Ironkleet: Proving Practical
Distributed Systems Correct

Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch
Bryan Parno, Michael L. Roberts, Srinath Setty, Brian Zill

Microsoft Research

Presenter: Armin Vakil

Abstract

The Paxos algorithm, when presented in plain English, is very simple.

Abstract

The Paxos algorithm, when presented in plain English, is veryseifiple.

Abstract

Examples of bug disruptions

Twitter’s massive outage may be over, company
says 'no evidence' of hack

The cause is unclear

By Nick Statt | @nickstatt | Oct 15, 2020, 5:58pm EDT

Examples of bug disi

Facebook Explains October 4
Ovutage

P L 4 @ SHARE

October 8, 2021 Technology .
6:13 PM EDT A\ N
p " Facebook apologizes for second Gmail is down for some users, so you can pretend you
outage in a week, services back hever got that email
We're joking. Don't do that. .
up | '
By Stan Schroeder on November 12, 2021 f y O
2 minute read By Subrat Patnaik and Sheila Dang 'q
)
y B @B S8 ¢ Amazon: Here's what caused the major AWS outage last week

the

AWS explains how adding a small amount of capacity to Kinesis servers knocked \als

out dozens of services for hours.

@ in @ f X A

‘ !3 By Liam Tung | November 30, 2020 | Topic: Cloud

N
<
<"
TECH - AMAZON WEB SERVICES

Amazon Web Services dashboard goes temporarily offline

BY CHRIS MORRIS
October 12, 202112:27 PM EDT

Verification to the Rescue

Verification to the Rescue

e Automated proof for correctness

Verification to the Rescue

e Automated proof for correctness

'.i ') "_‘. ”t'}'

Contributions

Contributions

e First mechanically-checked proof of implementation

Te—
T~
==

Contributions

e First mechanically-checked proof of implementation

X Unit-tests ___

T

= =

N\

Contributions

Run once verified

e First mechanically-checked proof of implementation

X Unit-tests ____

= — ———
== T~
= =

Contributions

Run once verified

e First mechanically-checked proof of implementation

e [ronRSL - Replicated state library

X Unit-tests ____

—_— = -
ﬁ/ﬁ-ﬁ‘; | \—,,;
= N

Contributions

Run once verified

e First mechanically-checked proof of implementation
e [ronRSL - Replicated state library
e [ronKV- Sharded Key-Value Store

X Unit-tests ___

—_— = -
ﬁ/ﬁ-ﬁ‘; | \—,,;
= N

Contributions

Run once verified

e First mechanically-checked proof of implementation
e [ronRSL - Replicated state library
e [ronKV- Sharded Key-Value Store

e Liveness prootf along with satety

X Unit-tests ___

—_— = -
ﬁ/ﬁ-ﬁ‘; | \—,,;
= N

Contributions

Run once verified

e First mechanically-checked proof of implementation
e [ronRSL - Replicated state library

e [ronKV- Sharded Key-Value Store

e Liveness prootf along with satety

e Reasonable proof-to-code ratio

X Unit-tests ___

Outline

o Safety

e Parallelism
® |.iveness

e Evaluation

e Conclusion

How verification works?

Implementation

How verification works?

Specification
Implementation

How verification works?

Specification
Implementation

How verification works? e

What about ____
specification? °

Specification ~T———————

Implementation

Example: Hash Table

Example: Hash Table

Example: Hash Table

Example: Hash Table

11

Example: Hash Table

11

11

Example: Hash Table

@

11

11

Example: Hash Table

->A

11

11

Example: Hash Table

->A

6—>A

11->B

11

11

Example: Hash Table

6—>A
11->B

6—>A
11->B
1->C

11 B

Sharded Hash Table

Sharded Hash Table

Sharded Hash Table

Sharded Hash Table

Sharded Hash Table

Sharded Hash Table

Sharded Hash Table

Sharded Hash Table

Sharded Hash Table

6—>A 6—>A
11->B 11->B

Sharded Hash Table

6—>A 6—>A
11->B 11->B

Sharded Hash Table

6—>A
11->B

6—>A
11->B

10

Sharded Hash Table
9

QO

ost 1

ost 2

6—>A 6—>A

o-=A 11->B 11->B

10

Sharded Hash able
9

o—>A 6—>A
GO G
QU QU
———

Host 1 Host 1

QO

10

Host 1

HHHHH

10

Host 1

HHHHH

10

Sharded Hash able
9

S ol

@

HHHHH

10

Induction

11

Induction

6
N

Base

11

Induction

6
o

Base

11

Induction

ction
u

d

In

gé;

!
v
\

Se

a

B

ction
u

d

In

gé

!
v
\

Se

a

B

Refinement Proof by Induction (Base)

12

Refinement Proof by Induction (Base)

&
G

Base

12

Refinement Proof by Induction (Base)

Refinement Proof by Induction (Base)

Refinement Proof by Induction (Base)

?function Abstraction(L:Variables) : H.Variables
predicate Safe(v:Variables)

Refinement Proof by Induction (Base)

?function Abstraction(L:Variables) : H.Variables
predicate Safe(v:Variables)
Elemma RefinementInit(v:Variables)

Refinement Proof by Induction (Base)

function Abstraction(L:Variables) : H.Variables
predicate Safe(v:Variables)

‘lemma RefinementInit (v:Variables)
requires Init (v) |

Refinement Proof by Induction (Base)

function Abstraction(L:Variables) : H.Variables
predicate Safe(v:Variables)

‘lemma RefinementInit (v:Variables)
requires Init (v)
ensures Safe(v) // Safe base case

Refinement Proof by Induction (Base)

function Abstraction(L:Variables) : H.Variables
predicate Safe(v:Variables)

Elemma RefinementInit (v:Variables)
requires Init (v)

ensures Safe(v) // Safe base case
.ensures MapSpec.Init (Abstraction(v)) // Refinement base casy

Refinement Proof by Induction (Step)

13

Refinement Proof by Induction (Step)

i
P EF

Refinement Proof by Induction (Step)

lemma RefinementNext (v:Variables, v':Variables)

Refinement Proof by Induction (Step)

lemma RefinementNext (v:Variables, v':Variables)
requires Next (v, v')

13

Refinement Proof by Induction (Step)

lemma RefinementNext (v:Variables, v':Variables)
requires Next (v, v')
requlires Safe (v)

13

Refinement Proof by Induction (Step)

lemma RefinementNext (v:Variables, v':Variables)
requires Next (v, v')
requlires Safe (v)
ensures Safe(v’) // Safe inductive step

Refinement Proof by Induction (Step)

lemma RefinementNext (v:Variables, v':Variables)
requires Next (v, v')
requlires Safe (v)
ensures Safe(v’) // Safe inductive step
ensures MapSpec.Next (Abstraction(v), Abstraction(v’))

Refinement Proof by Induction (Step)

lemma RefinementNext (v:Variables, v':Variables)
requires Next (v, v')
requlires Safe (v)
ensures Safe(v’) // Safe inductive step
ensures MapSpec.Next (Abstraction(v), Abstraction(v’))

| | Abstraction(v) == Abstraction(v') é(i ?? EO\

A A
I I

Other implementation subtleties

14

Other implementation subtleties

14

Other implementation subtleties

14

Other implementation subtleties

T T ——

14

Other implementation subtleties

Maintaining safety invariants

Concurrent Hosts

14

Other implementation subtleties

Maintaining safety invariants
Concurrent Hosts [L.1veness

14

Other implementation subtleties

Subtleties of distributed

protocols Maintaining safety invariants

Concurrent Hosts [.1veness

Implementation difficulties Memory management

14

Other implementation subtleties

Subtleties of distributed

protocols Maintaining safety invariants

Concurrent Hosts [.1veness

Implementation difficulties Memory management

Efficient Data structures

14

Other implementation subtleties

Subtleties of distributed

protocols Maintaining safety invariants

Concurrent Hosts [.1veness

Implementation difficulties Memory management

Efficient Data structures Integer overtlow

14

Other implementation subtleties

Subtleties of distributed

protocols Maintaining safety invariants

Concurrent Hosts [.1veness

Implementation difficulties Memory management

Efficient Data structures Integer overtlow

14

Two-level Refinement

15

Two-level Refinement

00O

Two-level Refinement

TN

PO

S ——

TN

Pl

S ——

TN

P2

S ——

TN

P3

Protocol

~ ~ ~ ~
000w

Two-level Refinement

TN

PO

S ——

TN

Pl

S ——

TN

P2

S ——

TN

P3

\/

Protocol

o0 6 0~

Two-level Refinement

SO

TN

PO

S1

S ——

S2

S3

TN

Pl

S ——

TN

P2

S4

S ——

SO

TN

P3

\/

Spec.

Protocol

o0 6 0~

Two-level Refinement

SO S1 S2 S3 S4 SO SpeC0

A 4 *

~
~
~
~
~
~
~
~
~
~
~
~
~
~
~§
N

0 |— P17 |— P2 |————————— P33 PrOtOCOl
\/

o0 6 0~

Outline

e Parallelism

16

Parallelism between hosts

Host A

Host B

Compute

17

Parallelism between hosts

Host B

Compute

17

Parallelism between hosts

Host B

Compute

17

Parallelism between hosts

Compute

17

Parallelism between hosts

_— R —— ——

v
Compute [Reasoning about concurrency 1s extremely difficult.

Enormous number of possible interleaving

|

|

\ f
\ 14

17

Enforce all receives precede sends

Compute

18

Enforce all receives precede sends

Compute

18

Enforce all receives precede sends

Compute

18

Enforce all receives precede sends

X

Compute
I (Assume all steps are atomic
N _ —

—_— = — — = == —_— = N e - -

18

Enforce all receives precede sends
X

Host A
Host B
Compute 4 - o
I (Assume all steps are atomic
SN—e ——

18

Enforce all receives precede sends

Host A
Host B
Compute 4
I (Assume all steps are atomic
N - ;H_% ——

18

Outline

® | 1veness

19

Liveness

20

Liveness

Client sends
request

20

Liveness

Client sends
request

Replica receives
request

20

Liveness

Client sends
request

Replica receives
request

Replica
suspects leader

20

Liveness

Client sends
request

Replica receives
request

Replica
suspects leader

[.eader
election starts

20

Liveness

Client sends
request

Replica receives
request

Replica
suspects leader

Client gets a
response

[.eader
election starts

20

Main Event Handler

'method Main ()
 {

var s:ImplState;
s := ImplInit();
while (true) {
s := EventHandler(s) ;

21

Main Event Handler

'method Main ()
 {

var s:ImplState;
s := ImplInit();
while (true) {
s := EventHandler(s) ;

e Event Handler runs infinitely often

21

Main Event Handler

'method Main ()
{

var s:ImplState;
s := ImplInit(),;
while (true) {
s := EventHandler(s) ;

e Event Handler runs infinitely often

21

Main Event Handler

method Main ()
X

var s:ImplState;
s := ImplInit(),;
while (true) {
s := EventHandler(s) ;

e Event Handler runs infinitely often

e Each action runs infinitely often, too

21

Outline

e Evaluation

22

Proof-to-code ratio

[ines of
Code

20,000
18,000
16,000
14,000
12,000
10,000
3,000
6,000
4,000
2,000

I Safety

Spec Impl Proof

Common Libraries

Spec

Impl
IronRSL

Proof

Liveness

Spec

Impl Proof
IronKV

23

Proof-to-code ratio

[ines of
Code

20,000
18,000
16,000
14,000
12,000
10,000
3,000
6,000
4,000
2,000

I Safety

5:1

Spec Impl Proof

Common Libraries

Spec

Impl
IronRSL

Proof

Liveness

Spec

Impl Proof
IronKV

23

Proof-to-code ratio

[ines of
Code

20,000
18,000
16,000
14,000
12,000
10,000
3,000
6,000
4,000
2,000

I Safety

5:1

Spec Impl Proof

Common Libraries

Spec

Impl
IronRSL

Proof

Liveness

Spec

Impl Proof
IronKV

23

Proof-to-code ratio

[ines of
Code

20,000
18,000
16,000
14,000
12,000
10,000
3,000
6,000
4,000
2,000

I Safety

5:1

Spec Impl Proof

Common Libraries

Spec

Impl
IronRSL

Proof

s 5:1 small??

Liveness

——

N ~

Spec

Impl Proof
IronKV

23

Proof-to-code ratio

[ines of
Code

20,000
18,000
16,000
14,000
12,000
10,000
3,000
6,000
4,000
2,000

I Safety

5:1

Spec Impl Proof

Common Libraries

Spec

Impl
IronRSL

Proof

s 5:1 small??

Liveness

N ~

Spec

Impl Proof
IronKV

23

Proof-to-code ratio

I Safety
20,000
18,000 - — ————————
16,000

[.ines of 14,000 |

Code 12,000 ~n_

10,000
3,000
6,000
4,000
2,000

Spec Impl Proof

Common Libraries

Spec

Impl
IronRSL

Proof

e

Spec Impl Proof
IronKV

_—

s 5:1 small2?

23

IronRSL. Performance

Maximum
throughput (RPS)

45000
40000
35000
30000
25000
20000
15000
10000

5000

» IronRSL

Baseline (EPaxos)

With Batching

Without Batching

24

IronRSL. Performance

Maximum
throughput (RPS)

45000
40000
35000
30000
25000
20000
15000
10000

5000

» IronRSL

2.4X

Baseline (EPaxos)

With Batching

Without Batching

24

IronKYV Performance

@ IronKV
40
Peak throughput 30
KRPS
() 50
10

| Redis

0

128B 1KB 8KB

Get

128B 1KB 8KB

Set

25

IronKYV Performance

@ IronKV
40
1.9X I
Peak throughput 30
KRPS
() 50
10

| Redis

0
128B 1KB 8KB

Get

128B 1KB 8KB

Set

25

IronKYV Performance

@ IronKV
40
1.9X I
Peak throughput 50
KRPS
() 50
10

| Redis

0
1288 1KB 8KB

Get

1288 1KB 8KB

Set

25

Conclusion

e First mechanically-checked proof of implementation
e Liveness prootf along with satety
e Reasonable proof-to-code ratio

e Comparable performance with state-of-the-art

260

Conclusion

e First mechanically-checked proof of implementation
e Liveness prootf along with satety
e Reasonable proof-to-code ratio

e Comparable performance with state-of-the-art

Thanks!

260

