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After collecting a P-Certificate, replica k sends 

<COMMIT, v, n, d, k>    to all replicasσk
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C           CERTIFICATEOMMIT

C-Certificates ensure consistent order of requests across views

Cannot miss a P-Certificate during view change

A replica has a C-Certificate(m,v,n) iff:

it had a P-Certificate(m,v,n)

its log contains            matching COMMIT messages from 
distinct replicas (including itself)

A replica executes a request when:

it gets a C-Certificate for it

it has executed all requests with smaller sequence numbers



After executing a request, replica k replies

to the client with <REPLY, v, t, c, k, r>σk

REPLY

Primary

Replica 1

Replica 2

Replica 3
Pre-prepare phase Prepare phase Commit phase Reply phase

How many matching requests must the client wait for?



TO ARMS, REPLICAS!!

A disgruntled replica mutinies:

Stops accepting messages (except for VIEW-CHANGE and 
NEW-VIEW messages)

sends <VIEW-CHANGE, v+1, P>

P contains all P-Certificates known to replica k


A replica joins mutiny after seeing         distinct  
VIEW-CHANGE messages

Mutiny succeeds if the new primary collects a new-view certificate 
V, indicating support from           distinct replicas (including itself)

σk



two sets     and    :

if there is a P-certificate for n, m in V, where n ≤ h 
add <PRE-PREPARE, v+1, n, m>    to 

otherwise, if n ≤ h but there is no P-Certificate 
add <PRE-PREPARE, v+1, n, null>    to

σp’

σp’

ON TO VIEW v+1: THE NEW PRIMARY

The “primary-elect” p’ (replica v+1 mod N) extracts from 
the new-view certificate V:

the highest sequence number h of any message for 
which V contains a P-Certificate P

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
…P P P P P P P P P

h=12

p’ sends <NEW-VIEW, v+1, V,    ,    >    to all replicas σp’



ON TO VIEW v+1: THE REPLICA

A replica accepts a NEW-VIEW message for v+1 if
it is signed properly

it contains in V valid VIEW-CHANGE messages for v+1

it can verify locally that     is correct (repeating the 
primary’s computation)

Adds all entries in     to its log (as did p’)

Sends a PREPARE to all replicas for each message in 

Adds all PREPARE messages to its log and enters new view



[Mickens	2013]

BFT: A PERSPECTIVE

On the other hand:

Google has used BFT in its datacenters and


so do many blockchain approaches



ADMINISTRIVIA

Research part
Starts on Monday 11/1


You should read both papers and you can 
review either one

Midterm
Next Wednesday 10/27, 12-1:20pm, during class


You can use any material listed on the course website

No class on Monday 10/25
Conflict with SOSP
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EVE: REPLICATING 

MULTITHREADED SERVERS

Kapritsos, Wang, Quema, Clement, Alvisi, Dahlin



birth of most 
dependability 
techniques

THE ACHILLES’ HEEL OF REPLICATION

time1980 1990 2000 2010
now

1970

Challenge: scale to multithreaded execution



How do we build dependable 
multithreaded services?

Answer: 

State Machine Replication



Ingredients: a server

1. Make server deterministic (state machine)

2. Replicate server

3. Provide all replicas with the same   input

inputinputinput

STATE MACHINE REPLICATION

ServerServerServerServer

Guarantee: correct replicas will 
produce the same output



SMR IMPLEMENTATION
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How do we build dependable 
multithreaded services?
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Server

How do we build dependable 
multithreaded services?
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Eve (OSDI ’12)

Scaling replication to multithreaded execution
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Agree-Execute enforces

sequential execution

SMR requires replica convergence

ExecuteAgree



AgreeVerify  

EXECUTE-VERIFY

 First execute... 
(multithreaded and without 


agreeing on the order)

 ...then verify 
(that replicas agree 

on the outcome)

Execute
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   if (converged)

commit


   else

repair divergence

Frequent

Uncommon

1. Make divergence 
uncommon

2. Detect divergence 
efficiently

3. Repair divergence 
efficiently

Eve’s logic at a glance



MAKING DIVERGENCE UNCOMMON

   if (converged)

commit


   else

repair divergence
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Idea: identify commutative requests

Mixer: group together commutative requests

• Execute requests within a group in parallel

Mixer is a hint, not an oracle



Transaction Read tables Write tables

getBestSellers item, author, order_line

doCart item shopping_cart_line, 
shopping_cart

doBuyConfirm customer, address order_line, item, cc_xacts, 
shopping_cart_line

EXAMPLE: TPC-W MIXER

3 frequent transactions of the TPC-W browsing workload



EFFICIENT DIVERGENCE DETECTION

Need to compare application states & 
responses frequently

Application 
state

Merkle tree}tokentoken

   if (converged)

commit


   else

repair divergence



Copy-on-write

EFFICIENT DIVERGENCE REPAIR

Need to rollback application states after every divergence

Application 
state Rollback

   if (converged)

commit


   else

repair divergence



Copy-on-Write

Merkle tree

Mixer

   if (converged)

commit


   else

repair divergence

1. Make divergence 
uncommon

2. Detect divergence 
efficiently

3. Repair divergence 
efficiently



MASKING CONCURRENCY BUGS
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EXECUTE-VERIFY: AN 

ARCHITECTURAL CHANGE

Synchronous Asynchronous

Crash failures

Arbitrary failures



CONFIGURATIONS

Asynchronous BFT Synchronous primary-backup
Execution Verification

Tolerates 1 arbitrary fault Tolerates 1 omission fault

Primary

Backup



EVALUATION

What is the performance benefit of Eve 

compared to traditional SMR systems?



6.5x 7.5x

Application: H2 Database Engine
Workload: TPC-W (browsing)

Unreplicated

Eve(BFT)

Eve(primary-backup)

Traditional SMR


