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1. Introduction

• Dynamo is a set of techniques that together can form a highly 
available key-value distributed data store.

• Fun fact #1: Dynamo != Amazon DynamoDB

• DynamoDB (2012) is developed based on some principles of Dynamo
(2007).

• Dynamo enables Leaderless Replication, whereas DynamoDB favors 
Single Leader Replication.



1. Introduction

• Dynamo keywords: highly available, eventual consistency, and highly 
scalable.

• Eventual consistency: if no new updates are made to a given data 
item, eventually all accesses to that item will return the last updated 
value



2. Background and motivation

• Amazon was using commercial databases and pushed them to their 
limits many years ago

• Led to a huge Holiday Season Outage in 2004

• “A number of outages at the height of the 2004 holiday 
shopping season can be traced back to scaling 
commercial technologies beyond their boundaries.” 
– Amazon CTO Werner Vogels

• Dynamo was born out of the need for a highly reliable, ultra-scalable 
key/value database



2. Background and motivation

• Amazon is a huge! And it values customers’ experience
→ highly available and scalable distributed storage system

• Luckily to some services, strong consistency is not a must
→ eventual consistency

• Relational database is an overkill and is not friendly to distribution
→ NoSQL data scheme



3. System design
Four key principles:

1. Incremental scalability: scale out one node at a time with minimal 
impacts

2. Symmetry: no special roles; all nodes are equal

3. Decentralization: decentralized peer-to-peer techniques over 
centralized control

4. Heterogeneity: work distribution must be proportional to the 
capabilities of the individual servers



3. System design



3. System design

1. Data partitioning

Typically, a distributed DB map the data uniformly across all nodes using 
hash functions.

But what would happen if we want to scale it out?

It needs re-distribute all the data! Therefore, Dynamo takes a different 
approach:



3. System design

1. Data partitioning (that supports incremental scaling)

Introduce consistent hashing:

• Each node handles a range of data in the ring

• For instance, node B handles range (A, B]; node A
handles range (H, A]

Therefore, when a node is removed or added, only 
the neighbors are affected.
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3. System design

1. Data partitioning (that supports incremental scaling)

But the basic consistent hashing presents some 
challenges:

1. Nodes may be not distributed uniformly when 
the number of nodes change

2. Does not account for heterogeneity of node 
server

Need a smaller unit – “virtual node”. Each node 
may consist of multiple virtual nodes. 

Effectively, each physical node can be mapped to 
multiple locations on the ring



3. System design

2. Replication

• Dynamo replicates its data in next N-1 successive 
hosts

• The original node (that this data maps to) serves 
as a Coordinator Node and handles the 
replications.

• For instance, if N = 3, node B replicates key K at 
nodes C and D in addition to storing it locally. 



3. System design

3. Eventual Consistency

• Allows updates propagate asynchronously in the background

• Highly available writes!

• Might read an old value; might have two different writes on the 
same object!

• Solution: Data Versioning



3. System design

3. Eventual Consistency and Data Versioning

• A key-value object can have different versions that forms a version 
history

• Ignore when reading an old version

• Use a Vector Clock to resolve conflicting versions



3. System design

3. Eventual Consistency and Data Versioning

• Use a Vector Clock to resolve conflicting versions

• Example on the right.



3. System design

3. Ensuring consistency

• A quorum like system: R is the minimum number of nodes that 
must participate in a successful read operation; likewise for W in a  
successful write operation. 

• As long as R + W > N, data consistency is ensured.

• By changing values of R and W, we can prioritize read or write 
operations (availability vs durability)

• But what if some nodes in N fail? 



3. System design

4. Handling failures: hinted handoff

• But what if a few nodes in N fail? Use a 
“Sloppy quorum”!

• All read and write operations are 
performed on the first N healthy nodes 
from the preference list

• Example: when node A dies, a replica that 
would normally have lived on X will now be 
sent to D! Then access these N healthy 
nodes.

• Improves availability



3. System design

5. Handling permanent failures: replica synchronization

• If there are too many failures or node failures are not transient 
enough: need replica synchronization

• Challenge: how to detect inconsistency efficiently?

• Dynamo uses Merkle trees (Hash trees)



3. System design

5. Handling permanent failures: replica synchronization

• Merkle trees: A hash tree where leaves are hashes of the values 
of individual keys and where parents are hashes of their children



3. System design

5. Handling permanent failures: replica synchronization

• Merkle trees: A hash tree where leaves are hashes of the values 
of individual keys and where parents are hashes of their children.

• Therefore, only need to compare Merkle trees of replicas from top 
to bottom. If it’s consistent from the start, only a comparison of 
roots is performed.



4. Conclusion and discussion!

• Incrementable scaling

• Allow services to decide tradeoff between performance, availability 
and durability by changing N, R and W.

• Note that dynamo exposes data consistency and reconciliation logic 
issues to developers

• Only works well with up to hundreds of nodes



Questions?


