
EECS 591

DISTRIBUTED SYSTEMS

Manos Kapritsos

Fall 2021

THREE TYPES OF PROCESSES

Proposers A proposer is a process that has a value

to propose

Acceptors Acceptors are the processes that ultimately

choose which proposed value will be decided

A learner only cares about learning which

value was decided

Learners

(2f+1)

HOW THE GAME IS PLAYED

Election: Proposers first try to get a majority of
acceptors to follow them.

Legislating: After acquiring a majority, a proposer
can try to enforce her value, by getting acceptors to
accept it, but…

Playing nice: If an elected proposer finds that some
previous value has been proposed, she proposes
that value instead.

Winning the game: once a majority of acceptors
have accepted a value, the value is chosen/decided

HOW IT IS SUPPOSED TO WORK

Proposer Acceptors
Greetings, peasants! I am

your fearless leader! Grant me
your blessing!

We are with you, oh
mighty leader!

We are with you, oh wise
leader!

My first decree is:

“Ned Stark must die”

We are with you, oh
mighty leader! Sounds good to me!

The value should be 12

Proposer

Acceptors

IAmLeader YouAreLeader Decree

Learner

HOW IT IS SUPPOSED TO WORK

Accept

DEALING WITH MULTIPLE PROPOSERS

Proposer Acceptors
Greetings, peasants! I am

your fearless leader! Grant me
your blessing!

We are with you, oh
mighty leader!

We are with you, oh wise
leader!

My first decree is…

We are with you, oh
mighty leader!

We are with you, oh wise
leader #2!

Greetings, peasants! I am
your fearless leader #2! Grant me

your blessing!

grrrrr...

Proposer

Acceptors

IAmLeader #1 YouAreLeader Decree

Learner

DEALING WITH MULTIPLE PROPOSERS
I swear I won’t follow an earlier leader!

And, btw, here is my current accepted
value (if any) by leader x.

Accept

Proposer #1

Acceptors

IAmLeader #1 YouAreLeader Decree

Learner

DEALING WITH MULTIPLE PROPOSERS
I swear I won’t follow an earlier leader!

And, btw, here is my current accepted
value (if any) by leader x.

Proposer #2

IAmLeader #2 YouAreLeader Decree

Accept

Proposer #1

Acceptors

IAmLeader #1 YouAreLeader Decree

Learner

DEALING WITH MULTIPLE PROPOSERS
I swear I won’t follow an earlier leader!

And, btw, here is my current accepted
value (if any) by leader x.

Proposer #2

IAmLeader #2 YouAreLeader

Accept

Proposer #1

Acceptors

IAmLeader #1 YouAreLeader

THE CRUCIAL YouAreLeader MESSAGE
I swear I won’t follow an earlier leader!

And, btw, here is my current accepted
value (if any) by leader x.

1. Wait for a majority of YouAreLeader
messages before proceeding.

2. If none of them contain a previously
accepted value, propose your own

 Otherwise, propose the value of the
most recent leader.

THE CRUCIAL YouAreLeader MESSAGE

1. Wait for a majority of YouAreLeader messages before proceeding.

2. If none of them contain a previously accepted value, propose your own

 Otherwise, propose the value of the most recent leader.

Important
By consulting a majority, the new leader makes sure she
cannot have missed a chosen value

(a value must be accepted by a majority to
be chosen, and any two majorities overlap!)

EXAMPLES OF ACCEPTOR STATES

Acceptors Value By leader

x 37

-

-

-

-

-

-

-

-

(as leader #50 comes to power)

EXAMPLES OF ACCEPTOR STATES

Acceptors Value By leader

x

x

37

37

y

y

42

41

- -

(as leader #50 comes to power)

EXAMPLES OF ACCEPTOR STATES

Acceptors Value By leader

x

x

37

37

y

x

42

41

- -

(as leader #50 comes to power)

OVERVIEW OF PAXOS

Proposer
Send IAmLeader(n) to all

If n is the highest leader # I have seen:

respond with

YouAreLeader(Value, LeaderWhoProposedValue)

Wait for a majority of responses

Acceptor

Once majority is received, send

Propose(n, V) where V is the highest-leader

proposal among the responses (or my own
value, if none of the responses had a value)

If n is the highest leader # I have seen, send

Accept(n, V) to the learner

TOLERATING FAILURES

There are acceptors

A value is only chosen if accepted by a majority ()

So, even if of those acceptors fail, one will remain and
will be part of any future majority

Safety

Liveness
The leader always waits for responses. So,
even if replicas fail, it will not block

THE THREAT TO LIVENESS:

DUELING PROPOSERS

Greetings, peasants! I am
your fearless leader #1! Grant me

your blessing! Greetings, peasants! I am
your fearless leader #2! Grant me

your blessing!Greetings, peasants! I am
your fearless leader #3! Grant me

your blessing! Greetings, peasants! I am
your fearless leader #4! Grant me

your blessing!

Greetings, peasants! I am
your fearless leader #6! Grant me

your blessing!

Greetings, peasants! I am
your fearless leader #8! Grant me

your blessing!

Greetings, peasants! I am
your fearless leader #5! Grant me

your blessing!

Greetings, peasants! I am
your fearless leader #7! Grant me

your blessing!

.

THE THREAT TO LIVENESS:

DUELING PROPOSERS

This problem can be avoided during synchrony

(proposer faults can be detected accurately using timeouts)

It’s impossible to avoid during asynchrony!

Well, we kind of knew that already…

Paxos cannot be both safe and live during asynchrony!
(that would violate FLP)

So it’s doing the next best thing:

staying safe all the time and achieving liveness

when the system starts behaving synchronously

THE BEAUTY OF PAXOS

USING (MULTI)PAXOS TO IMPLEMENT

STATE MACHINE REPLICATION

The original Paxos algorithm achieves agreement on one value

SMR required replicas to agree on the sequence of
commands that will be executed

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
…

MultiPaxos: Run an instance of Paxos for each slot in the sequence

Important: we don’t need to run phase (election) every time!

3. Ensure that all replicas go through the same

sequence of state transitions

