
Title Slide 2
Dynamo: Amazon’s Highly Available Key-value

Store

Authors: Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash Lakshman, Alex
Pilchin, Swaminathan Sivasubramanian, Peter Vosshall and Werner Vogels

Amazon.com

Presented by Chengyu Chen

Table of contents

1. Introduction

2. Background and motivation

3. System design

4. Conclusion and discussion

1. Introduction

• Dynamo is a set of techniques that together can form a highly
available key-value distributed data store.

• Fun fact #1: Dynamo != Amazon DynamoDB

• DynamoDB (2012) is developed based on some principles of Dynamo
(2007).

• Dynamo enables Leaderless Replication, whereas DynamoDB favors
Single Leader Replication.

1. Introduction

• Dynamo keywords: highly available, eventual consistency, and highly
scalable.

• Eventual consistency: if no new updates are made to a given data
item, eventually all accesses to that item will return the last updated
value

2. Background and motivation

• Amazon was using commercial databases and pushed them to their
limits many years ago

• Led to a huge Holiday Season Outage in 2004

• “A number of outages at the height of the 2004 holiday
shopping season can be traced back to scaling
commercial technologies beyond their boundaries.”
– Amazon CTO Werner Vogels

• Dynamo was born out of the need for a highly reliable, ultra-scalable
key/value database

2. Background and motivation

• Amazon is a huge! And it values customers’ experience
→ highly available and scalable distributed storage system

• Luckily to some services, strong consistency is not a must
→ eventual consistency

• Relational database is an overkill and is not friendly to distribution
→ NoSQL data scheme

3. System design
Four key principles:

1. Incremental scalability: scale out one node at a time with minimal
impacts

2. Symmetry: no special roles; all nodes are equal

3. Decentralization: decentralized peer-to-peer techniques over
centralized control

4. Heterogeneity: work distribution must be proportional to the
capabilities of the individual servers

3. System design

3. System design

1. Data partitioning

Typically, a distributed DB map the data uniformly across all nodes using
hash functions.

But what would happen if we want to scale it out?

It needs re-distribute all the data! Therefore, Dynamo takes a different
approach:

3. System design

1. Data partitioning (that supports incremental scaling)

Introduce consistent hashing:

• Each node handles a range of data in the ring

• For instance, node B handles range (A, B]; node A
handles range (H, A]

Therefore, when a node is removed or added, only
the neighbors are affected.

3. System design

3. System design

1. Data partitioning (that supports incremental scaling)

But the basic consistent hashing presents some
challenges:

1. Nodes may be not distributed uniformly when
the number of nodes change

2. Does not account for heterogeneity of node
server

Need a smaller unit – “virtual node”. Each node
may consist of multiple virtual nodes.

Effectively, each physical node can be mapped to
multiple locations on the ring

3. System design

2. Replication

• Dynamo replicates its data in next N-1 successive
hosts

• The original node (that this data maps to) serves
as a Coordinator Node and handles the
replications.

• For instance, if N = 3, node B replicates key K at
nodes C and D in addition to storing it locally.

3. System design

3. Eventual Consistency

• Allows updates propagate asynchronously in the background

• Highly available writes!

• Might read an old value; might have two different writes on the
same object!

• Solution: Data Versioning

3. System design

3. Eventual Consistency and Data Versioning

• A key-value object can have different versions that forms a version
history

• Ignore when reading an old version

• Use a Vector Clock to resolve conflicting versions

3. System design

3. Eventual Consistency and Data Versioning

• Use a Vector Clock to resolve conflicting versions

• Example on the right.

3. System design

3. Ensuring consistency

• A quorum like system: R is the minimum number of nodes that
must participate in a successful read operation; likewise for W in a
successful write operation.

• As long as R + W > N, data consistency is ensured.

• By changing values of R and W, we can prioritize read or write
operations (availability vs durability)

• But what if some nodes in N fail?

3. System design

4. Handling failures: hinted handoff

• But what if a few nodes in N fail? Use a
“Sloppy quorum”!

• All read and write operations are
performed on the first N healthy nodes
from the preference list

• Example: when node A dies, a replica that
would normally have lived on X will now be
sent to D! Then access these N healthy
nodes.

• Improves availability

3. System design

5. Handling permanent failures: replica synchronization

• If there are too many failures or node failures are not transient
enough: need replica synchronization

• Challenge: how to detect inconsistency efficiently?

• Dynamo uses Merkle trees (Hash trees)

3. System design

5. Handling permanent failures: replica synchronization

• Merkle trees: A hash tree where leaves are hashes of the values
of individual keys and where parents are hashes of their children

3. System design

5. Handling permanent failures: replica synchronization

• Merkle trees: A hash tree where leaves are hashes of the values
of individual keys and where parents are hashes of their children.

• Therefore, only need to compare Merkle trees of replicas from top
to bottom. If it’s consistent from the start, only a comparison of
roots is performed.

4. Conclusion and discussion!

• Incrementable scaling

• Allow services to decide tradeoff between performance, availability
and durability by changing N, R and W.

• Note that dynamo exposes data consistency and reconciliation logic
issues to developers

• Only works well with up to hundreds of nodes

Questions?

