
EECS 591

DISTRIBUTED SYSTEMS

Manos Kapritsos

Fall 2021


Slides by: Lorenzo Alvisi



When all Ack’s have been received:

                       := Commit
     send Commit to all

I. sends VOTE-REQ to all participants
  Coordinator       Participant     

2. sends           to Coordinator
if          = No then

                    := Abort

 halt     send Precommit to all

else

                      := Abort 

     send Abort to all who voted Yes


halt

3. if (all votes are Yes) then

4. if received Precommit then

 send Ack

5. collect Ack from all participants

6. When      receives Commit, 

sets                 := Commit and halts

3-PHASE COMMIT



TIMEOUT ACTIONS

Step 2:     is waiting for VOTE-REQ from 
the coordinator


  Coordinator       Participant     

Step 3: Coordinator is waiting for vote 
from participants


Step 4:     is waiting for Precommit

Step 5: Coordinator is waiting for Ack’s


Step 6:     is waiting for Commit



TIMEOUT ACTIONS

Step 2:     is waiting for VOTE-REQ from 
the coordinator


Same as in 2PC

  Coordinator       Participant     

Step 3: Coordinator is waiting for vote 
from participants


Step 4:     is waiting for Precommit

Step 5: Coordinator is waiting for Ack’s


Step 6:     is waiting for Commit



TIMEOUT ACTIONS

Step 2:     is waiting for VOTE-REQ from 
the coordinator


Same as in 2PC

  Coordinator       Participant     

Step 3: Coordinator is waiting for vote 
from participants


Same as in 2PC
Step 4:     is waiting for Precommit

Step 5: Coordinator is waiting for Ack’s


Step 6:     is waiting for Commit



TIMEOUT ACTIONS

Step 2:     is waiting for VOTE-REQ from 
the coordinator


Same as in 2PC

  Coordinator       Participant     

Step 3: Coordinator is waiting for vote 
from participants


Same as in 2PC
Step 4:     is waiting for Precommit

Run termination protocol

Step 5: Coordinator is waiting for Ack’s


Step 6:     is waiting for Commit



TIMEOUT ACTIONS

Step 2:     is waiting for VOTE-REQ from 
the coordinator


Same as in 2PC

  Coordinator       Participant     

Step 3: Coordinator is waiting for vote 
from participants


Same as in 2PC
Step 4:     is waiting for Precommit

Run termination protocol

Step 5: Coordinator is waiting for Ack’s


Coordinator sends Commit Step 6:     is waiting for Commit



TIMEOUT ACTIONS

Step 2:     is waiting for VOTE-REQ from 
the coordinator


Same as in 2PC

  Coordinator       Participant     

Step 3: Coordinator is waiting for vote 
from participants


Same as in 2PC
Step 4:     is waiting for Precommit

Run termination protocol

Step 5: Coordinator is waiting for Ack’s


Coordinator sends Commit Step 6:     is waiting for Commit

Run termination protocol



TIMEOUT ACTIONS

Step 2:     is waiting for VOTE-REQ from 
the coordinator


Same as in 2PC

  Coordinator       Participant     

Step 3: Coordinator is waiting for vote 
from participants


Same as in 2PC
Step 4:     is waiting for Precommit

Run termination protocol

Step 5: Coordinator is waiting for Ack’s


Coordinator sends Commit Step 6:     is waiting for Commit

Run termination protocol

Participant knows what they will receive…
but the NB property can be violated!



TERMINATION PROTOCOL:

PROCESS STATES

At any time while running 3PC, each participant

can be in exactly one of these four states:

Aborted

Uncertain

Pre-committed

Committed

Not voted, voted No, received Abort

Voted Yes but not received Precommit

Received Precommit, not Commit

Received Commit



NOT ALL STATES ARE COMPATIBLE

Aborted

Uncertain

Pre-committed

Committed

Aborted Uncertain Pre-committed Committed



When     times out, it starts an election protocol 
to elect a new coordinator


The new coordinator sends STATE-REQ to all 
processes that participated in the election


The new coordinator collects the states and 
follows a set of termination rules

TERMINATION PROTOCOL



to elect a new coordinator


The new coordinator sends STATE-REQ to all 
processes that participated in the election


The new coordinator collects the states and 
follows a set of termination rules

TERMINATION PROTOCOL

TR1: if some process decided Abort, then

decide Abort
send Abort to all

halt

TR2: if some process decided Commit, then

decide Commit
send Commit to all

halt

TR3: if all processes that reported state are uncertain, then

decide Abort
send Abort to all

halt

TR4: if some process is pre-committed, but none committed, then

send Precommit to uncertain processes

wait for Ack’s

send Commit to all

halt



TERMINATION PROTOCOL AND FAILURES

Processes can fail while executing the termination protocol

if     times out on   , it can just ignore 


if     fails, a new coordinator is elected and the 
protocol is restarted (election protocol to follow)


total failures will need special care



RECOVERING 

If     fails before sending Yes, decide Abort

If     fails after having decided, follow decision

If     fails after voting Yes, but before receiving decision value


    asks other processes for help

3PC is non-blocking:     will receive a response with the 
decision


If     has received Precommit

still needs to ask other processes (cannot just Commit)

No need to log Precommit!
(or is there?)



THE ELECTION PROTOCOL

Processes agree on linear ordering (e.g. by pid)

Each process     maintains a set        of all processes that it    
believes to be operational

When     detects failure of   , it removes     from        and 
chooses smallest     in        to be the new coordinator

If           , then     is the new coordinator

Otherwise,     sends UR-ELECTED to



TOTAL FAILURE

Suppose that     is the first process to recover and 
that     is uncertain. Can     decide Abort?

Some process could have decided Commit after    crashed!

     is blocked until some process     recovers such that either
    can recover independently

    is the last process to fail: then    can simply 
invoke the termination protocol



DETERMINING THE LAST PROCESS TO FAIL

Suppose a set     of processes has recovered
Does     contain the last process to fail?

the last process to fail is in the       set of  
every process

so the last process to fail must be in

    contains the last process to fail if:



ADMINISTRIVIA

I will email you homework #1 later today


Due next Monday 9/27 before class by email to 
Tony and me

Research project


Declare your team by Oct 1st (by email to me) 


Declare your topic by Oct 8th (by email to me)


Not sure what to do? Come talk to me.


