
EECS 591

DISTRIBUTED SYSTEMS

Manos Kapritsos

Fall 2021

PROVING AGREEMENT
To execute propose():

1. Send { : has not
already sent } to all

decide() occurs as follows:

2. for all , do
3. receive from
4.

6. decide min()

round

5. if

Lemma 2

Proof

In every execution, at the end of round ,

 for every correct process and

Agreement follows from Lemma 2,
since min is a deterministic function

Show that if a correct has in its at
the end of round then every correct
process has in its at the end of round
Let be the earliest round is added to the
set of a correct process. Let that process be
If ,then sends in round  
Every correct process receives and adds it 
to its in round
What if ?

By Lemma 1, there exists a sequence of  
distinct processes
Consider processes
 processes; only can be faulty
One of is correct and adds to
its before does it in round

Contradiction!

STATE MACHINE REPLICATION

MODELING FAULTS

Mean Time To Failure/Mean Time To Recover

used mostly for disks

of questionable value in expressing reliability

Threshold: out of

makes condition for correct operation explicit

measures fault-tolerance of the architecture, not
of individual components

Enumerate failure scenarios

A HIERARCHY OF FAILURE MODELS

CrashFail-stop

Send omission Receive omission

General omission

Arbitrary (Byzantine) failures

= benign failures

A HIERARCHY OF FAILURE MODELS

crash

FAULT TOLERANCE: THE PROBLEM

Clients Server

Solution: replicate the server

REPLICATION IN TIME

When a server fails, restart it or replace it

Failures are detected, not masked

Lower maintenance, lower availability

Tolerates only benign failures

REPLICATION IN SPACE

Run multiple copies of a server (replicas)

Vote on replica output

Failures are masked

High availability and can tolerate arbitrary failures

but at high cost

THE ENEMY: NON-DETERMINISM

An event is non-deterministic if its output is not
uniquely determined by its input

The problem with non-determinism:

Replication in time: must reproduce the original
outcome of all non-deterministic events

Replication in space: each replica must handle non-
deterministic events identically

THE SOLUTION: STATE MACHINES

Design the server as a deterministic state machine

1 3

4

2

a

b

c d

e
f

THE SOLUTION: STATE MACHINES

State machine example: a switch

off on

click

click

Ingredients: a server

1. Make server deterministic (state machine)

2. Replicate server

3. Ensure that all replicas go through the same

sequence of state transitions

STATE MACHINE REPLICATION

=

x=1

x=2

4. Vote on replica outputs

Ingredients: a server

1. Make server deterministic (state machine)

2. Replicate server

3. Ensure that all replicas go through the same

sequence of state transitions

STATE MACHINE REPLICATION

x=1

x=2

4. Vote on replica outputs

All state machines receive all
commands in the same order

non-faulty

Ingredients: a server

1. Make server deterministic (state machine)

2. Replicate server

3. Ensure that all replicas go through the same

sequence of state transitions

STATE MACHINE REPLICATION

4. Vote on replica outputs

Ingredients: a server

1. Make server deterministic (state machine)

2. Replicate server

3. Ensure that all replicas go through the same

sequence of state transitions

STATE MACHINE REPLICATION

4. Vote on replica outputs

…

EVIL LORENZO!

1. Evil Lorenzo Speaks French
2. And was born in Corsica
3. Went to Dartmouth instead of Cornell
4. Rides a Ducati instead of a Moto Guzzi
5. Still listens opera, but doesn’t care for Puccini
5. Evil Lorenzo thinks that 2f+1 is good enough

When in trouble,

cheat!

Voter and client share fate!

4. Vote on replica outputs

ADMINISTRIVIA
Send me your paper preferences by tonight

Send me your group declaration preferences by Oct 1

Homework #2 will be released on Wednesday

due Monday, Oct 11, before class

Implementation project will be out next Monday

due Monday October 25, by end of day

Maximum team size: 2

Research project topics due next Friday, Oct 8

PRIMARY-BACKUP

THE MODEL

Failure model: crash

Network model: synchrony

All messages are delivered within time
Reliable, FIFO channels

Tolerates crash failures

THE IDEA

Clients communicate with a single replica (primary)

Primary:

sequences and processes clients’ requests

updates other replicas (backups)

Backups use timeouts to detect failure of primary

On primary failure, a backup becomes the new primary

A SIMPLE PRIMARY-BACKUP PROTOCOL

request reply new primary

Passive replication: sync = state update
Active replication: sync = client request(s)

A SIMPLE PRIMARY-BACKUP PROTOCOL

request reply

sync

new primary

Passive replication: sync = state update
Active replication: sync = client request(s)

WEAKENING THE MODEL

Failure model: crash

Network model: synchrony

Unreliable, FIFO channels
Channels may drop messages
All messages are delivered within time

(looks paradoxical)

Tolerates crash failures

A SLIGHTLY DIFFERENT PRIMARY-BACKUP PROTOCOL

request reply

sync

new primary

ack

