
BRINGING ORDER TO THE GALAXY

SYNCHRONY VS ASYNCHRONY

Synchronous systems Asynchronous systems
Known bound on message delivery

Known bound on processing speed

Considered a strong assumption

No bound on message delivery

No bound on processing speed

Weak assumption = less vulnerable

Asynchronous slow

This lecture: asynchronous + no process failures

ORDERING EVENTS IN A DISTRIBUTED SYSTEM

What does it mean for an event to

“happen before” another event?

What is a distributed system?

A collection of distinct processes that:

are spatially separated

communicate with one another by exchanging messages

have non-negligible communication delay

do not share fate
have separate physical clocks

(imperfect, unsynchronized)

Non-distributed system Distributed system

A single clock

Each event has a timestamp

Compare timestamps to

order events

Each process has its own clock

Each clock runs at a different speed

Cannot directly compare clocks

ORDERING EVENTS WITHOUT PHYSICAL CLOCKS

Modeling a process:

A set of instantaneous events with an a priori total ordering

Events can be local, sends, or receives.

ORDERING EVENTS WITHOUT PHYSICAL CLOCKS

“Happened-before” relation, denoted:

If and are events on the same process and comes
before , then

Part 1

ORDERING EVENTS WITHOUT PHYSICAL CLOCKS

“Happened-before” relation, denoted:

If is the sending of a message by one process and is the
receipt of the same message by another process, then

Part 2

ORDERING EVENTS WITHOUT PHYSICAL CLOCKS

“Happened-before” relation, denoted:

If and , then
Part 3

ORDERING EVENTS WITHOUT PHYSICAL CLOCKS

Putting it all together

ORDERING EVENTS WITHOUT PHYSICAL CLOCKS

Can arrows go backwards?

ORDERING EVENTS WITHOUT PHYSICAL CLOCKS

Can cycles be formed?

No, because an event would happen before itself

ORDERING EVENTS WITHOUT PHYSICAL CLOCKS

Are all events related by ?

A PARTIAL ORDER

The set of events such that are the events that

could have influenced in some way

A PARTIAL ORDER

If two events could not have influenced each other, it doesn’t

matter when they happened relatively to each other

 and are concurrent: ,

CAUSAL

Goal: generate a total order that is consistent
with the happened-before partial order

LAMPORT CLOCKS

Define a function LC such that:

(the Clock condition)

LAMPORT CLOCKS

Define a function LC such that:

(the Clock condition)

Implement LC by keeping a local LCi at each process i

LAMPORT CLOCKS

Single process

LAMPORT CLOCKS

Across processes

PUTTING IN ALL TOGETHER

IS THIS CORRECT?

GENERATING A TOTAL ORDER

A

B

C

Order messages by LC

Ties are broken by unique process ID

A

B

C

Lamport clocks implement the Clock condition

But is that all we need?

ADMINISTRIVIA

• Make sure to subscribe to our Piazza forum

• Announcements, discussion, etc.

• At capacity, will issue more overrides as more
people drop

• Remember to send me a selfie of you!

FIFO DELIVERY

FIFO delivery

i

j

FIFO DELIVERY

FIFO delivery

i

j

CAUSAL DELIVERY

When more processes are involved, causal delivery is needed:

i

j

k

GAP DETECTION

p

q

r

Should r deliver ?

Gap detection: Given two events and , where ,
determine whether some other event exists such that

GAP DETECTION
p

q

r

Lamport clocks don’t provide gap detection!

Gap detection: Given two events and , where ,
determine whether some other event exists such that

HOW TO IMPLEMENT CAUSAL DELIVERY?

a) Wait to receive a message with higher LC from each channel

b) Implement better clocks!

(in other words, when is it safe to deliver ?)

FROM CLOCKS TO STRONG CLOCKS

Clock condition

Strong clock condition

CAUSAL HISTORIES

The set of events such that are the events that

could have influenced in some way

IMPLEMENTING STRONG CLOCKS
(the hard way)

Initialize

For send and local events ,

For receive events ,

IMPLEMENTING STRONG CLOCKS
(the hard way)

Strong clock condition:

