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What is GFS?

* Ascalable, fault-tolerant distributed file system



Before designing...

* Assumptions

* The system is built from many inexpensive commodity
components (component failures are the norm)

* Files are huge

* Files are write-once, mostly appended to

* Large streaming reads

* High sustained bandwidth is more important than low latency




Regular file system
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Larger files

Disk » Advantage
e Reduce clients’

interaction with

ceesoininn | e Files are divided into fixed-size chunks

e * Size per chunk: 64MB = 65,536 blocks

Chunia? > dikoffe * Immutable and globally unique 64-bit chunk handle
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* Store chunks on local disks as Linux files
e Read or write chunk data specified by a chunk

handle and byte range
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Checksum

Chunk12 * 1 block = 64KB
* 1 checksum = 32bit
Plock® metadata * Check checksum when
Plockd plockl - checksumn reading
Block2 Block2 -> checksum
Block3
Block4
Block5
Block6

Block7



Operation log

* Used if master crashes
* Checkpointed regularly
* Rebooted master replays log



Architecture
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Interactions for a simple read
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Interactions for a simple read
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Interactions for a simple read
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Interactions for a simple read
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Interactions for a simple read
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Interactions for a simple read
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Interactions for a simple read
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Leases and Mutation Order

* Mutation: An operation that changes the contents or
metadata of a chunk (e.g., write or an append operation)

 Master grants a chunk lease to one replica (called primary)

* Primary picks a serial order for all mutations to the chunk



Interactions for a simple write
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Interactions for a simple write
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Interactions for a simple write
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Interactions for a simple write
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Interactions for a simple write
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Interactions for a simple write
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Interactions for a simple write
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Atomic Record Appends

* The client specifies only the data
e Similar to writes
* GFS appends data to the file at least once atomically



Consistency model

* Consistent: If all clients will always see the same data,
regardless of which replicas they read from.

e Defined after a file data mutation: If it is consistent and
clients will see what the mutation writes in its entirety.

Write Record Append
Serial defined defined
success interspersed with
Concurrent | consistent inconsistent
SUCCESSES but undefined
Failure inconsistent

Table 1: File Region State After Mutation



Shapshot

Objective: To quickly create branch copies of huge data sets

Process

m Revoke all leases on the chunks in the files

m Duplicate the metadata pointing to the same chunks as the
source files

m A new chunk is created due to the modification of either files
m Modify the metadata



Master’s Responsibilities

* Metadata storage
* Namespace management/locking



Namespace Management and Locking

* A lookup table mapping full pathnames to metadata

* Use locks over regions of the namespace to ensure
proper serialization

* Each master operation acquires a set of locks before it
runs



How this locking mechanism can prevent a file

/home/user/foo from being created while
/home/user is being snap shotted to /save/user

Read locks Write locks
Snapshot /home
operation [save /[saveluser

Creation ‘home /home/user/foo
operation



Master’s Responsibilities

* Metadata storage
* Namespace management/locking
* Heartbeat with chunkservers

* Chunk creation
* Chunkservers with below-average disk space utilization
* Limit the number of “recent” creations on each chunkserver
e Spread replicas of a chunk across racks



Replica Placement

* Maximize data reliability and availability
* Maximize network bandwidth utilization
e Default: 3 replicas (2+1)



Master

Replica Placement -

Chunk03 -> CS3, CS5, CS4
Chunk26 -> CSS, CS7, CS6
Chunk27 -> CS2, CS4, CS5

ChunkServer3 ChunkServer5 ChunkServer4

e

Chunk03 Chunk02 Chunk31

Chunk12 Chunk13 Chunk34

Chunk11 Chunk46 Chunk44

Chunk19 Chunk89 Chunk03

Chunk08 Chunk03 Chunk22

Chunk07 Chunk09 Chunk09




Master’s Responsibilities

* Metadata storage
* Namespace management/locking
* Heartbeat with chunkservers

* Chunk creation
* Chunkservers with below-average disk space utilization
* Limit the number of “recent” creations on each chunkserver
e Spread replicas of a chunk across racks

* Re-replication

* Rebalancing



Fault Tolerance

* High availability
* Fast recovery
* Master and chunks server can restart in a few seconds
* Chunk replication
* Shadow master
* Provide read-only access to the file system even when the
primary master is down
* Data Integrity
* Checksum



Conclusion

* Fault tolerance + High aggregate throughput

* Widely used

* HDFS - corresponding open-source classic implementation
of GFS



Thanks!



