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Twitter’s massive outage may be over, company
says 'no evidence' of hack

The cause is unclear

By Nick Statt | @nickstatt | Oct 15, 2020, 5:58pm EDT
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Facebook Explains October 4
Ovutage

P L 4 @ SHARE

October 8, 2021 Technology .
6:13 PM EDT A\ N
p " Facebook apologizes for second Gmail is down for some users, so you can pretend you
outage in a week, services back hever got that email
We're joking. Don't do that. .
up | '
By Stan Schroeder on November 12, 2021 f y O
2 minute read By Subrat Patnaik and Sheila Dang 'q
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y B @B S8 ¢ Amazon: Here's what caused the major AWS outage last week

the

AWS explains how adding a small amount of capacity to Kinesis servers knocked \als

out dozens of services for hours.

@ in @ f X A

‘ !3 By Liam Tung | November 30, 2020 | Topic: Cloud
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TECH - AMAZON WEB SERVICES

Amazon Web Services dashboard goes temporarily offline

BY CHRIS MORRIS
October 12, 202112:27 PM EDT
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Run once verified

e First mechanically-checked proof of implementation
e [ronRSL - Replicated state library

e [ronKV- Sharded Key-Value Store

e Liveness prootf along with satety

e Reasonable proof-to-code ratio

X Unit-tests \___



Outline

o Safety

e Parallelism
® |.iveness

e Evaluation

e Conclusion



How verification works?

Implementation



How verification works?

Specification
Implementation



How verification works?

Specification
Implementation



How verification works? e

What about \____
specification? °

Specification ~T———————

Implementation




Example: Hash Table




Example: Hash Table




Example: Hash Table




Example: Hash Table

11




Example: Hash Table

11

11




Example: Hash Table

@

11

11




Example: Hash Table

->A

11

11




Example: Hash Table

->A

6—>A

11->B

11

11




Example: Hash Table

6—>A
11->B

6—>A
11->B
1->C

11 B




Sharded Hash Table



Sharded Hash Table




Sharded Hash Table




Sharded Hash Table




Sharded Hash Table




Sharded Hash Table




Sharded Hash Table




Sharded Hash Table




Sharded Hash Table

6—>A 6—>A
11->B 11->B




Sharded Hash Table

6—>A 6—>A
11->B 11->B




Sharded Hash Table

6—>A
11->B

6—>A
11->B

10



Sharded Hash Table
9

QO

ost 1

ost 2

6—>A 6—>A

o-=A 11->B 11->B

10



Sharded Hash able
9

o—>A 6—>A
GO G
QU QU
———

Host 1 Host 1




QO

10



Host 1

HHHHH

10



Host 1

HHHHH

10



Sharded Hash able
9

S ol

@

HHHHH

10



Induction

11



Induction

6
N

Base

11



Induction

6
o

Base

11



Induction




ction
u

d

In

gé;

!
v
\

Se

a

B




ction
u

d

In

gé

!
v
\

Se

a

B




Refinement Proof by Induction (Base)

12



Refinement Proof by Induction (Base)

&
G

Base

12



Refinement Proof by Induction (Base)



Refinement Proof by Induction (Base)



Refinement Proof by Induction (Base)

?function Abstraction(L:Variables) : H.Variables
predicate Safe(v:Variables)



Refinement Proof by Induction (Base)

?function Abstraction(L:Variables) : H.Variables
predicate Safe(v:Variables)
Elemma RefinementInit(v:Variables)



Refinement Proof by Induction (Base)

function Abstraction(L:Variables) : H.Variables
predicate Safe(v:Variables)

‘lemma RefinementInit (v:Variables)
requires Init (v) |



Refinement Proof by Induction (Base)

function Abstraction(L:Variables) : H.Variables
predicate Safe(v:Variables)

‘lemma RefinementInit (v:Variables)
requires Init (v)
ensures Safe(v) // Safe base case




Refinement Proof by Induction (Base)

function Abstraction(L:Variables) : H.Variables
predicate Safe(v:Variables)

Elemma RefinementInit (v:Variables)
requires Init (v)

ensures Safe(v) // Safe base case
.ensures MapSpec.Init (Abstraction(v)) // Refinement base casy
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Refinement Proof by Induction (Step)

lemma RefinementNext (v:Variables, v':Variables)
requires Next (v, v')
requlires Safe (v)
ensures Safe(v’) // Safe inductive step
ensures MapSpec.Next (Abstraction(v), Abstraction(v’))

| | Abstraction(v) == Abstraction(v') é( i ?? EO\
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Main Event Handler

method Main ()
X

var s:ImplState;
s := ImplInit(),;
while (true) {
s := EventHandler(s) ;

e Event Handler runs infinitely often

e Each action runs infinitely often, too
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e Reasonable proof-to-code ratio
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