The Google File System

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung
Googlex

Presenter: Xinyi Ye
November 17, 2021

What is GFS?

* Ascalable, fault-tolerant distributed file system

Before designing...

* Assumptions

* The system is built from many inexpensive commodity
components (component failures are the norm)

* Files are huge

* Files are write-once, mostly appended to

* Large streaming reads

* High sustained bandwidth is more important than low latency

Regular file system

Metadata

Disk

fileInfo
Name=sangpo.mp4
CreatedTime=201508041442
Size=2044723

index
Block23 -> diskOffset
Block24 -> diskOffset
Block25 -> diskOffset
Block26 -> diskOffset

PRI

Blocks

Block23

Block24

Block25

Block26

Block27

Block28

Block29

Larger files

Disk » Advantage
e Reduce clients’

interaction with

ceesoininn | e Files are divided into fixed-size chunks

e * Size per chunk: 64MB = 65,536 blocks

Chunia? > dikoffe * Immutable and globally unique 64-bit chunk handle

Chunk29 -> diskOffset e ‘-’]e

metadata stored on

the master

G FS ChunkServer3 Master ChunkServer5

Chunk03 -> disk(

cui-asd @ Maintains all file system metadata

Chunk12 -> disk(

Chunk19 -> disk(° Namespace

Chunk09 -> disk(
Chunk11 -> disk(

Chunk0? > ekt * File names + chunk IDs + chunk locations
e Access control details

Chunk27 -> CS5
Chunk29 -> CSS

Chunk03 Chunkl2 -> CS3 Chunk31
Chunkl1 -> CS3
Chunk25
Chunk12 Chunk19 -> CS3
Chunk11 Chunk01 -> CS5 Chunk26
Chunk19 | Chunk29
ChunkO08 Chunk27

Chunk07 Chunk01

GFS

ChunkServer3

NG

Master

ChunkServer5

Chunk01 -> diskOffset

* Store chunks on local disks as Linux files
e Read or write chunk data specified by a chunk

handle and byte range

Chunk12 -> diskOffset
Chunk25 -> diskOffset
Chunk27 -> diskOffset
Chunk29 -> diskOffset
Chunk30 -> diskOffset
Chunk31 -> diskOffset

Chunk03

Chunk12

Chunk11l

Chunk19

Chunk08

Chunk07

Chunk07
Chunk27
Chunk29
Chunk12
Chunkl1
Chunk19
Chunk01

> (CS3
> (S5
-> CS5
> (CS3
-> (CS3
> (CS3
> S5

Chunk31l

Chunk25

Chunk26

Chunk29

Chunk27

ChunkO1

Checksum

Chunk12 * 1 block = 64KB
* 1 checksum = 32bit
Plock® metadata * Check checksum when
Plockd plockl - checksumn reading
Block2 Block2 -> checksum
Block3
Block4
Block5
Block6

Block7

Operation log

* Used if master crashes
* Checkpointed regularly
* Rebooted master replays log

Architecture

Application

(file name, chunk index) _

| GFS client |

(chunk handle,
I unk locations)

GFS master

File namespace "

/
4
/
/
/
/
/7
s

!

- /foo/bar

chunk 2ef0

° Lin

K into each application

* Implement the file system API

Legend:
mmm) Data messages

— -

e Communicate with the master and chunkservers nkserver

to read or write data on behalf of the application systm

)

Figure 1: GFS Architecture

Control messages

Interactions for a simple read

Application

GFS client

s 4

(file name, chunk index) | GFS master
File namespace "

- /foo/bar

chunk 2ef0

1. Translate file name and byte offset
into a chunk index within the file

Send request to the master

(chunk handle, byte range) *

Chunkserver state

chunk data

GFS chunkserver

Legend:
mmm) Data messages

——

GFS chunkserver

Linux file system

Linux file system

g

Blg ...

Figure 1: GFS Architecture

Control messages

Interactions for a simple read

Legend:
mmm) Data messages

——

Application (file name, chunk index) | GFS master o~ /foo/bar
GFS client | File namespace " chunk 2ef()
(chunk handle, /
2. The master replies with the
(Server
corresponding chunk handle and
i i erver state
(locations of the replicas.
S — GFS chunkserver

chunk data

Linux file system

By ..

Linux file system

Blg ...

Figure 1: GFS Architecture

Control messages

Interactions for a simple read

Application

(file name, chunk index) _ GFS master

GFS client

4 —(chunk handle,

3. The client caches this

information using the file name
and chunk index as the key.

File namespace "

’
f
‘

- /foo/bar
" | chunk 2ef0

- GFS chunkserver

chunk data

mmm) Data messages

Linux file system Linux file system

gl

..... T3 ...

Figure 1: GFS Architecture

Control messages

Legend:
\//
‘tions to chunkserver T
Chunkserver state
GFS chunkserver

Interactions for a simple read

Application (file name, chunk index) | GFS master o~ /foo/bar
GFS client | File namespace " chunk 2ef()
(chunk handle, /
chunk locations) Legend:
mmm) Data messages
4. Request data from nearest chunkserver ——= Control messages
(chunk handle, byte range) l CHUIESCVERSGIS
GFS chunkserver GFS chunkserver
chunk data : . P
Linux file system Linux file system

By .. Blg ...

Figure 1: GFS Architecture

Interactions for a simple read

Application

GFS client

(file name, chunk index) _ GFS master

d

(chunk handle,
chunk locations)

(chunk handle, byte range)

File namespace "

’
f
‘

- /foo/bar
" | chunk 2ef0

Instructions to chunkserver

Chunkserver state

chunk data
T

GFS chunkserver

Legend:
mmm) Data messages

——

GFS chunkserver

Linux file system

Linux file system

5. Return the data

gl

..... T3 ...

Figure 1: GFS Architecture

Control messages

Interactions for a simple read

Application

(file name, chunk index) _| GFS master »~ [foo/bar
GFS client File namespace ,~ |chunk 2ef0

(chunk handle,
chunk locations)

’
f
‘

Legend:

J\ 4 mmm) Data messages
[; . — Control messages

SEerver

Further reads of the same chunk eerver state

= require no more client-master GFS chunkserver
interaction until the cached Linuxede systemy |
information expires or the file is T ...
reopened.

*hitecture

Interactions for a simple read

Application

GFS client

(file name, chunk index)

(chunk handle, byte range)

(chunk handle,
chunk locations)

GFS master

File namespace "

’
f
1

- /foo/bar

chunk 2ef0

Instructions to chunkserver

Chunkserver state

GFS chunkserver

Legend:
mmm) Data messages

—

GFS chunkserver

Linux file system

Linux file system

O

Bl ...

Figure 1: GFS Architecture

Control messages

Leases and Mutation Order

* Mutation: An operation that changes the contents or
metadata of a chunk (e.g., write or an append operation)

 Master grants a chunk lease to one replica (called primary)

* Primary picks a serial order for all mutations to the chunk

Interactions for a simple write

Master

1. Ask the master whether
chunkserver holding the current

Control

—) Data

4 step 1 _
.| Client 47/¥
Se
Re lease for the chunk
d Primary '
"1 Replica)
Secondary D
ReplicaB f=——

Figure 2: Write Control and Data Flow

Interactions for a simple write

4 step 1 _
.| Client | Master
Secondar 2, Return (a) chunkserver holding
Replica 4
P the current lease for the chunk
1 (b) locations of the other replicas
d Primary [|
. : 5
Replica)
l Legend
6 — Control
Secondary e AT
ReplicaB f=——

Figure 2: Write Control and Data Flow

Interactions for a simple write

4

e

step 1

Client T .
13 2 3. Each chunkserver will store the

data in an internal LRU buffer

Secondary
Replica A

4 CdChe

8]

l

Primary
Replica

l

Control

Secondary
Replica B

6
—) Data

Figure 2: Write Control and Data Flow

Interactions for a simple write

4 pstepl
o] N Master
13

4. The client sends a write request to

Secondary| the primar
Replica A P Y

1 The primary assigns consecutive serial

numbers to all the mutations

d Primary ' 5
"1 Replica)
l Legend:
6 — Control
Secondary e AT

ReplicaB f=——

Figure 2: Write Control and Data Flow

Interactions for a simple write

4

e

Client

step 1

o

[

13

Secondary
Replica A

l

Primary
Replica

l

Secondary
Replica B

Master

2

5. Forward the write
request to all secondary

54 replicas

Legend:

Control

—) Data

Figure 2: Write Control and Data Flow

Interactions for a simple write

4

e

Client

step 1

o

[

13

Secondary
Replica A

l

Primary
Replica

Master

2

l

Secondary
Replica B

\
5

6. Reply to the primary
indicating completing

Control

—) Data

Figure 2: Write Control and Data Flow

Interactions for a simple write

4

e

Client

step 1

[

13

Secondary
Replica A

7. Reply to the client

l

A

Primary
Replica

l

Secondary
Replica B

Master

2

Control

—) Data

Figure 2: Write Control and Data Flow

Atomic Record Appends

* The client specifies only the data
e Similar to writes
* GFS appends data to the file at least once atomically

Consistency model

* Consistent: If all clients will always see the same data,
regardless of which replicas they read from.

e Defined after a file data mutation: If it is consistent and
clients will see what the mutation writes in its entirety.

Write Record Append
Serial defined defined
success interspersed with
Concurrent | consistent inconsistent
SUCCESSES but undefined
Failure inconsistent

Table 1: File Region State After Mutation

Shapshot

Objective: To quickly create branch copies of huge data sets

Process

m Revoke all leases on the chunks in the files

m Duplicate the metadata pointing to the same chunks as the
source files

m A new chunk is created due to the modification of either files
m Modify the metadata

Master’s Responsibilities

* Metadata storage
* Namespace management/locking

Namespace Management and Locking

* A lookup table mapping full pathnames to metadata

* Use locks over regions of the namespace to ensure
proper serialization

* Each master operation acquires a set of locks before it
runs

How this locking mechanism can prevent a file

/home/user/foo from being created while
/home/user is being snap shotted to /save/user

Read locks Write locks
Snapshot /home
operation [save /[saveluser

Creation ‘home /home/user/foo
operation

Master’s Responsibilities

* Metadata storage
* Namespace management/locking
* Heartbeat with chunkservers

* Chunk creation
* Chunkservers with below-average disk space utilization
* Limit the number of “recent” creations on each chunkserver
e Spread replicas of a chunk across racks

Replica Placement

* Maximize data reliability and availability
* Maximize network bandwidth utilization
e Default: 3 replicas (2+1)

Master

Replica Placement -

Chunk03 -> CS3, CS5, CS4
Chunk26 -> CSS, CS7, CS6
Chunk27 -> CS2, CS4, CS5

ChunkServer3 ChunkServer5 ChunkServer4

e

Chunk03 Chunk02 Chunk31

Chunk12 Chunk13 Chunk34

Chunk11 Chunk46 Chunk44

Chunk19 Chunk89 Chunk03

Chunk08 Chunk03 Chunk22

Chunk07 Chunk09 Chunk09

Master’s Responsibilities

* Metadata storage
* Namespace management/locking
* Heartbeat with chunkservers

* Chunk creation
* Chunkservers with below-average disk space utilization
* Limit the number of “recent” creations on each chunkserver
e Spread replicas of a chunk across racks

* Re-replication

* Rebalancing

Fault Tolerance

* High availability
* Fast recovery
* Master and chunks server can restart in a few seconds
* Chunk replication
* Shadow master
* Provide read-only access to the file system even when the
primary master is down
* Data Integrity
* Checksum

Conclusion

* Fault tolerance + High aggregate throughput

* Widely used

* HDFS - corresponding open-source classic implementation
of GFS

Thanks!

