all steps are atomic

Enforce all receives precede sends

Host A

Host B

Compute

Receive Send
18

❌

Assume all steps are atomic

Why???

Outline
• Safety
• Parallelism

• Liveness
• Evaluation
• Conclusion

19

Liveness

C0 C1 C2 Cn…

20

Liveness

C0 C1 C2 Cn…

Client sends
request

20

Liveness

C0 C1 C2 Cn…

Client sends
request

Replica receives
request

20

Liveness

C0 C1 C2 Cn…

Client sends
request

Replica receives
request

Replica
suspects leader

20

Liveness

C0 C1 C2 Cn…

Client sends
request

Replica receives
request

Replica
suspects leader

Leader
election starts

20

Liveness

C0 C1 C2 Cn…

Client sends
request

Replica receives
request

Replica
suspects leader

Leader
election starts

Client gets a
response

20

Main Event Handler
method Main()
{
var s:ImplState;
s := ImplInit();
while (true) {
s := EventHandler(s);

}
}

21

Main Event Handler
method Main()
{
var s:ImplState;
s := ImplInit();
while (true) {
s := EventHandler(s);

}
}

• Event Handler runs infinitely often

21

Main Event Handler
method Main()
{
var s:ImplState;
s := ImplInit();
while (true) {
s := EventHandler(s);

}
}

• Event Handler runs infinitely often

Action 1

Action 2

Action iAction i+1

Action n

21

Main Event Handler
method Main()
{
var s:ImplState;
s := ImplInit();
while (true) {
s := EventHandler(s);

}
}

• Event Handler runs infinitely often
• Each action runs infinitely often, too

Action 1

Action 2

Action iAction i+1

Action n

21

Outline
• Safety
• Parallelism

• Liveness
• Evaluation
• Conclusion

22

0
2,000
4,000
6,000
8,000

10,000
12,000
14,000
16,000
18,000
20,000

Spec Impl Proof Spec Impl Proof Spec Impl Proof

Safety Liveness

Proof-to-code ratio

Lines of
Code

Common Libraries IronRSL IronKV

23

0
2,000
4,000
6,000
8,000

10,000
12,000
14,000
16,000
18,000
20,000

Spec Impl Proof Spec Impl Proof Spec Impl Proof

Safety Liveness

Proof-to-code ratio

5:1

Lines of
Code

Common Libraries IronRSL IronKV

23

0
2,000
4,000
6,000
8,000

10,000
12,000
14,000
16,000
18,000
20,000

Spec Impl Proof Spec Impl Proof Spec Impl Proof

Safety Liveness

Proof-to-code ratio

5:1

Lines of
Code

Common Libraries IronRSL IronKV

Is 5:1 small??

23

0
2,000
4,000
6,000
8,000

10,000
12,000
14,000
16,000
18,000
20,000

Spec Impl Proof Spec Impl Proof Spec Impl Proof

Safety Liveness

0
2,000
4,000
6,000
8,000

10,000
12,000
14,000
16,000
18,000
20,000

Spec Impl Proof Spec Impl Proof Spec Impl Proof

Safety Liveness

Proof-to-code ratio

5:1

Lines of
Code

Common Libraries IronRSL IronKV

Is 5:1 small??

23

0
2,000
4,000
6,000
8,000

10,000
12,000
14,000
16,000
18,000
20,000

Spec Impl Proof Spec Impl Proof Spec Impl Proof

Safety Liveness

0
2,000
4,000
6,000
8,000

10,000
12,000
14,000
16,000
18,000
20,000

Spec Impl Proof Spec Impl Proof Spec Impl Proof

Safety Liveness

Proof-to-code ratio

5:1

8:1
Lines of
Code

Common Libraries IronRSL IronKV

Is 5:1 small??

23

0
2,000
4,000
6,000
8,000

10,000
12,000
14,000
16,000
18,000
20,000

Spec Impl Proof Spec Impl Proof Spec Impl Proof

Safety Liveness

0
2,000
4,000
6,000
8,000

10,000
12,000
14,000
16,000
18,000
20,000

Spec Impl Proof Spec Impl Proof Spec Impl Proof

Safety Liveness

Proof-to-code ratio

5:1

8:1
Number of spec (unverified) lines of code is small.Lines of

Code

Common Libraries IronRSL IronKV

Is 5:1 small??

23

IronRSL Performance

0
5000

10000
15000
20000
25000
30000
35000
40000
45000

With Batching Without Batching

IronRSL Baseline (EPaxos)

Maximum

throughput (RPS)

24

IronRSL Performance

0
5000

10000
15000
20000
25000
30000
35000
40000
45000

With Batching Without Batching

IronRSL Baseline (EPaxos)

Maximum

throughput (RPS)
2.4x

24

IronKV Performance

0

10

20

30

40

128B 1KB 8KB 128B 1KB 8KB

IronKV Redis

Peak throughput
(kRPS)

Get Set
25

IronKV Performance

0

10

20

30

40

128B 1KB 8KB 128B 1KB 8KB

IronKV Redis

Peak throughput
(kRPS)

Get Set
25

1.5x

IronKV Performance

0

10

20

30

40

128B 1KB 8KB 128B 1KB 8KB

IronKV Redis

Peak throughput
(kRPS)

Get Set
25

1.5x

2.9x

Conclusion
• First mechanically-checked proof of implementation
• Liveness proof along with safety
• Reasonable proof-to-code ratio
• Comparable performance with state-of-the-art

26

Conclusion
• First mechanically-checked proof of implementation
• Liveness proof along with safety
• Reasonable proof-to-code ratio
• Comparable performance with state-of-the-art

26

Thanks!

