
The Google File System
Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung

Google∗

Presenter: Xinyi Ye
November 17, 2021

What is GFS?

• A scalable, fault-tolerant distributed file system

Before designing…

•Assumptions
• The system is built from many inexpensive commodity

components (component failures are the norm)
• Files are huge
• Files are write-once, mostly appended to
• Large streaming reads
• High sustained bandwidth is more important than low latency

Regular file system

Larger files
• Advantage

• Reduce clients’
interaction with
master

• Reduce network
overhead

• Reduce size of the
metadata stored on
the master

• Files are divided into fixed-size chunks
• Size per chunk: 64MB = 65,536 blocks
• Immutable and globally unique 64-bit chunk handle

• Maintains all file system metadata
• Namespace
• File names + chunk IDs + chunk locations
• Access control details

GFS

GFS

• Store chunks on local disks as Linux files
• Read or write chunk data specified by a chunk

handle and byte range

Checksum
• 1 block = 64KB
• 1 checksum = 32bit
• Check checksum when

reading

Operation log

• Used if master crashes
• Checkpointed regularly
• Rebooted master replays log

• Link into each application
• Implement the file system API
• Communicate with the master and chunkservers

to read or write data on behalf of the application

Architecture

Interactions for a simple read

1. Translate file name and byte offset
into a chunk index within the file
Send request to the master

Interactions for a simple read

2. The master replies with the
corresponding chunk handle and
locations of the replicas.

Interactions for a simple read

3. The client caches this
information using the file name
and chunk index as the key.

Interactions for a simple read

4. Request data from nearest chunkserver

Interactions for a simple read

5. Return the data

Interactions for a simple read

Further reads of the same chunk
require no more client-master
interaction until the cached
information expires or the file is
reopened.

Interactions for a simple read
Metadata only

Data only

• Mutation: An operation that changes the contents or
metadata of a chunk (e.g., write or an append operation)

• Master grants a chunk lease to one replica (called primary)
• Primary picks a serial order for all mutations to the chunk

Leases and Mutation Order

Interactions for a simple write

1. Ask the master whether
chunkserver holding the current
lease for the chunk

Interactions for a simple write

2. Return (a) chunkserver holding
the current lease for the chunk
(b) locations of the other replicas

Interactions for a simple write

3. Each chunkserver will store the
data in an internal LRU buffer
cache

Interactions for a simple write

4. The client sends a write request to
the primary
The primary assigns consecutive serial
numbers to all the mutations

Interactions for a simple write

5. Forward the write
request to all secondary
replicas

Interactions for a simple write

6. Reply to the primary
indicating completing

Interactions for a simple write

7. Reply to the client

• The client specifies only the data
• Similar to writes
• GFS appends data to the file at least once atomically

Atomic Record Appends

Consistency model
• Consistent: If all clients will always see the same data,

regardless of which replicas they read from.
• Defined after a file data mutation: If it is consistent and

clients will see what the mutation writes in its entirety.

Snapshot

Objective: To quickly create branch copies of huge data sets

Process
■ Revoke all leases on the chunks in the files
■ Duplicate the metadata pointing to the same chunks as the

source files
■ A new chunk is created due to the modification of either files
■ Modify the metadata

Master’s Responsibilities
• Metadata storage
• Namespace management/locking

Namespace Management and Locking

•A lookup table mapping full pathnames to metadata
•Use locks over regions of the namespace to ensure

proper serialization
• Each master operation acquires a set of locks before it

runs

• How this locking mechanism can prevent a file
/home/user/foo from being created while
/home/user is being snap shotted to /save/user

Master’s Responsibilities
• Metadata storage
• Namespace management/locking
• Heartbeat with chunkservers
• Chunk creation

• Chunkservers with below-average disk space utilization
• Limit the number of “recent” creations on each chunkserver
• Spread replicas of a chunk across racks

• Maximize data reliability and availability
• Maximize network bandwidth utilization
• Default: 3 replicas (2+1)

Replica Placement

Data Center A Data Center B

Replica Placement

Master’s Responsibilities
• Metadata storage
• Namespace management/locking
• Heartbeat with chunkservers
• Chunk creation

• Chunkservers with below-average disk space utilization
• Limit the number of “recent” creations on each chunkserver
• Spread replicas of a chunk across racks

• Re-replication
• Rebalancing

Fault Tolerance
• High availability

• Fast recovery
• Master and chunks server can restart in a few seconds

• Chunk replication
• Shadow master

• Provide read-only access to the file system even when the
primary master is down

• Data Integrity
• Checksum

Conclusion

• Fault tolerance + High aggregate throughput
• Widely used

• HDFS - corresponding open-source classic implementation
of GFS

Thanks!

