
EECS 591

DISTRIBUTED SYSTEMS

Manos Kapritsos

Fall 2021

After collecting a P-Certificate, replica k sends

<COMMIT, v, n, d, k> to all replicasσk

COMMIT

Primary

Replica 1

Replica 2

Replica 3
Pre-prepare phase Prepare phase Commit phase

C CERTIFICATEOMMIT

C-Certificates ensure consistent order of requests across views

Cannot miss a P-Certificate during view change

A replica has a C-Certificate(m,v,n) iff:

it had a P-Certificate(m,v,n)

its log contains matching COMMIT messages from
distinct replicas (including itself)

A replica executes a request when:

it gets a C-Certificate for it

it has executed all requests with smaller sequence numbers

After executing a request, replica k replies

to the client with <REPLY, v, t, c, k, r>σk

REPLY

Primary

Replica 1

Replica 2

Replica 3
Pre-prepare phase Prepare phase Commit phase Reply phase

How many matching requests must the client wait for?

TO ARMS, REPLICAS!!

A disgruntled replica mutinies:

Stops accepting messages (except for VIEW-CHANGE and
NEW-VIEW messages)

sends <VIEW-CHANGE, v+1, P>

P contains all P-Certificates known to replica k

A replica joins mutiny after seeing distinct  
VIEW-CHANGE messages

Mutiny succeeds if the new primary collects a new-view certificate
V, indicating support from distinct replicas (including itself)

σk

two sets and :

if there is a P-certificate for n, m in V, where n ≤ h 
add <PRE-PREPARE, v+1, n, m> to

otherwise, if n ≤ h but there is no P-Certificate 
add <PRE-PREPARE, v+1, n, null> to

σp’

σp’

ON TO VIEW v+1: THE NEW PRIMARY

The “primary-elect” p’ (replica v+1 mod N) extracts from
the new-view certificate V:

the highest sequence number h of any message for
which V contains a P-Certificate P

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
…P P P P P P P P P

h=12

p’ sends <NEW-VIEW, v+1, V, , > to all replicas σp’

ON TO VIEW v+1: THE REPLICA

A replica accepts a NEW-VIEW message for v+1 if
it is signed properly

it contains in V valid VIEW-CHANGE messages for v+1

it can verify locally that is correct (repeating the
primary’s computation)

Adds all entries in to its log (as did p’)

Sends a PREPARE to all replicas for each message in

Adds all PREPARE messages to its log and enters new view

[Mickens	2013]

BFT: A PERSPECTIVE

On the other hand:

Google has used BFT in its datacenters and

so do many blockchain approaches

ADMINISTRIVIA

Research part
Starts on Monday 11/1

You should read both papers and you can
review either one

Midterm
Next Wednesday 10/27, 12-1:20pm, during class

You can use any material listed on the course website

No class on Monday 10/25
Conflict with SOSP

Leslie

Lamport

Barbara

Liskov

Lorenzo

Alvisi

EVE: REPLICATING

MULTITHREADED SERVERS

Kapritsos, Wang, Quema, Clement, Alvisi, Dahlin

birth of most
dependability
techniques

THE ACHILLES’ HEEL OF REPLICATION

time1980 1990 2000 2010
now

1970

Challenge: scale to multithreaded execution

How do we build dependable
multithreaded services?

Answer:

State Machine Replication

Ingredients: a server

1. Make server deterministic (state machine)

2. Replicate server

3. Provide all replicas with the same input

inputinputinput

STATE MACHINE REPLICATION

ServerServerServerServer

Guarantee: correct replicas will
produce the same output

SMR IMPLEMENTATION

123

123 Server

Server

123 Server

Server

Server

Server

Server

Server

Server

Server

Server

Server

Agree

1

2

3

1

2

3

1

2

3

ServerServer

How do we build dependable
multithreaded services?

Server

Server

Server

Server

Server

How do we build dependable
multithreaded services?

Server

Server

Dependability

Performance

Server

Server

Server

Eve (OSDI ’12)

Scaling replication to multithreaded execution

123

123

123

Agree-Execute enforces

sequential execution

SMR requires replica convergence

ExecuteAgree

AgreeVerify

EXECUTE-VERIFY

 First execute...
(multithreaded and without

agreeing on the order)

 ...then verify
(that replicas agree

on the outcome)

Execute

1

2

3

1

2

3

1

2

3

Verify

token

token

token

YES

YES

YES

Server

Server

Server

ON CONVERGENCE

Commit

Commit

Commit

match?

1

2

3

1

2

3

1

2

3

NO

NO

NO

Verify

ON DIVERGENCE

token

token

token

Repair : rollback and re-execute sequentially

Repair

Repair

Server

Server

Server

Repair

 if (converged)

commit

 else

repair divergence

Frequent

Uncommon

1. Make divergence
uncommon

2. Detect divergence
efficiently

3. Repair divergence
efficiently

Eve’s logic at a glance

MAKING DIVERGENCE UNCOMMON

 if (converged)

commit

 else

repair divergence

1

3

2

4

1

3

2

4

token

token

token

1

3

2

4

Server

Server

Server

Idea: identify commutative requests

Mixer: group together commutative requests

• Execute requests within a group in parallel

Mixer is a hint, not an oracle

Transaction Read tables Write tables

getBestSellers item, author, order_line

doCart item shopping_cart_line,
shopping_cart

doBuyConfirm customer, address order_line, item, cc_xacts,
shopping_cart_line

EXAMPLE: TPC-W MIXER

3 frequent transactions of the TPC-W browsing workload

EFFICIENT DIVERGENCE DETECTION

Need to compare application states &
responses frequently

Application
state

Merkle tree}tokentoken

 if (converged)

commit

 else

repair divergence

Copy-on-write

EFFICIENT DIVERGENCE REPAIR

Need to rollback application states after every divergence

Application
state Rollback

 if (converged)

commit

 else

repair divergence

Copy-on-Write

Merkle tree

Mixer

 if (converged)

commit

 else

repair divergence

1. Make divergence
uncommon

2. Detect divergence
efficiently

3. Repair divergence
efficiently

MASKING CONCURRENCY BUGS

1

2

3

1

2

3

1

2

3

token

token

VerifytokenServer

Server

Server

EXECUTE-VERIFY: AN

ARCHITECTURAL CHANGE

Synchronous Asynchronous

Crash failures

Arbitrary failures

CONFIGURATIONS

Asynchronous BFT Synchronous primary-backup
Execution Verification

Tolerates 1 arbitrary fault Tolerates 1 omission fault

Primary

Backup

EVALUATION

What is the performance benefit of Eve

compared to traditional SMR systems?

6.5x 7.5x

Application: H2 Database Engine
Workload: TPC-W (browsing)

Unreplicated

Eve(BFT)

Eve(primary-backup)

Traditional SMR

