EECS 591
Distributed Systems

Manos Kapritsos
Fall 2021
PREVIOUSLY ON DISTRIBUTED SYSTEMS
IMPLEMENTING STRONG CLOCKS

(the hard way)

Strong clock condition: \(p \rightarrow q \iff \theta(p) \subseteq \theta(q) \)
IMPLEMENTING STRONG CLOCKS
(the hard way)

Strong clock condition: \(p \rightarrow q \iff \theta(p) \subseteq \theta(q) \)
Vector clocks

Each process keeps a vector of natural numbers VC, one for each process.

Update rules

If e_i is a local or send event at process i:

$$VC(e_i)[i] := VC[i] + 1$$

(Update the “local” counter)

If e_i is a receive event of message m:

$$VC(e_i) := \max\{VC, VC(m)\}$$

(First “max” with the incoming VC…)

$$VC(e_i)[i] := VC[i] + 1$$

(…then update the “local” counter)
$VC(e_i)[j] = \text{number of events executed by process } j \text{ that causally precede } e_i$
Comparing vector clocks

Equality

\[V = V' \iff \forall k : 1 \leq k \leq n : V[k] = V'[k] \]

(i.e. all elements are the same)

Inequality

\[V < V' \iff (V \neq V') \land (\forall k : 1 \leq k \leq n : V[k] \leq V'[k]) \]

Examples:

\[[2,0,0] < [2,0,1] < [3,0,1] < [4,1,1] \]

Strong clock condition:

\[p \rightarrow q \iff VC(p) < VC(q) \]
Comparing vector clocks

Strong clock condition: \(p \rightarrow q \Leftrightarrow VC(p) < VC(q) \)
CAUSAL DELIVERY

A “monitor” process wants to record all messages (e.g. deadlock detection, system snapshot, etc)

- Processes send copies of their messages to the monitor
- Only increment the local component of V_C for send events
Causal delivery rules

Monitor keeps an array D, where $D[i]$ is the number of messages delivered from process i.

Monitor delivers message m from process j when:

\[
D[j] = VC(m)[j] - 1 \\
D[k] \geq VC(m)[k], \forall k \neq j
\]
Causal delivery

\[
\begin{align*}
D & \\
D[j] &= V(C(m))[j] - 1 \\
D[k] &\geq V(C(m))[k], \forall k \neq j
\end{align*}
\]

<table>
<thead>
<tr>
<th></th>
<th>(0, 0)</th>
<th>(1, 0)</th>
<th>(1, 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>✗</td>
<td></td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>
Remember to send me your picture if you haven’t already
Clock synchronization

What time is it?
Roman generals v2.0

Attack at midnight!

Chaaaaaaarge!

12:00am

11:30pm
Clock drift

- **Bound on drift:** \(\rho \)

\[
(1 - \rho)(t - t') \leq H(t) - H(t') \leq (1 + \rho)(t - t')
\]

- **\(\rho \) is typically small (10\(^{-6}\))**

 - \(\rho^2 \approx 0 \)
 - \[
 \frac{1}{1 - \rho} = 1 + \rho
 \]
 - \[
 \frac{1}{1 + \rho} = 1 - \rho
 \]
External vs internal synchronization

External Clock Synchronization:
keeps clock within some maximum deviation from an external time source.

- exchange of info about timing events of different systems
- can take actions at real-time deadlines

Internal Clock Synchronization:
keeps clocks within some maximum deviation from each other.

- can measure duration of distributed activities that start on one process and terminate on another
- can totally order events that occur in a distributed system
Probabilistic Clock Synchronization (Cristian)

- Client-server architecture
- Server can be connected to external time source
- Clients read server’s clock and adjust their own

How accurately can a client read the server’s clock?
Setup and assumptions

Goal: Synchronize the client’s clock with the server

Assume that clock drifts are known (ρ for both)
Assume that minimum delay is known (real time t)

\begin{align*}
\mathbf{t} \quad \text{(real time)} & \quad \longrightarrow & \quad \text{min} \\
\text{client } P(t) & \quad \longrightarrow \\
\text{server } Q(t) & \quad \longrightarrow
\end{align*}
The protocol

$P(t)$

$Q(t)$

t (real time)

$t = x$

$t = T$

Question: what is $Q(x)$?
Ideal scenario

Assume no clock drift
Problem #1: message delay

\[P(t) \quad \overset{\text{min} + \alpha}{\leftrightarrow} \quad \overset{2d}{\leftrightarrow} \quad \overset{\text{min} + \beta}{\leftrightarrow} \quad Q(t) \]

\[t \quad \overset{\text{min} + \alpha}{\leftrightarrow} \quad \overset{2d}{\leftrightarrow} \quad \overset{\text{min} + \beta}{\leftrightarrow} \quad T \]

One extreme

\[\beta = 2d - 2\text{min} \]

\[Q(x) = T + 2d - \text{min} \]

Another extreme

\[\beta = 0 \]

\[Q(x) = T + \text{min} \]
Problem #2: client drift

\[2d(1 - \rho) \leq 2D \leq 2d(1 + \rho) \]
Problem #3: server drift

During the server’s clock drifts
Even if you know β, there is still some uncertainty!
Cristian's algorithm

\[P(t) \quad 2D \quad Q(t) \]

\[t \quad min + \alpha \quad min + \beta \quad t = x \quad \alpha, \beta \geq 0 \]

\[client \]

\[server \]

"time=?"

"time=T"

\[Q(x) = ? \]
Cristian's algorithm

Naive estimation: \(Q(x) = T + (\min + \beta) \)

(take server's drift into account)

\(Q(x) \in [T + (\min + \beta)(1 - \rho), T + (\min + \beta)(1 + \rho)] \)

0 \leq \beta \leq 2d - 2\min \quad \text{(take delay into account)}

\(Q(x) \in [T + (\min + 0)(1 - \rho), T + (\min + 2d - 2\min)(1 + \rho)] \)

\[= [T + (\min)(1 - \rho), T + (2d - \min)(1 + \rho)]\]

2d \leq 2D(1 + \rho) \quad \text{(take client's drift into account)}

\(Q(x) \in [T + (\min)(1 - \rho), T + 2D(1 + \rho) - \min(1 + \rho)] \)

\[= [T + (\min)(1 - \rho), T + 2D(1 + 2\rho) - \min(1 + \rho)]\]
Client’s estimation and precision

Client’s best guess: \[Q(x) = T + D(1 + 2\rho) - \min\cdot\rho \]

Maximum error: \[e = D(1 + 2\rho) - \min \]

You can keep trying, until you achieve the required precision

(if that precision is reasonable)