FECS 59
DISTRIBUTED SYSTEMS

Manos Kapritsos
Fall 202 |

IMPLEMENTING STRONG CLOCKS
(the hard way)

{a} {a,b} {a,b,c} {a,b,c,d,e, f}
a b C d

{a\b, e} {a,w
e f g
o @
{Z% \j{a, b, ¢, b, i,)
@ @ @

Strong clock condition: p — g < 0(p) C 0(q)

IMPLEMENTING STRONG CLOCKS
(the hard way)

[4,2,0]
{a’7 b7 c? d7 67 f}
d

Strong clock condition: p — g < 0(p) C 0(q)

VECTOR CLOCKS

Fach process keeps a vector of natural numbers VC,
one for each process

Update rules

It e; 1s a local or send event at process I:
VC(e)[i] :=VC[i]+1 (Update the “local” counter)

It e; Is a receive event of message m:
VC(e;) :=max{VC,VC(m)} (First“max” with the incomingVC...)
VICl(e)li] :=VCli] + 1 (...then update the “local” counter)

VECTOR CLOCKS

[1,0,0] [2,0,0] (3,0,0] [4,2,0]
a b C d
oo P P

\[2,1,0] [2,2,0]

[3,0,3]

[T

VC(ei)lil= number of events executed by process |
that causally precede e;

COMPARING VECTOR CLOCKS

Equality
V=V'=Vk:1<k<n:V[k|=V'[k]
(1e. all elements are the same)

Inequality
V<Vi=VAVIANVE:1<k<n:VI[k] <V'[k])

Examples: 12,0,01 < [2,0,1] < [3,0,1] < [4,1,1]

Strong clock condition: p — ¢ < VC(p) < VC(q)

COMPARING VECTOR CLOCKS

[1,0,0] [2,0,0] [3,0,0] [4,2,0]

Strong clock condition: p — ¢ < VC(p) < VC(q)

CAUSAL DELIVERY

A “monitor’ process wants to record all messages

(e.g. deadlock detection, system snapshot, etc)

o Processes send coples of their messages to the monitor

o Only iIncrement the local component of VC for send events

CAUSAL DELIVERY RULES

Monrtor keeps an array D, where D|i]is the number of

messages delivered from process

Monrtor delivers message m from process 3 when:
Dlj] =V C(m)[j] -1
DIk] =2 VC(m)lk|,Vk 7 j

CAUSAL DELIVERY

monitor “

H (0,0) (1,0) (1,1)

pil=vemii-1 v

DIk >VCm)k,Vk#i X

ADMINISTRIVIA

» Remember to send me your picture if you
haven't already

Clock synchronization

What time is i1?

Roman generals v2.0

Attack at midnight!

[Chaaaaaarge!]

12:00atn T @ | i R3O0

Clock drift

@ Bound on drift: p H ()

; (clock (1 i p)t
(1= p)(t —t i H(L) - BMGs (+ o)(t — ') ey

@ p is typically small (10-¢)

(1= p)t
e p°~0
1
>
B ’
U
! (real time)
o ———=1-p

External vs internal
synchronization

External Clock Synchronization: Internal Clock Synchronization:
keeps clock within some maximum deviation keeps clocks within some maximum deviation
from an external time source. from each other.

® exchange of info about timing events of e can measure duration of distributed
different systems activities that start on one process and

® can take actions at real-time deadlines Términate on another

e can totally order events that occur in a
distributed system

Probabilistic Clock

Synchronization (Cristian)

QI

@ Client-server architecture

@ Server can be connected to
external time source

@ Clients read servers clock and
adjust their own

How accurately can a client
read the servers clock?

Setup and assumptions

Goal: Synchronize the clients clock with the server

t (real time) > >
client P(t) >
server ()(t) >

Assume that minimum delay is known
Assume that clock drifts are known (p for both)

t (real time)

client P(¢)

server Q(t)

The protocol

~
oll
8

Q(z)

Question: what is Q(x)?

Ideal scenario

=)
t (real time) o >
Mn min
Q(z) = T 4 min—> Perfect synchronization!
client P(t) >

server Q(t)

f Z:erin

Assume no clock drift

Problem #1: message delay

> 2d >

<«—min + a—><€— min + f—>

t
¢ \/
Q) e .
; <«minye—— 2d — min —>)ﬁ —2d - 2min
one P(t) >
extreme \/
Q) T Cx) =T F A $
................................... <—2d—mznmn~>6:()
/ >
another P(t) -
extreme
Q1) T - o

Problem #2: client drift

< 2d
<«—min + a—>€— min + f—>
t >
client Pt =

server (Q(t)

i

24(1= p) <D < Dd(] N D)

Problem #3: server drift

< 2d >

€“—min + a—>€— min + f—>
t I=1 /
client P(¢) : L % .
server (1) i >
During=———— the servers clock drifts

Even if you know 3, there is still some uncertainty!

client

server

Cristians algorithm

* 2d - > a, B3>0
«—min + a—><— min + f——> S
t | T >
P(t) >

Q(t)

Cristians algorithm

Naive estimation: Q(z) = T + (min + B)
@ (take servers drift into account)
Qz) € [T+ (min + 5)1 — p), T + (min + B)(1 + p)]
@ 0 <B8<2d— 2min (take delay into account)
Q(x) € [T + (min+0)(1 — p), T + (min+2d — 2min)(1 + p)]

=T + (min)(1 — p), T + (2d — min)(1 + p)]

@ 2d <2D(1 + p) (take client’s drift into account)

Q(x) € [T + (min)(1 —p), T + 2D(1 + p)—min)(1 + p)]
= [T 4+ (min)(1 — p), T + 2D(1 4+ 2p) — min(1l 4 p)]

Clients estimation and
precision
Clients best guess: Q(z) =T + D(1 + 2p) — min- p

Maximum error: e =D(1+4 2p) — min

You can keep trying, until you
achieve the required precision

(if that precision is reasonable)

