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IMPLEMENTING STRONG CLOCKS
(the hard way)
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Strong clock condition: p — g < 0(p) C 0(q)
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VECTOR CLOCKS

Fach process keeps a vector of natural numbers VC,
one for each process

Update rules

It e; 1s a local or send event at process I:
VC(e)[i] :=VC[i]+1  (Update the “local” counter)

It e; Is a receive event of message m:
VC(e;) :=max{VC,VC(m)} (First“max” with the incomingVC...)
VICl(e)li] :=VCli] + 1 (...then update the “local” counter)



VECTOR CLOCKS
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VC(ei)lil= number of events executed by process |
that causally precede e;



COMPARING VECTOR CLOCKS

Equality
V=V'=Vk:1<k<n:V[k|=V'[k]
(1e. all elements are the same)

Inequality
V<Vi=VAVIANVE:1<k<n:VI[k] <V'[k])

Examples: 12,0,01 < [2,0,1] < [3,0,1] < [4,1,1]

Strong clock condition: p — ¢ < VC(p) < VC(q)



COMPARING VECTOR CLOCKS
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CAUSAL DELIVERY

A “monitor’ process wants to record all messages

(e.g. deadlock detection, system snapshot, etc)

o Processes send coples of their messages to the monitor

o Only iIncrement the local component of VC for send events



CAUSAL DELIVERY RULES

Monrtor keeps an array D, where D|i]is the number of

messages delivered from process

Monrtor delivers message m from process 3 when:
Dlj] =V C(m)[j] -1
DIk] =2 VC(m)lk|,Vk 7 j




CAUSAL DELIVERY
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ADMINISTRIVIA

» Remember to send me your picture if you
haven't already



Clock synchronization

What time is i1?



Roman generals v2.0

Attack at midnight!
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Clock drift
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External vs internal
synchronization

External Clock Synchronization: Internal Clock Synchronization:
keeps clock within some maximum deviation keeps clocks within some maximum deviation
from an external time source. from each other.

® exchange of info about timing events of e can measure duration of distributed
different systems activities that start on one process and

® can take actions at real-time deadlines  Términate on another

e can totally order events that occur in a
distributed system



Probabilistic Clock

Synchronization (Cristian)

QI

@ Client-server architecture

@ Server can be connected to
external time source

@ Clients read servers clock and
adjust their own

How accurately can a client
read the servers clock?




Setup and assumptions

Goal: Synchronize the clients clock with the server

t (real time) > >
client P(t) >
server ()(t) >

Assume that minimum delay is known
Assume that clock drifts are known (p for both)



t (real time)

client  P(¢)

server Q(t)

The protocol
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Question: what is Q(x)?



Ideal scenario

=)
t (real time) o >
Mn min
Q(z) = T 4 min—> Perfect synchronization!
client P(t) >

server Q(t)
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Assume no clock drift



Problem #1: message delay
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Problem #2: client drift

< 2d
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Problem #3: server drift

< 2d >

€“—min + a—>€— min + f—>
t I=1 /
client  P(¢) : L % .
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During=———— the servers clock drifts

Even if you know 3, there is still some uncertainty!



client

server

Cristians algorithm
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Cristians algorithm

Naive estimation: Q(z) = T + (min + B)
@ (take servers drift into account)
Qz) € [T+ (min + 5)1 — p), T + (min + B)(1 + p)]
@ 0 <B8<2d— 2min (take delay into account)
Q(x) € [T + (min+0)(1 — p), T + (min+2d — 2min)(1 + p)]

=T + (min)(1 — p), T + (2d — min)(1 + p)]

@ 2d <2D(1 + p) (take client’s drift into account)

Q(x) € [T + (min)(1 —p), T + 2D(1 + p)—min)(1 + p)]
= [T 4+ (min)(1 — p), T + 2D(1 4+ 2p) — min(1l 4 p)]



Clients estimation and
precision
Clients best guess: Q(z) =T + D(1 + 2p) — min- p

Maximum error: e =D(1+4 2p) — min

You can keep trying, until you
achieve the required precision

(if that precision is reasonable)



