
EECS 591

DISTRIBUTED SYSTEMS

Manos Kapritsos

Fall 2021

VECTOR CLOCKS

?[0,0,0]

[0,0,0]

[0,0,0]

Client’s estimation and
precision

Client’s best guess:
Maximum error:

You can keep trying, until you

achieve the required precision

Q(x) = T +D(1 + 2⇢)�min· ⇢

e = D(1 + 2⇢)�min

(if that precision is reasonable)

Adjusting the clock

If client simply sets , it could
create time discontinuities.

After synchronizing:

(clock

time)

(clock

time)

H(t) H(t)

t (real time) t (real time)

P (x) = Q(x)

Adjusting the clock
Logical clock

Hardware clock Adjustment function

(clock

time)

H(t)

t (real time)

(clock

time)

H(t)

t (real time)

C(t) = H(t) +A(t)

Network Time Protocol

The oldest distributed protocol still running
on the Internet

Hierarchical architecture

Latency-tolerant, jitter-tolerant, fault-
tolerant.. very tolerant!

Hierarchical structure
Each level is called a “stratum”

Stratum 0: atomic clocks

Stratum 1: time servers with direct
connections to stratum 0

Stratum 2: Use stratum 1 as time
sources and work as server to stratum 3

etc....

Accuracy is loosely coupled with stratum
level

1

2

3

Very tolerant. How?
Tolerance to jitter, latency, faults:
redundancy

Each machine sends NTP requests to many
other servers on the same or the
previous stratum

The synchronization protocol between two
machines is similar to Cristian’s algorithm

Each response defines an interval [T1,T2]

How to combine those intervals?

1

2

3

Marzullo’s algorithm

8 9 10 11 12 13 14 15

[8,12]

[11,13]

[10,12]

[11,12]

∩

∩

10±2

12±1

11±1

11.5±0.5

Given M source intervals, find the largest interval
that is contained in the largest number of source
intervals

Marzullo’s algorithm
Given M source intervals, find the largest interval
that is contained in the largest number of source
intervals

8 9 10 11 12 13 14 15

[8,12]

[11,13]

[14,15]

∅

∩

∩

10±2

12±1

14.5±0.5

11.5±0.5

The intuition
Visit the endpoints left-to-right

Count how many source intervals are active at each time

Increase count at starting points, decrease at ending points

8 9 10 11 12 13 14 15

10±2

12±1

14.5±0.5

11.5±0.5

Preprocessing
For each source interval [T1,T2], create 2 tuples of the
form <time, type>:

<T1,+1> (start of interval)

<T2,-1> (end of interval)

Sort all tuples according to time
Example:

Source intervals: [8,12], [11,13], [14,15]

Tuples: <8,+1> <12,-1> <11,+1> <13,-1> <14, +1> <15, -1>

Sorted: <8,+1> <11,+1> <12,-1> <13,-1> <14, +1> <15, -1>

8 9 1 1 1 1 1 1

10±2

12±1

14.5±0.5

11.5±0.5

The algorithm
best=0, count=0

for all tuples<time[i],type[i]> {

count = count + type[i]

if(count>best) {

best=count

beststart=time[i]

bestend=time[i+1]

}

}

return [beststart, bestend]

Notes:
count: numbers of “active” intervals

best: best numbers of “active” intervals we have seen

count=count+type[i] : if it’s a startpoint (type=+1),
increase count, else decrease it

if(count>best) : if this is the highest number of active
intervals we have seen, let the best interval be [time[i],
time[i+1]]

If the next point is a startpoint, it will replace
this best interval

If the next point is an endpoint, it will end this
best interval

The algorithm at work
Sorted: <8,+1> <11,+1> <12,-1> <13,-1> <14, +1> <15, -1>

Init: best=0, count=0
<8,+1> : count = count + (+1) = 1

 Is count>best? Yes

 best=1, beststart=8, bestend=11
<11,+1> : count = count + (+1) = 2

 Is count>best? Yes

 best=2, beststart=11, bestend=12
<12,-1> : count = count + (-1) = 1

 Is count>best? No
<13,-1> : count = count + (-1) = 0

 Is count>best? No
<14, +1> : count = count + (+1) = 1

 Is count>best? No
<15, -1 : count = count + (-1) = 0

 Is count>best? No

return [11,12]

8 9 10 11 12 13 14 15

10±2

12±1

14.5±0.5

NTP timestamps
How to represent time?

“Wednesday September 9th 2020, 16:15:00” ?

“20200909161500EDT” ?

NTP: 64-bit UTC timestamp

offset in seconds sub-second precision

32 bits 32 bits

offset = #seconds since January 1, 1900

Wraps around every 232 seconds = 136 years

First wrap-around: 2036
Solution: 128-bit timestamp. “Enough to provide unambiguous time

representation until the universe goes dim”

ADMINISTRIVIA

Start forming groups for research project (3 students per
group)

Take a look at future content in part 1

I have uploaded a list of papers we will read in part 2

Start thinking about what you want to do

Homework assignment #1 will be released soon

ATOMIC COMMIT

-Do you take each other?

-I do.

-I do.

-I now pronounce you

atomically committed.

Slides by

Lorenzo Alvisi

EVIL LORENZO!

1. Evil Lorenzo Speaks French
2. And was born in Corsica
3. Went to Dartmouth instead of Cornell
4. Rides a Ducati instead of a Moto Guzzi
5. Still listens opera, but doesn’t care for Puccini
5. Evil Lorenzo thinks that 2f+1 is good enough

PROPERTIES

Property: a predicate evaluated over a run of
the program (also called a trace)

Example:

“every message that is received was previously sent”

Not everything you may want to say about a program is
a property:

“the program sends an average of 50 messages in a run”

SAFETY PROPERTIES

“nothing bad happens”

only one process can be in the critical
section at any time

messages that are delivered are delivered in
causal order

Windows never crashes

A safety property is “prefix closed”:

if it holds in a run, it holds in every prefix

LIVENESS PROPERTIES

“something good eventually happens”

a process that wishes to enter the critical section
eventually does so

some message is eventually delivered

Windows eventually boots

Every run can be extended to satisfy a liveness property

if it doesn’t hold in a run, that doesn’t mean it may
not hold eventually

Whenever process A wants to enter
the critical section, then all other
processes get to enter at most once
before A gets to enter

SAFETY OR LIVENESS?

Safety

This program terminates

If this program eventually sends a
message, it will be a well-formed
HTTP request

Liveness

Safety

A REALLY COOL THEOREM

Every property is a conjunction of a safety
property and a liveness property

(Alpern & Schneider)

ATOMIC COMMIT: THE OBJECTIVE

Preserve data consistency for distributed

transactions in the presence of failures

MODEL

For each distributed transaction T:

one coordinator

a set of participants

Coordinator knows participants; participants
don’t necessarily know each other

Each process has access to a Distributed
Transaction Log (DT Log) on stable storage

THE SETUP

Each process has an input value

Each process has an output value

