
EECS 591
DISTRIBUTED SYSTEMS

Manos Kapritsos
Fall 2021

What type of properties are the following?

Once you have sent a request to the server,
you will receive a response within 10 seconds

All client requests that are not preceded by an
identical request will be eventually processed.

ATOMIC COMMIT
Preserve data consistency for distributed
transactions in the presence of failures

Setup
one coordinator
a set of participants

Each process has access to a Distributed
Transaction Log (DT Log) on stable storage
Each process has an input value

Each process has an output value

AC SPECIFICATION

AC-1: All processes that reach a decision reach the same one
AC-2: A process cannot reverse its decision after it has
reached one
AC-3: The Commit decision can only be reached if all
processes vote Yes

AC-4: If there are no failures and all processes vote Yes, then
the decision must be Commit

AC-5: If all failures are repaired and there are no more
failures, then all processes will eventually decide

COMMENTS
AC-1: All processes that reach a
decision reach the same one
AC-2: A process cannot reverse its
decision after it has reached one
AC-3: The Commit decision can
only be reached if all processes vote
Yes
AC-4: If there are no failures and all
processes vote Yes, then the
decision will be Commit
AC-5: If all failures are repaired and
there are no more failures, then all
processes will eventually decide

AC-1:
AC-1 does not require all
processes to reach a decision
It does not even require all
correct processes to reach a
decision

AC-4:
Avoids triviality
Allows Abort even if all
processes have voted Yes

Note:
A process that does not vote
Yes can unilaterally Abort

UNCERTAINTY

A process in uncertain if it has voted Yes but does not
have sufficient information to Commit

While uncertain, a process cannot decide unilaterally

 uncertainty
+ communication failures
——————————
 blocking

INDEPENDENT RECOVERY

Suppose process fails while running Atomic Commit

If, during recovery, can reach a decision without
communicating with other processes, we say that can
independently recover

 total failure (= all processes fail)
 - independent recovery
——————————
 blocking

A FEW CHARACTER-BUILDING FACTS

Proposition 1

Proposition 2

If communication failures or total failures are possible, then
every AC protocol may cause processes to become blocked

No AC protocol can guarantee independent recovery of
failed processes

2-PHASE COMMIT (2PC)

OUR FIRST ATOMIC COMMIT PROTOCOL

The simplest and most popular AC protocol

Important assumption: synchrony

2-PHASE COMMIT
 Coordinator Participant

I. sends VOTE-REQ to all participants

2-PHASE COMMIT
 Coordinator Participant

I. sends VOTE-REQ to all participants

2. sends to Coordinator
if = No then
 := Abort
 halt

 := Commit
 send Commit to all
else
 := Abort
 send Abort to all who voted Yes
halt

2-PHASE COMMIT
 Coordinator Participant

I. sends VOTE-REQ to all participants

2. sends to Coordinator
if = No then
 := Abort
 halt3. if (all votes are Yes) then

 := Commit
 send Commit to all
else
 := Abort
 send Abort to all who voted Yes
halt

2-PHASE COMMIT
 Coordinator Participant

I. sends VOTE-REQ to all participants

2. sends to Coordinator
if = No then
 := Abort
 halt3. if (all votes are Yes) then

4. if received Commit then
 := Commit
 else
 := Abort
 halt

NOTES ON 2PC

Satisfies AC-1 to AC-4
But not AC-5 (at least “as is”)

A process may be waiting for a message that
may never arrive

Use Timeout Actions

No guarantee that a recovered process will
reach a decision consistent with that of
other processes

Processes save protocol state in DT-Log

AC-5: If all failures are repaired and
there are no more failures, then all
processes will eventually decide

TIMEOUT ACTIONS

Step 2: is waiting for VOTE-REQ
from Coordinator

 Coordinator Participant

Step 3: Coordinator is waiting for
vote from participants

Step 4: (who voted Yes) is
waiting for Commit or Abort

TIMEOUT ACTIONS

Step 2: is waiting for VOTE-REQ
from Coordinator

Since it has not cast its vote yet,
can decide Abort and halt

 Coordinator Participant

Step 3: Coordinator is waiting for
vote from participants

Step 4: (who voted Yes) is
waiting for Commit or Abort

TIMEOUT ACTIONS

Step 2: is waiting for VOTE-REQ
from Coordinator

Since it has not cast its vote yet,
can decide Abort and halt

 Coordinator Participant

Step 3: Coordinator is waiting for
vote from participants

Coordinator can decide Abort,
send Abort to all participants who
voted Yes, and halt

Step 4: (who voted Yes) is
waiting for Commit or Abort

TIMEOUT ACTIONS

Step 2: is waiting for VOTE-REQ
from Coordinator

Since it has not cast its vote yet,
can decide Abort and halt

 Coordinator Participant

Step 3: Coordinator is waiting for
vote from participants

Coordinator can decide Abort,
send Abort to all participants who
voted Yes, and halt

Step 4: (who voted Yes) is
waiting for Commit or Abort

 cannot decide: it must run a
termination protocol

TERMINATION PROTOCOLS

A. Wait for coordinator to recover
it always works, since the coordinator is
never uncertain
may block recovering process unnecessarily

B. Ask other participants

COOPERATIVE TERMINATION

Coordinator appends list of participants to VOTE-REQ
When an uncertain process times out, it sends a
DECISION-REQ message to every other participant
if has decided, it sends its decision to , which acts
accordingly
if has not yet voted, it decides Abort and sends
Abort to
What if is uncertain?

LOGGING ACTIONS

When sends VOTE-REQ, it writes START-2PC to its DT Log
When is ready to vote Yes,

 writes Yes to DT Log, along with a list of participants
 sends Yes to

When is ready to vote No, it writes Abort to its DT Log
When is ready to Commit, it writes Commit to its DT Log
before sending Commit to participants
When is ready to decide Abort, it writes Abort to its DT Log
After receives a decision value, it writes it to its DT Log

 recovers

if DT Log contains START-2PC, then
if DT Log contains a decision value, decide accordingly
else, decide Abort

otherwise, is a participant
if DT Log contains a decision value, decide accordingly
else if it does not contain a Yes vote, decide Abort
else (Yes but no decision) run a termination protocol

2PC AND BLOCKING

Blocking occurs whenever the progress of a
process depends on the repairing of failures

No AC protocol is non-blocking in the
presence of communication or total failures

But 2PC can block even with non-total failures
and with no communication failures among
operating processes!

Enter 3PC!

ADMINISTRIVIA

Problem set #1 will be released on Monday
Due Monday 9/27 before class, by email to Tony and me
Individual work only

No collaboration with classmates

No looking up solutions online

No handwritten-and-scanned answers

Take a look at list of papers we will read in part 2
Start thinking about what you want to do

BLOCKING AND UNCERTAINTY

Why does uncertainty lead to blocking?

An uncertain process does not know whether it can
safely decide Commit or Abort, because some of the
processes it cannot reach could have decided either

Non-blocking property
If any operational process is uncertain, then no
process has decided Commit

2PC REVISITED

U

A

VOTE-REQ
Yes

VOTE-REQ
No

C

ABORT

COMMIT

In U, both A and C
are reachable

2PC REVISITED

U

A

VOTE-REQ
Yes

VOTE-REQ
No

C

ABORT

COMMIT
In U, both A and C

are reachable

2PC REVISITED

U

A

VOTE-REQ
Yes

VOTE-REQ
No

C

ABORT

COMMIT

In PC, a process
knows that it will

Commit unless it fails PC FS

3-PHASE COMMIT (3PC)
Important assumption: synchrony

For most of our discussion, we’ll only consider
non-total failures. Total failures will require
special care.

I. sends VOTE-REQ to all participants
 Coordinator Participant

3-PHASE COMMIT

I. sends VOTE-REQ to all participants
 Coordinator Participant

2. sends to Coordinator
if = No then
 := Abort

 halt

3-PHASE COMMIT

I. sends VOTE-REQ to all participants
 Coordinator Participant

2. sends to Coordinator
if = No then
 := Abort

 halt send Precommit to all
else
 := Abort
 send Abort to all who voted Yes

halt

3. if (all votes are Yes) then

3-PHASE COMMIT

I. sends VOTE-REQ to all participants
 Coordinator Participant

2. sends to Coordinator
if = No then
 := Abort

 halt send Precommit to all
else
 := Abort
 send Abort to all who voted Yes

halt

3. if (all votes are Yes) then

4. if received Precommit then
 send Ack

3-PHASE COMMIT

When all Ack’s have been received:
 := Commit
 send Commit to all

I. sends VOTE-REQ to all participants
 Coordinator Participant

2. sends to Coordinator
if = No then
 := Abort

 halt send Precommit to all
else
 := Abort
 send Abort to all who voted Yes

halt

3. if (all votes are Yes) then

4. if received Precommit then
 send Ack

5. collect Ack from all participants

3-PHASE COMMIT

When all Ack’s have been received:
 := Commit
 send Commit to all

I. sends VOTE-REQ to all participants
 Coordinator Participant

2. sends to Coordinator
if = No then
 := Abort

 halt send Precommit to all
else
 := Abort
 send Abort to all who voted Yes

halt

3. if (all votes are Yes) then

4. if received Precommit then
 send Ack

5. collect Ack from all participants

6. When receives Commit,
sets := Commit and halts

3-PHASE COMMIT

When all Ack’s have been received:
 := Commit
 send Commit to all

 Coordinator Participant
I. sends VOTE-REQ to all participants

2. sends to Coordinator
if = No then
 := Abort
halt send Precommit to all

else
 := Abort
 send Abort to all who voted Yes
halt

3. if (all votes are Yes) then

4. if received Precommit then
 send Ack

5. collect Ack from all participants

3-PHASE COMMIT

Some messages are known
before they are sent. So why

are they sent?

6. When receives Commit,
sets := Commit and halts

When all Ack’s have been received:
 := Commit
 send Commit to all

4. if received Precommit then
 send Ack

5. collect Ack from all participants

3-PHASE COMMIT

Some messages are known
before they are sent. So why

are they sent?

They inform the recipient of the
protocol’s progress

When receives Ack from , it
knows that is not uncertain
When receives Commit, it
knows no participant in uncertain,
so it can commit

6. When receives Commit,
sets := Commit and halts

TIMEOUT ACTIONS

Step 2: is waiting for VOTE-REQ from
the coordinator

 Coordinator Participant

Step 3: Coordinator is waiting for vote
from participants

Step 4: is waiting for Precommit

Step 5: Coordinator is waiting for Ack’s

Step 6: is waiting for Commit

TIMEOUT ACTIONS

Step 2: is waiting for VOTE-REQ from
the coordinator

Same as in 2PC

 Coordinator Participant

Step 3: Coordinator is waiting for vote
from participants

Step 4: is waiting for Precommit

Step 5: Coordinator is waiting for Ack’s

Step 6: is waiting for Commit

TIMEOUT ACTIONS

Step 2: is waiting for VOTE-REQ from
the coordinator

Same as in 2PC

 Coordinator Participant

Step 3: Coordinator is waiting for vote
from participants

Same as in 2PC
Step 4: is waiting for Precommit

Step 5: Coordinator is waiting for Ack’s

Step 6: is waiting for Commit

TIMEOUT ACTIONS

Step 2: is waiting for VOTE-REQ from
the coordinator

Same as in 2PC

 Coordinator Participant

Step 3: Coordinator is waiting for vote
from participants

Same as in 2PC
Step 4: is waiting for Precommit

Run termination protocol

Step 5: Coordinator is waiting for Ack’s

Step 6: is waiting for Commit

