
Hyperledger Fabric: A
Distributed Operating System for

Permissioned Blockchains

Presentation by Ben Manley

What is a Blockchain system?

Untrusting peers holding immutable ledgers of transactions

Data: “ABC”

Hash: f024

Previous Hash:

Data: “Beans”

Hash: 3ae7

Previous Hash:

f024

Data: “Rice”

Hash: fb61

Previous Hash:

3ae7

Public / Permissionless

What is a Blockchain system?

PoW PoW

PoW PoW

PoW

Proof-of-work (PoW)
consensus

Permissioned

ID ID

ID ID

ID

Byzantine-fault tolerant
consensus

Smart Contracts

Programmable transaction logic

Cryptocurrency example:

If (sale went through):

transfer to B

Else:

return to A
Participant A Participant B

Why reinvent the wheel?

Everyone else uses Order-Execute

EECS 591

Lecture 14

EVE

Order-Execute Sucks: Sequential Execution

Limits throughput

Denial-of-Service (DoS) from just a long/infinite smart contract

Ethereum solves with “gas”

(not helpful without a cryptocurrency)

Order-Execute Sucks: Non-Determinism

Operations after
SMR must be
deterministic

Could require
specific
languages

Can’t trust
programmers w/
determinism in
general
languages EECS 591

Lecture 14

EVE

Other Previous Limitations

Confidentiality

Fixed trust model

Hard-coded consensus

No secret smart contract logic, etc.

Applications stuck with BFT’s f out of >3f

Applications stuck with whatever
protocol the blockchain chose

Fabric

Components Transaction Flow Evaluation

Chaincode

Programmable transaction logic (Smart Contracts) with
endorsement policy

Fabric is the first to support standard programming languages
(non-determinism is allowed!)

Fabric is “the first distributed operating system”

Peers

Actions

• Simulating and endorsing transactions

• Gossiping results

• Validating and committing

Components

• Docker for chaincode “simulation”

• Ledger (hash-chained block store) • Key-Value Store (KVS)

key1: (val1, ver1)

key2: (val2, ver2)

…

Chaincode can call
GetState(key)
DelState(key)
PutState(key, val)

Membership Service

Membership Service Provider (MSP)

• Issues credentials

• Maintains identities

• Abstracts general auth

• Can be multiple

At each node:

• Authenticates transactions

• Signs endorsements

MSP

Peers

Clients

Online /
Offline

Offline

Ordering Service

Maintains multiple channels

One logical blockchain each

Separate total order

Reconfig and access control

Batches transactions into blocks

Deterministic

(# transactions, # bytes, timeouts)

Made up of OSNs (Ordering Service Nodes), or orderers

…

Channel

…

Channel

Transaction

Block

Ordering Service

Provides atomic broadcast for ordering transactions (stateless!)

API (invoked by peer):

• broadcast(tx)
Client calls to broadcast transaction after receiving endorsements

• B deliver(s)
Client calls to retrieve block B at sequence number s

key1: (val1, ver1)

key2: (val2, ver2)

…

Ordering Service

Guarantees (informally):

• Agreement: All peers see same B delivered for a given s

• Hash chain integrity: block at s+1 holds hash of block at s

• No skipping: If peer delivers at s, it has already delivered [0, s-1]

• No creation: All tx in a correctly-delivered block B was broadcast

• Validity: If a correct client calls broadcast(tx), every correct peer
eventually delivers a block B containing tx

A Day in the Life of Fabric

Transaction Flow

(for a single
channel)

Phase 1: Execution

Phase 1: Execution

Endorsement policy
specified by chaincode

Example:

Send to P1-P3.

Valid if endorsed by

(P1 AND P2) OR P3.

Proposals

Phase 1: Execution

Proposals

Docker

Endorser simulates
proposal

readset = { (key, ver), … }

writeset = { (key, val), … }

Peer transaction manager

(NO PERSISTING OR
SHARING)

Phase 1: Execution

Proposals

Docker

Endorser simulates
proposal

readset = { (key, ver), … }

writeset = { (key, val), … }

Peer transaction manager

(NO PERSISTING OR
SHARING)

Phase 1: Execution

Proposals

Docker

Endorser simulates
proposal

readset = { (key, ver), … }

writeset = { (key, val), … }

Peer transaction manager

(NO PERSISTING OR
SHARING)

Note: Application chaincodes isolated
from each other and peer

New languages just require new
plugins, peer agnostic to language

Phase 2: Ordering

Phase 2: Ordering

Transaction

Transactions

Hash
Prev. hash

Gossip

Org 1

Org 2
(includes

endorsements)

Ordering Service

Orderers

Consensus

Phase 3: Validation

Phase 3: Validation

1. Endorsement policy evaluation

Validation system chaincode
(VSCC)

2. R/W conflict check

Sequentially for all tx’s in block,
compares readset with KVS

3. Ledger update

Append block, apply writeset to
KVS for valid tx’s, store Steps 1-2

Endorsements fit chaincode policy?
Endorsements fit…?

Endorsements fit…?

1 1 0 1 0 1 1 1 1Valid:

readset matches…?
readset matches current version?

readset matches…?

Invalid tx’s
included in ledger!

Execute-Order-Validate

Active replication

Passive replication

Filling In Some Details

Ledgers tolerate peer crashes.

1. Write block to
persistent ledger

2. Apply writeset of
valid transactions to
versioned KVS

3. Compute and
persist savepoint =
largest successfully-
applied block #

1 0 0 1 0 1 0

savepoint = 2

Configuration is baked into the ledger.

“Genesis”
Config
Block

“Genesis”
Config
Block

Config
Block

(special tx)

Channel 1

Channel 2

• MSP definitions

• Orderer addresses

• Ordering service /
consensus config
(batch size,
timeouts, etc.)

• Ordering API access
rules

• Config modification
rules

Fabric has its own special chaincodes.

System Chaincodes (both customizable)

• Endorsement system chaincode (ESCC)

ESCC(proposal, simulation results) → results, endorsement

• Validation system chaincode (VSCC)

VSCC(tx) → validity bool

Run directly on peer outside of Docker

Applications have independent trust/fault models.

Ordering Service

Orderers

Consensus

Single-node, CFT cluster,
BFT cluster…

Application models are
independent: chaincode
endorsement policy

Evaluating Fabric is difficult.

Performance depends on…

choice of

distributed

application and

transaction size

ordering service

and consensus

implementation

and parameters

network

parameters and

topology

node hardware number of nodes

and channels

network

dynamics

… and more config

parameters

Fabcoin: Bitcoin-Inspired Fabric Coin

UTXO
Unspent

Transaction
Output

(txid_#: (amt, owner))

tx0_0: ($100, Manos)

tx5_2: ($20, Manos)

tx5_3: ($50, Leslie)

Existence = unspent

Delete when spent

Transactions:

• MINT: request = (centralBankID, outputs, sigs)
outputs = coin states to create

• SPEND: request = (inputs, outputs, sigs)
inputs = list of coin states to spend (delete)
outputs = coin states to create

“coin states”

Fabcoin: Bitcoin-Inspired Fabric Coin

Chaincode:
SPEND_request(inputs, outputs, sigs):

verify sigs;

for (input in inputs):

GetState(in) // add to readset

DelState(in) // add to writeset

for (int i = 0; i < outputs.size; ++i):

PutState(txid_i, outputs[i]) // add to writeset

Verification: Check sum(inputs) = sum(outputs), etc.
No need to check double-spending!

Default Experimental Setup

• Fabric v1.1.0-preview

• IBM Cloud (SoftLayer) Data Center

Nodes:

• Dedicated VMs, 1Gbps networking

• 16-vCPU 2GHz dedicated VMs

• Ubuntu, 8GB RAM, SSD local disks

• 3 orderers (all distinct VMs)

• 5 peers (all different orgs, all endorsers)

• 256-bit ECDSA signatures

Experiment 1: Choosing Block Size

Throughput
(tps)

Avg Latency
(ms)

Block Size (MB)

2 MB

MINT/SPEND
latencies

MINT/SPEND
throughput

Experiment 2: Impact of Peer CPU

SPEND only, Validation Phase only (Ordering wasn’t bottleneck)

Throughput
(tps)

Avg Latency
(ms)

vCPUs

Validation and
E2E throughput

VCSS
latency

(verify sigs)

rwcheck and ledger
latency

Experiment 2: Impact of Peer CPU

Conclusion: VSCC is very parallel. Pipeline validation stages, optimize
stable-storage access, parallelize dependency checks.

At peak throughput (3560+ tps SPEND) with 32-vCPU, 2MB blocks:

MINT/SPEND (in ms)

Sub-second
tail E2E (tails
from initial
load / first

blocks)

Ordering
dominates

time

Experiment 3: SSD vs. RAM Disk

RAM disk (tmpfs) on all peers instead of SSD

(only helps ledger phase of validation)

32-vCPU peer sustained ~3870 SPEND tps (+9% vs. SSD)

Experiment 4: Scalability on LAN

20-100 16-vCPU peers in one data center. 10 endorsers, no gossip

Experiment 5: Scalability Over 2 Data Centers

20-90 16-vCPU peers in 2 data centers (Hong Kong & Tokyo)

Ordering service, all 10 endorsers, and clients in Tokyo.

Non-endorsers in HK

Experiments 4/5: Scalability

Non-
endorsing

peer
throughput

(tps)

peers

LAN

2DC

2190
SPEND tps
@ 90 peers
over 2DC

Past 30 peers, orderers’
network saturated

Expected LAN drop from orderer
network saturation, but IBM Cloud
had provisioned higher bandwidth

Experiment 6: Multiple Data Centers

5 data centers (Tokyo, HK, Melbourne, Sydney, Oslo)

20 peers each. Ordering service, 10 endorsers, and clients in Tokyo

Without gossip: 1 peer/org

With gossip: 10 orgs of 10 peers, 2 orgs per data center

Experiment 6: Multiple Data Centers

Sydney had CPU
limitations

Gossiping helps recover some of the tps lost
in transition to more peers / data centers!

Heeere’s Mallory!

Transactions
committed
per second

Wang S. (2019) Performance Evaluation of Hyperledger Fabric with Malicious Behavior. In: Joshi J., Nepal S.,
Zhang Q., Zhang LJ. (eds) Blockchain – ICBC 2019. ICBC 2019. Lecture Notes in Computer Science, vol
11521. Springer, Cham. https://doi.org/10.1007/978-3-030-23404-1_15

Time (s)

This graph is
Fabric v0.6

Execute-Order-
Validate in v1

fixes this
(“performs well
and… immune”)

Infinite-loop
chaincodes:

2 tps

Applications and Use Cases

Foreign exchange netting

Enterprise asset
management

Global cross-currency
payment

Private Fabric channel for each pair of
institutions; blockchain resolves non-

settling trades, data available in ledger

Track hardware asset life-cycle (mfg.,
shipping, receiving, customers)

Process int’l transactions; blockchain
records payments + conditions

endorsed by participants. Fabric
decides settlement method

Conclusion

Fabric is a distributed operating system for permissioned
blockchains.

Key features:

Execute-Order-Verify

Transaction execution separated from consensus

Policy-based endorsement

Thank You!

Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Christidis, Angelo De Caro, David
Enyeart, Christopher Ferris, Gennady Laventman, Yacov Manevich, Srinivasan Muralidharan, Chet Murthy, Binh
Nguyen, Manish Sethi, Gari Singh, Keith Smith, Alessandro Sorniotti, Chrysoula Stathakopoulou, Marko Vukolić,

Sharon Weed Cocco, and Jason Yellick. 2018. Hyperledger Fabric: A Distributed Operating System for
Permissioned Blockchains . In EuroSys ’18: Thirteenth EuroSys Conference 2018, April 23–26, 2018, Porto,

Portugal. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/3190508.319053

