FECS 59
DISTRIBUTED SYSTEMS

Manos Kapritsos
Fall 202 |

COMMIT

After collecting a P-Certificate, replica k sends
<COMMIT, v, n, d, k>q, to all replicas

Primary \

Replica | \
Replica 2 /“..."
Replica 3 : ‘

Pre-prepare phase| Prepare phase | Commit phase

C CERTIFICATE

» (C-Certificates ensure consistent order of requests across views
° Cannot miss a P-Certificate during view change

° A replica has a C-Certificate(m,v,n) Iff:
° 1t had a P-Certificate(m,v,n)

° Its log contains 2f 4+ 1 matching COMMIT messages from
distinct replicas (including rtself)

* A replica executes a request when:
° It gets a C-Certificate for it
° It has executed all requests with smaller sequence numbers

REPLY

After executing a request, replica k replies
to the client with <REPLY, vit, ¢, k >,

Primary \ \ oa /]
Replica | \ A——3F /
[\ / ‘.' #ﬁ

Replica 2 . .

' '
YV A ¢

Replica 3 / —

Pre-prepare phase| Prepare phase | Commit phase | Reply phase

How many matching requests must the client wait for?

1O ARMS, REPLICAS!!

° A disgruntled replica mutinies:

° Stops accepting messages (except for VIEW-CHANGE and
NEW-VIEW messages)

° sends <VIEW-CHANGE, v+, P>5
» ‘P contains all P-Certificates known to replica k

° A replica joins mutiny after seeing f + 1 distinct
VIEW-CHANGE messages

° Mutiny succeeds If the new primary collects a new-view certificate
V, indicating support from 2 f 4+ 1 distinct replicas (including rtself)

ON TO VIEW v+ |: THE NEW PRIMARY

° The"primary-elect” p’ (replica v+ | mod N) extracts from
the new-view certificate V.

° the highest sequence number h of any message for

which V contains a P-Certificate [p h=1?2
/
o
o I 2 3 4 5 6 7 8 9 (10 Il 12 13 14

° two sets @D and N
e If there Is a P-certificate forn,m in V, where n < h
add <PRE-PREPARE, v+ 1, n, m>0p, to O

2 otherwise, if n < h but there is no P-Certificate
add <PRE-PREPARE, v+ 1, n, nuII>Op, to N

° p’ sends <NEW-VIEW, v+, V, O,N>; to all replicas

ON TO VIEW V

|: THE REPLICA

° A replica accepts a NEW-VIEW message for v+ 1 if

° It s signed properly

° It contains in 'V valid VIEW-CHANGE messages for v+ |

° It can verify locally that O Is correct (repeating the

primary’s computation)

° Adds all entries in O to its log (as did p’)

° Sends a PREPARE to all replicas for each message in O

° Adds all PREPARE messages to Its log and enters new view

B [: A PERSPECTIVE

. ' * qeﬂ«e('q-k- ' A b ' ()e’r'lﬂ “'e‘
(e{.I ?S-"-) Sy) Za v'\dov\s] Jpqg (S t 1 7
1 V\Q ‘o 1 A ‘be’/‘ .

HafFF Jc 5-"\4'@

Clqe\/\.'*.’

> Fve
Se o

Secvera

Secvee

A

Figure 1: Typical Figure 2 from Byzantine fault paper: Our network protocol

On the other hand:
Google has used BFT In its datacenters and
so do many blockchain approaches

ADMINISTRIVIA

Midterm

o Next Wednesday 10/27, 1 2-1:20pm, during class
e YOu can use any material listed on the course website

No class on Monday |10/25
o Conflict with SOSP

Research part
o Starts on Monday | |/|

e You should read both papers and you can
review erther one

i NET s

Leslie Barbara Lorenzo
Lamport Liskov Alvisi

EVE: REPLICATING
MULTITHREADED SERVERS

Kapritsos, Wang, Quema, Clement, Alvisi, Dahlin

THE ACHILLES' HEEL OF REPLICATION

birth of most

dependabllity

. techniques . . ’
1970 1980 1990 2000 2010 [time
NOW

Challenge: scale to multithreaded execution

oW do we bulld dependable
e services!

e 5 B ‘-“ £ "" ‘

Answer:
State Machine Replication

STATE MACHINE REPLICATION

7W5M¢,' a dervern

1. Make ocewer detenmiucotic (otate mackiue)

2, Replicate tomwen

ceput

> @wqc’ote_‘ all %ﬁ@c’@ with the oame

Guarantee: correct replicas will

produce the same output

Server

SMR IMPLEMENTATION

Server

Server

FOW do we builld dependable
& services!

i
2| Server
3

i
2| Server
3

How do we bulld dependable
multithreaded services!

Server

Performance

- Server

Server

Deﬁ endability

Eve (OSDI’'12)

Scaling replication to multithreaded execution

SMR requires replica convergence

Agree-Execute enforces
sequential execution

EXECUTE-VERIFY

Execute

First execute... .then verity

(multithreaded and without (that replicas agree
agreeing on the order) on the outcome)

ON CONVERGENC

1
Server RSN
K

YES

1
Sl — Commit | | YES
3

YES

1
Sl — Commit |
3

ON DIV

1
Server s
3

1
3
1
Yl Repair |
3

—RG

-NC

NO

NO

NO

Repair: rollback and re-execute sequentially

Fve's logic at a glance

Frequent

if (converged)
commit
else ,
o Uncommon!
repair divergence AR

|. Make divergence
UNCOMMOnN

2. Detect divergence
efficiently

3. Repalr divergence
efficiently

MAKING DIVERGENCE UNCOMMON

201

Server
201

Server
201

Server

if (converged)
commit

else
repair divergence

|dea: Identify commutative requests

Mixer: group together commutative requests
* Execute requests within a group In parallel

Mixer Is a hint, not an oracle

EXAMPLE: | PC-W MIXE

Transaction Read tables Write tables
oetBestSellers tem, author; order_line
doCart T shopping_cart_line,
shopping_cart
doBuyConfirm s eer addiess order_lmg, tem, cc_xacts,
shopping_cart_line

3 frequent transactions of the TPC-W browsing workload

EFFICIENT

DIV

"RGENCE

Need to compare application states &
responses frequently

state

o

/N /)
Application ‘i ‘ i ‘ i i

- ECTION

if (converged)
commit

else
repair divergence

N
> Merkle tree

EFFICIENT

DIVERG

-NC

REPAIR

if (converged)
commit

else
repair divergence

Need to rollback application states after every divergence

App

S

ate

ication

BEEEEBEEBERNEE Rolback

Copy-on-write

if (converged)
commit

else
repair divergence

|. Make divergence

UNCOMMOnN
Mixer
2. Detect divergence
efficiently
Merkle tree

3. Repalr divergence
efficiently

Copy-on-Write

MASKING CONCURRENCY BUGS

1
2 Server
3
1
2| Server
3
1
2| Server
3

token

EXECUTE-VERIFY: AN
ARCHITECTURAL CHANG

Arbitrary failures

Crash fallures

Synchronous Asynchronous

CONFIGURATIONS

Asynchronous BFT Synchronous primary-backup

Execution Verification

Tolerates 1 arbitrary fault Tolerates 1 omission fault

EVALUATION

What Is the performance benefit of Eve
compared to traditional SMR systems?

Appl

VWor

Throughput (requests/sec)

2000

1800
1600

1400

1200
1000
800
600 |
400 |
200

<doad: I

ication: H2 Database Engine
°C-W (browsing)

‘x.

x.

Eve(BFT)

S\M

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
execution threads

£ C . /.5X%

