FECS 59
DISTRIBUTED SYSTEMS

Manos Kapritsos
Fall 202 |

VECTOR CLOCKS

[0,0,0] ?
o—O0 0 0 0 0 0606 0 0 ¢ @

/SN

@ *o—0 00 o—0
[0,0,0] / ! \

Clients estimation and
precision
Clients best guess: Q(z) =T + D(1 +2p) — min-p

Maximum error: e =D(1+ 2p) — min

You can keep trying, until you
achieve the required precision

(if that precision is reasonable)

Adjusting the clock

After synchronizing:

@ If client simply sets P(z) = Q(z) , it could
create time discontinuities.

H (1) H (i)

(clock (clock
time) / time)

Ralag,

{ (real time) f (real time)

>

H (t)y

(clock
time)

Adjusting the clock

s a4
= 4
LI 4
"

L4
.
.
.
.
.
.
.
24
’
. .
3 .
A ¢
Y,

Logical clock C(t) = H(t) + A(t)

\

Hardware clock Adjustment function

H{ty

(cloc
time)

{ (real time)

{ (real time)

Network Time Protocol

@ The oldest distributed protocol sftill running
on the Internet

® Hierarchical architecture

@ Latency-tolerant, jitter-tolerant, fault-
tolerant.. very tolerant!

Hierarchical structure

Each level is called a “stratum”

@ Stratum O: atomic clocks
@ Stratum 1: time servers with direct
connections to stratum O
@ Stratum 2: Use stratum 1 as time
sources and work as server to stratum 3
@ etc.... 7 TR TN

Accuracy is loosely coupled with stratum
level

Very tolerant. How?

@ Tolerance to jitter, latency, faults:
redundancy

@ Each machine sends NTP requests to many
other servers on the same or the

previous stratum ‘ ‘ ‘ ‘
@ The synchronization protocol between two
machines is similar to Cristians algorithm ‘ ‘ ‘ ‘ ‘

@ Each response defines an interval [T,,T>]

@ How to combine those intervals?

Marzullos algorithm

@ Given M source intervals, find the largest interval
that is contained in the largest number of source

intervals

[8,12] .. 10£2 $ria it
N : 3 :
: : +

[11h13] .. . 12?1 PERR o T
1141 :

[10,12] -------------------------- L — @ e R e
11.510.5?

[11,12] .. ¢ AR e BT

Marzullos algorithm

@ Given M source intervals, find the largest interval
that is contained in the largest number of source

intervals
[8,12] ® 1022 . ..
§ 5
[11h13] .. ° 12;%1 @ - oo - np AN
114,15] ¢ i bie 0l R T g L 4530 2
11.5io.5§
@ .. ' ’ ..

The Intuition

@ Visit the endpoints left-to-right
@ Count how many source intervals are active at each fime

@ Increase count at starting points, decrease at ending points

: 10£2 : : ; : :
T EEEEEEEEREEER] Q : E .O-----------é-------------JE-------------?--
: 5 1241 5
| PRNRCSRr S S T B Rat i D T AR I B T T O O ,
' : 14.540.5;
..... O—O
11.540.5:
-- . ?------------l--------------------------l--

Preprocessing

@ For each source interval [T, T2], create 2 tuples of the
form <time, type>:

o : BB A el
: S o SR 5. o el sl
@ <T1,+1> (start of interval) § § o
... Pl
@ <T2,-1> (end of interval) _ _ | '
i n wm h e d m e S R G gl 205 SESSIEL L RO e e A M
@ Sort all tuples according to time . .| : 1 1 : :
Example:
Source intervals: 2111 151
Tuples: <11,+1> «13,-1>

Sorted: <11,+1> <13,-1>

The algorithm

Notes:

@ count. numbers of “active” intervals

best=0, count=0 @ best best numbers of “active” intervals we have seen

for all tuples<timeli],typelil> 1
count = count + typeli] | @ count=count+type[i] : if its a startpoint (type=+1),

increase count, else decrease it

if(count>best) § @ if(count>best) : if this is the highest number of active
besttcount in’rer[val.;,]we have seen, let the best interval be [timeJi],
. : time[i+1
beststart=timel[i] @ If the next point is a startpoint, it will replace
bestend=time[i+1] this best interval
} ® If the next point is an endpoint, it will end this
} best interval

return [beststart, bestend]

The algorithm at work

Sorted: <11,+1> <13,-1>

Init: best=0, count=0

: count = count + (+1) =1
Is count>best? Yes
best=1, beststart=8, bestend=11

<11,+1> : count = count + (+1) = 2
Is count>best? Yes
best=2, beststart=11, bestend=12
: count = count + (-1) =1
Is count>best? No

<13,-1> : count = count + (-1) = 0
Is count>best? No
: count = count + (+1) =1

Is count>best? No
: count = count + (-1) = O re.l-urn [11/12]

Is count>best? No

NTP timestamps

How to represent time?

"Wednesday September 9th 2020, 16:15:00” ?
"20200909161500EDT” ?

NTP: 64-bit UTC fimestamp

<«— 32 bits >«

32 bits —

offset in seconds I sub-second precision

offset = #seconds since January 1, 1900

Wraps around every 232 seconds = 136 years
First wrap-around: 2036

Solution: 128-bit timestamp. "Enough to provide unambiguous time
representation until the universe goes dim”

ADMINISTRIVIA

o Start forming groups for research project (3 students per
group)

» Jake a look at future content In part |
» | have uploaded a list of papers we will read In part 2

o Start thinking about what you want to do

o Homework assignment # | will be released soon

ATOMIC COMMIT

-Do you take each other?

-| do.

-| do.
-| now pronounce you
atomically committed.

orenzo Alvisi

EVIL LORENZO!

1. Evil Lorenzo Speaks French

2. And was born in Corsica

3. Went to Dartmouth instead of Cornell

4. Rides a Ducati instead of a Moto Guzzi

5. Still listens opera, but doesn’t care for Puccini
5. Evil Lorenzo thinks that 2f+1 is good enough

PROPERTIES

Property: a predicate evaluated over a run of
the program (also called a trace)

Example:
‘every message that Is received was previously sent”

Not everything you may want to say about a program Is
a property:
“the program sends an average of 50 messages In a run”

SAFETY PROP

» "nothing bad happens”

R

o only one process can be In the critical

section at any time

o messages that are delivered are delivered In

causal order

o VWIndows never crashes

» A safety property is “prefix closed':

o If It holds In a run, it holds in every prefix

[IVENESS PROPERTIES

o “'something good eventually happens”

o a process that wishes to enter the critical section
eventually does so

o some message Is eventually delivered
o Windows eventually boots
o Every run can be extended to satisty a liveness property

o If It doesn't hold in a run, that doesn't mean it may
not hold eventually

SAFETY OR LIVENESS!?

VWhenever process A wants to enter
the critical section, then all other

Safet
processes get to enter at most once HEH
before A gets to enter
This program terminates Liveness

It this program eventually sends a

message, It will be a well-formed Safety
HIT TP request

A REALLY COOL THEOREM

Every property is a conjunction of a safety
property and a liveness property

(Alpern & Schneider)

ATOMIC COMMIT: TH

OBJECTIVE

Preserve data consistency for distributed
transactions in the presence of fallures

MODEL

o For each distributed transaction I
e One coordinator
o a set of participants

» Coordinator knows participants; participants
don't necessarily know each other

o [Fach process has access to a Distributed
Transaction Log (DT Log) on stable storage

| HE SETUP

o Fach process p; has an input value vote;
vote; € {Yes, No}

» Each process p; has an output value decision;
decision; € {Commit, Abort}

