
CORFU:	A	Shared	Log	Design	for	Flash	Clusters

Paper	by	Mahesh	Balakrishnan	et	al.

Presented	by	Qingyi	Chen

Before	Entering	the	topic…
• A	paper	about	“design”	

• unlike	previous	papers	about	insights	and	optimization
• unlike	a	specific	problem-solving	algorithm	or	protocol	
• a	collection	of	problems	met	when	building	a	system,	and	proposed	solutions

• A	paper	about	a	complex	system
• different	problems	in	the	system	are	not	always	closely	related
• logic	flow	is	not	linear,	but	like	breath-first	search
• think	as	the	designer

• Let’s	get	into	the	topic

Introduction
• CORFU:

• “A	Shared	Log	Design	for	Flash	Clusters”
• Uses	a cluster	of	flash	drives
• Implements	a	shared	log

• Detailed	design	and	Implementations
• User	interface
• Core	functions
• Flash	Unit	Specifications

• Applications
• Evaluations Cluster of Network-Attached Flash Units

0 1 2 3 4 5 6 7 8 - - - - - - -

Each log position is mapped
to flash pages in the cluster

Append Read

Clients access flash units
directly over the network
via the Corfu library

Application

Corfu Library

 Database
 Key-Value Store
 Replicated State Machine
 Metadata Service
 Virtual Disk
…

Figure 1: CORFU presents applications running on
clients with the abstraction of a shared log, implemented
over a cluster of flash units by a client-side library.

Our design for this shared log abstraction is driven by a
single imperative: to keep flash units as simple, inexpen-
sive and power-efficient as possible. We achieve this goal
by placing all CORFU functionality at the clients and
treating flash units as passive storage devices. CORFU
clients read and write directly to the address space of
each flash unit, coordinating with each other to ensure
single-copy semantics for the shared log. Individual flash
units do not initiate communication, are unaware of other
flash units, and do not participate actively in replication
protocols. CORFU does require specific functionality
from flash units, which we discuss shortly.

Accordingly, CORFU is implemented as a client-side
library that exposes a simple API to applications, shown
in Figure 2. The append interface adds an entry to the
log and returns its position. The read interface accepts
a position in the log and returns the entry at that posi-
tion. If no entry exists at that position, an error code is
returned. The application can perform garbage collection
using trim, which indicates to CORFU that no valid data
exists at a specific log position. Lastly, the application
can fill a position with junk, ensuring that it cannot be
updated in future with a valid value.

CORFU’s task of implementing a shared log abstrac-
tion with this API over a cluster of flash units – each of
which exposes a separate address space – involves three
functions:

• A mapping function from logical positions in the
log to flash pages on the cluster of flash units.

• A tail-finding mechanism for finding the next

append(b) Append an entry b and return
the log position ` it occupies

read(`) Return entry at log position `
trim(`) Indicate that no valid data exists

at log position `
fill(`) Fill log position ` with junk

Figure 2: API exposed by CORFU to applications

available logical position on the log for new data.

• A replication protocol to write a log entry consis-
tently on multiple flash pages.

These three functions – combined with the ability of
clients to read and write directly to the address space of
each flash unit – are sufficient to support a shared log
abstraction. To read data at a specific log position, the
client-side library uses the mapping function to find the
appropriate flash page, and then directly issues a read to
the device where the flash page is located. To append
data, a client finds the tail position of the log, maps it
to a set of flash pages, and then initiates the replication
protocol that issues writes to the appropriate devices.

Accordingly, the primary challenges in CORFU re-
volve around implementing these three functions in an
efficient and fault-tolerant manner. Crucially, these
functions have to provide single-copy semantics for the
shared log even when flash units fail and clients crash.

In this section, we first describe the assumptions made
by CORFU about each flash unit. We then describe
CORFU’s implementation of the three functions de-
scribed above.

3.1 Flash Unit Requirements
The most basic requirement of a flash unit is that it sup-
port reads and writes on an address space of fixed-size
pages. We use the term ‘flash page’ to refer to a page
on this address space; however, the flash unit is free to
expose a logical address space where logical pages are
mapped internally to physical flash pages, as a conven-
tional SSD does. The flash unit is expected to detect and
re-map bad blocks in this address space.

To provide single-copy semantics for the shared
log, CORFU requires ‘write-once’ semantics on the
flash unit’s address space. Reads on pages that have
not yet been written should return an error code (er-
ror unwritten). Writes on pages that have already
been written should also return an error code (er-
ror overwritten). In addition to reads and writes, flash
units are also required to expose a trim command, allow-
ing clients to indicate that the flash page is not in use
anymore.

a	cluster	of	flash	drives

log

Motivation
• Why	shared	log?

• High	consistency
• Making	ordering	easy
• Straight-forward	applications	in	distributed	systems

• State	Machine	Replication

• Flash	Drives
• Persistence,	high	throughput,	low	latency
• Fast	random	read
• Fast	append

Cluster of Network-Attached Flash Units

0 1 2 3 4 5 6 7 8 - - - - - - -

Each log position is mapped
to flash pages in the cluster

Append Read

Clients access flash units
directly over the network
via the Corfu library

Application

Corfu Library

 Database
 Key-Value Store
 Replicated State Machine
 Metadata Service
 Virtual Disk
…

Figure 1: CORFU presents applications running on
clients with the abstraction of a shared log, implemented
over a cluster of flash units by a client-side library.

Our design for this shared log abstraction is driven by a
single imperative: to keep flash units as simple, inexpen-
sive and power-efficient as possible. We achieve this goal
by placing all CORFU functionality at the clients and
treating flash units as passive storage devices. CORFU
clients read and write directly to the address space of
each flash unit, coordinating with each other to ensure
single-copy semantics for the shared log. Individual flash
units do not initiate communication, are unaware of other
flash units, and do not participate actively in replication
protocols. CORFU does require specific functionality
from flash units, which we discuss shortly.

Accordingly, CORFU is implemented as a client-side
library that exposes a simple API to applications, shown
in Figure 2. The append interface adds an entry to the
log and returns its position. The read interface accepts
a position in the log and returns the entry at that posi-
tion. If no entry exists at that position, an error code is
returned. The application can perform garbage collection
using trim, which indicates to CORFU that no valid data
exists at a specific log position. Lastly, the application
can fill a position with junk, ensuring that it cannot be
updated in future with a valid value.

CORFU’s task of implementing a shared log abstrac-
tion with this API over a cluster of flash units – each of
which exposes a separate address space – involves three
functions:

• A mapping function from logical positions in the
log to flash pages on the cluster of flash units.

• A tail-finding mechanism for finding the next

append(b) Append an entry b and return
the log position ` it occupies

read(`) Return entry at log position `
trim(`) Indicate that no valid data exists

at log position `
fill(`) Fill log position ` with junk

Figure 2: API exposed by CORFU to applications

available logical position on the log for new data.

• A replication protocol to write a log entry consis-
tently on multiple flash pages.

These three functions – combined with the ability of
clients to read and write directly to the address space of
each flash unit – are sufficient to support a shared log
abstraction. To read data at a specific log position, the
client-side library uses the mapping function to find the
appropriate flash page, and then directly issues a read to
the device where the flash page is located. To append
data, a client finds the tail position of the log, maps it
to a set of flash pages, and then initiates the replication
protocol that issues writes to the appropriate devices.

Accordingly, the primary challenges in CORFU re-
volve around implementing these three functions in an
efficient and fault-tolerant manner. Crucially, these
functions have to provide single-copy semantics for the
shared log even when flash units fail and clients crash.

In this section, we first describe the assumptions made
by CORFU about each flash unit. We then describe
CORFU’s implementation of the three functions de-
scribed above.

3.1 Flash Unit Requirements
The most basic requirement of a flash unit is that it sup-
port reads and writes on an address space of fixed-size
pages. We use the term ‘flash page’ to refer to a page
on this address space; however, the flash unit is free to
expose a logical address space where logical pages are
mapped internally to physical flash pages, as a conven-
tional SSD does. The flash unit is expected to detect and
re-map bad blocks in this address space.

To provide single-copy semantics for the shared
log, CORFU requires ‘write-once’ semantics on the
flash unit’s address space. Reads on pages that have
not yet been written should return an error code (er-
ror unwritten). Writes on pages that have already
been written should also return an error code (er-
ror overwritten). In addition to reads and writes, flash
units are also required to expose a trim command, allow-
ing clients to indicate that the flash page is not in use
anymore.

CORFU• Client:	interact	using	CORFU

• CORFU:	the	abstraction	with	“API”s

• Flash	Units:	the	“log”

Design	- Overview

Cluster of Network-Attached Flash Units

0 1 2 3 4 5 6 7 8 - - - - - - -

Each log position is mapped
to flash pages in the cluster

Append Read

Clients access flash units
directly over the network
via the Corfu library

Application

Corfu Library

 Database
 Key-Value Store
 Replicated State Machine
 Metadata Service
 Virtual Disk
…

Figure 1: CORFU presents applications running on
clients with the abstraction of a shared log, implemented
over a cluster of flash units by a client-side library.

Our design for this shared log abstraction is driven by a
single imperative: to keep flash units as simple, inexpen-
sive and power-efficient as possible. We achieve this goal
by placing all CORFU functionality at the clients and
treating flash units as passive storage devices. CORFU
clients read and write directly to the address space of
each flash unit, coordinating with each other to ensure
single-copy semantics for the shared log. Individual flash
units do not initiate communication, are unaware of other
flash units, and do not participate actively in replication
protocols. CORFU does require specific functionality
from flash units, which we discuss shortly.

Accordingly, CORFU is implemented as a client-side
library that exposes a simple API to applications, shown
in Figure 2. The append interface adds an entry to the
log and returns its position. The read interface accepts
a position in the log and returns the entry at that posi-
tion. If no entry exists at that position, an error code is
returned. The application can perform garbage collection
using trim, which indicates to CORFU that no valid data
exists at a specific log position. Lastly, the application
can fill a position with junk, ensuring that it cannot be
updated in future with a valid value.

CORFU’s task of implementing a shared log abstrac-
tion with this API over a cluster of flash units – each of
which exposes a separate address space – involves three
functions:

• A mapping function from logical positions in the
log to flash pages on the cluster of flash units.

• A tail-finding mechanism for finding the next

append(b) Append an entry b and return
the log position ` it occupies

read(`) Return entry at log position `
trim(`) Indicate that no valid data exists

at log position `
fill(`) Fill log position ` with junk

Figure 2: API exposed by CORFU to applications

available logical position on the log for new data.

• A replication protocol to write a log entry consis-
tently on multiple flash pages.

These three functions – combined with the ability of
clients to read and write directly to the address space of
each flash unit – are sufficient to support a shared log
abstraction. To read data at a specific log position, the
client-side library uses the mapping function to find the
appropriate flash page, and then directly issues a read to
the device where the flash page is located. To append
data, a client finds the tail position of the log, maps it
to a set of flash pages, and then initiates the replication
protocol that issues writes to the appropriate devices.

Accordingly, the primary challenges in CORFU re-
volve around implementing these three functions in an
efficient and fault-tolerant manner. Crucially, these
functions have to provide single-copy semantics for the
shared log even when flash units fail and clients crash.

In this section, we first describe the assumptions made
by CORFU about each flash unit. We then describe
CORFU’s implementation of the three functions de-
scribed above.

3.1 Flash Unit Requirements
The most basic requirement of a flash unit is that it sup-
port reads and writes on an address space of fixed-size
pages. We use the term ‘flash page’ to refer to a page
on this address space; however, the flash unit is free to
expose a logical address space where logical pages are
mapped internally to physical flash pages, as a conven-
tional SSD does. The flash unit is expected to detect and
re-map bad blocks in this address space.

To provide single-copy semantics for the shared
log, CORFU requires ‘write-once’ semantics on the
flash unit’s address space. Reads on pages that have
not yet been written should return an error code (er-
ror unwritten). Writes on pages that have already
been written should also return an error code (er-
ror overwritten). In addition to reads and writes, flash
units are also required to expose a trim command, allow-
ing clients to indicate that the flash page is not in use
anymore.

CORFU
• Client:	interact	using	CORFU

• Append(b)
//	Append	an	entry	b,	gets	the	log	position	l	it	occupies

• Read(l)
//	Gets	the	entry	at	log	position	l

• Trim(l)
//	Indicates	that	no	valid	data	exist	at	log	position	l

• Fill(l)
//	Fills	log	position	l	with	junk

Design	- Client	Interface

Cluster of Network-Attached Flash Units

0 1 2 3 4 5 6 7 8 - - - - - - -

Each log position is mapped
to flash pages in the cluster

Append Read

Clients access flash units
directly over the network
via the Corfu library

Application

Corfu Library

 Database
 Key-Value Store
 Replicated State Machine
 Metadata Service
 Virtual Disk
…

Figure 1: CORFU presents applications running on
clients with the abstraction of a shared log, implemented
over a cluster of flash units by a client-side library.

Our design for this shared log abstraction is driven by a
single imperative: to keep flash units as simple, inexpen-
sive and power-efficient as possible. We achieve this goal
by placing all CORFU functionality at the clients and
treating flash units as passive storage devices. CORFU
clients read and write directly to the address space of
each flash unit, coordinating with each other to ensure
single-copy semantics for the shared log. Individual flash
units do not initiate communication, are unaware of other
flash units, and do not participate actively in replication
protocols. CORFU does require specific functionality
from flash units, which we discuss shortly.

Accordingly, CORFU is implemented as a client-side
library that exposes a simple API to applications, shown
in Figure 2. The append interface adds an entry to the
log and returns its position. The read interface accepts
a position in the log and returns the entry at that posi-
tion. If no entry exists at that position, an error code is
returned. The application can perform garbage collection
using trim, which indicates to CORFU that no valid data
exists at a specific log position. Lastly, the application
can fill a position with junk, ensuring that it cannot be
updated in future with a valid value.

CORFU’s task of implementing a shared log abstrac-
tion with this API over a cluster of flash units – each of
which exposes a separate address space – involves three
functions:

• A mapping function from logical positions in the
log to flash pages on the cluster of flash units.

• A tail-finding mechanism for finding the next

append(b) Append an entry b and return
the log position ` it occupies

read(`) Return entry at log position `
trim(`) Indicate that no valid data exists

at log position `
fill(`) Fill log position ` with junk

Figure 2: API exposed by CORFU to applications

available logical position on the log for new data.

• A replication protocol to write a log entry consis-
tently on multiple flash pages.

These three functions – combined with the ability of
clients to read and write directly to the address space of
each flash unit – are sufficient to support a shared log
abstraction. To read data at a specific log position, the
client-side library uses the mapping function to find the
appropriate flash page, and then directly issues a read to
the device where the flash page is located. To append
data, a client finds the tail position of the log, maps it
to a set of flash pages, and then initiates the replication
protocol that issues writes to the appropriate devices.

Accordingly, the primary challenges in CORFU re-
volve around implementing these three functions in an
efficient and fault-tolerant manner. Crucially, these
functions have to provide single-copy semantics for the
shared log even when flash units fail and clients crash.

In this section, we first describe the assumptions made
by CORFU about each flash unit. We then describe
CORFU’s implementation of the three functions de-
scribed above.

3.1 Flash Unit Requirements
The most basic requirement of a flash unit is that it sup-
port reads and writes on an address space of fixed-size
pages. We use the term ‘flash page’ to refer to a page
on this address space; however, the flash unit is free to
expose a logical address space where logical pages are
mapped internally to physical flash pages, as a conven-
tional SSD does. The flash unit is expected to detect and
re-map bad blocks in this address space.

To provide single-copy semantics for the shared
log, CORFU requires ‘write-once’ semantics on the
flash unit’s address space. Reads on pages that have
not yet been written should return an error code (er-
ror unwritten). Writes on pages that have already
been written should also return an error code (er-
ror overwritten). In addition to reads and writes, flash
units are also required to expose a trim command, allow-
ing clients to indicate that the flash page is not in use
anymore.

CORFU
• CORFU:	the	abstraction	with	“API”s

• A	mapping	function
Maps	logical	positions	to	flash	pages

• A	tail-finding	mechanism
Finds	the	next	available	logical	position	on	the	log

• A	replication	protocol
Writes	a	log	entry	consistently	on	multiple	flash	pages

Design	- CORFU	API

Cluster of Network-Attached Flash Units

0 1 2 3 4 5 6 7 8 - - - - - - -

Each log position is mapped
to flash pages in the cluster

Append Read

Clients access flash units
directly over the network
via the Corfu library

Application

Corfu Library

 Database
 Key-Value Store
 Replicated State Machine
 Metadata Service
 Virtual Disk
…

Figure 1: CORFU presents applications running on
clients with the abstraction of a shared log, implemented
over a cluster of flash units by a client-side library.

Our design for this shared log abstraction is driven by a
single imperative: to keep flash units as simple, inexpen-
sive and power-efficient as possible. We achieve this goal
by placing all CORFU functionality at the clients and
treating flash units as passive storage devices. CORFU
clients read and write directly to the address space of
each flash unit, coordinating with each other to ensure
single-copy semantics for the shared log. Individual flash
units do not initiate communication, are unaware of other
flash units, and do not participate actively in replication
protocols. CORFU does require specific functionality
from flash units, which we discuss shortly.

Accordingly, CORFU is implemented as a client-side
library that exposes a simple API to applications, shown
in Figure 2. The append interface adds an entry to the
log and returns its position. The read interface accepts
a position in the log and returns the entry at that posi-
tion. If no entry exists at that position, an error code is
returned. The application can perform garbage collection
using trim, which indicates to CORFU that no valid data
exists at a specific log position. Lastly, the application
can fill a position with junk, ensuring that it cannot be
updated in future with a valid value.

CORFU’s task of implementing a shared log abstrac-
tion with this API over a cluster of flash units – each of
which exposes a separate address space – involves three
functions:

• A mapping function from logical positions in the
log to flash pages on the cluster of flash units.

• A tail-finding mechanism for finding the next

append(b) Append an entry b and return
the log position ` it occupies

read(`) Return entry at log position `
trim(`) Indicate that no valid data exists

at log position `
fill(`) Fill log position ` with junk

Figure 2: API exposed by CORFU to applications

available logical position on the log for new data.

• A replication protocol to write a log entry consis-
tently on multiple flash pages.

These three functions – combined with the ability of
clients to read and write directly to the address space of
each flash unit – are sufficient to support a shared log
abstraction. To read data at a specific log position, the
client-side library uses the mapping function to find the
appropriate flash page, and then directly issues a read to
the device where the flash page is located. To append
data, a client finds the tail position of the log, maps it
to a set of flash pages, and then initiates the replication
protocol that issues writes to the appropriate devices.

Accordingly, the primary challenges in CORFU re-
volve around implementing these three functions in an
efficient and fault-tolerant manner. Crucially, these
functions have to provide single-copy semantics for the
shared log even when flash units fail and clients crash.

In this section, we first describe the assumptions made
by CORFU about each flash unit. We then describe
CORFU’s implementation of the three functions de-
scribed above.

3.1 Flash Unit Requirements
The most basic requirement of a flash unit is that it sup-
port reads and writes on an address space of fixed-size
pages. We use the term ‘flash page’ to refer to a page
on this address space; however, the flash unit is free to
expose a logical address space where logical pages are
mapped internally to physical flash pages, as a conven-
tional SSD does. The flash unit is expected to detect and
re-map bad blocks in this address space.

To provide single-copy semantics for the shared
log, CORFU requires ‘write-once’ semantics on the
flash unit’s address space. Reads on pages that have
not yet been written should return an error code (er-
ror unwritten). Writes on pages that have already
been written should also return an error code (er-
ror overwritten). In addition to reads and writes, flash
units are also required to expose a trim command, allow-
ing clients to indicate that the flash page is not in use
anymore.

CORFU
• Flash	Unit:	the	“log”

• Supports	read/write	in	the	unit	of	pages

• Holds	“Write-once”	semantics
• Returns	an	error	if	read	on	unwritten	pages
• Returns	an	error	if	written	on	written	pages

• Supports	a	“trim”	command
• Releases	occupied	pages

• Supports	a	“seal”	command
• Every	request	is	tagged	with	an	epoch number
• Rejects	subsequent	requests	with	a	lower	or	equal	epoch number

Design	- Flash	Unit	Specifications

Cluster of Network-Attached Flash Units

0 1 2 3 4 5 6 7 8 - - - - - - -

Each log position is mapped
to flash pages in the cluster

Append Read

Clients access flash units
directly over the network
via the Corfu library

Application

Corfu Library

 Database
 Key-Value Store
 Replicated State Machine
 Metadata Service
 Virtual Disk
…

Figure 1: CORFU presents applications running on
clients with the abstraction of a shared log, implemented
over a cluster of flash units by a client-side library.

Our design for this shared log abstraction is driven by a
single imperative: to keep flash units as simple, inexpen-
sive and power-efficient as possible. We achieve this goal
by placing all CORFU functionality at the clients and
treating flash units as passive storage devices. CORFU
clients read and write directly to the address space of
each flash unit, coordinating with each other to ensure
single-copy semantics for the shared log. Individual flash
units do not initiate communication, are unaware of other
flash units, and do not participate actively in replication
protocols. CORFU does require specific functionality
from flash units, which we discuss shortly.

Accordingly, CORFU is implemented as a client-side
library that exposes a simple API to applications, shown
in Figure 2. The append interface adds an entry to the
log and returns its position. The read interface accepts
a position in the log and returns the entry at that posi-
tion. If no entry exists at that position, an error code is
returned. The application can perform garbage collection
using trim, which indicates to CORFU that no valid data
exists at a specific log position. Lastly, the application
can fill a position with junk, ensuring that it cannot be
updated in future with a valid value.

CORFU’s task of implementing a shared log abstrac-
tion with this API over a cluster of flash units – each of
which exposes a separate address space – involves three
functions:

• A mapping function from logical positions in the
log to flash pages on the cluster of flash units.

• A tail-finding mechanism for finding the next

append(b) Append an entry b and return
the log position ` it occupies

read(`) Return entry at log position `
trim(`) Indicate that no valid data exists

at log position `
fill(`) Fill log position ` with junk

Figure 2: API exposed by CORFU to applications

available logical position on the log for new data.

• A replication protocol to write a log entry consis-
tently on multiple flash pages.

These three functions – combined with the ability of
clients to read and write directly to the address space of
each flash unit – are sufficient to support a shared log
abstraction. To read data at a specific log position, the
client-side library uses the mapping function to find the
appropriate flash page, and then directly issues a read to
the device where the flash page is located. To append
data, a client finds the tail position of the log, maps it
to a set of flash pages, and then initiates the replication
protocol that issues writes to the appropriate devices.

Accordingly, the primary challenges in CORFU re-
volve around implementing these three functions in an
efficient and fault-tolerant manner. Crucially, these
functions have to provide single-copy semantics for the
shared log even when flash units fail and clients crash.

In this section, we first describe the assumptions made
by CORFU about each flash unit. We then describe
CORFU’s implementation of the three functions de-
scribed above.

3.1 Flash Unit Requirements
The most basic requirement of a flash unit is that it sup-
port reads and writes on an address space of fixed-size
pages. We use the term ‘flash page’ to refer to a page
on this address space; however, the flash unit is free to
expose a logical address space where logical pages are
mapped internally to physical flash pages, as a conven-
tional SSD does. The flash unit is expected to detect and
re-map bad blocks in this address space.

To provide single-copy semantics for the shared
log, CORFU requires ‘write-once’ semantics on the
flash unit’s address space. Reads on pages that have
not yet been written should return an error code (er-
ror unwritten). Writes on pages that have already
been written should also return an error code (er-
ror overwritten). In addition to reads and writes, flash
units are also required to expose a trim command, allow-
ing clients to indicate that the flash page is not in use
anymore.

CORFU

Design	- The	Full	View
• When	a	client	requests	read(l),	CORFU

• consults	its	mapping	function
• finds	the	corresponding	flash	pages	in	the	flash	units
• Issues	a	read	to	the	hardware		

• When	a	client	requests	append(b),	CORFU
• finds	the	tail	position	of	the	log
• maps	it	to	flash	pages
• initiates	the	replication	protocol	to	write	to	hardware

Implementation	- Mapping	(Overview)
• “Projection”:	(1)	splits	log	into	disjoint	ranges	(2)	maps	log	position	to	a	list	of	extents

• default:	round-robin	(right	figure)
• e.g.,	log	position	0	->	F0:	0
• e.g.,	log	position	1	->	F1:0
• e.g.,	log	position	2	->	F0:	1
• log	position	45k	->	?	
• log	position	45k	->	F2:	2500

• Any	mapping	function	works

• Replication
• each	extent	associated	with	a	replica	set	of	units
• e.g.,	F0:	0:20K	->	F0	/	F0’:	0:20K

• Essentially	providing	a	logical	address	space

0 1 2 3 4 5 . . 40K
40K
+1

F0

0

2

...

40K-2

F1

1

3

...

40K-1

0 – 40K

•F0 0:20K
•F1 0:20K

40K – 80K

•F2 0:20K
•F3 0:20K

F2

40K

40K+2

...

80K-2

F3

40K+1

40K+3

...

80K-1

Example Projection Æ
Range [0 – 40K) is
mapped to F0 and F1.
Range [40K – 80K) is
mapped to F2 and F3.

Figure 3: Example projection that maps different ranges
of the shared log onto flash unit extents.

In addition, flash units are required to support a ‘seal’
command. Each incoming message to a flash unit is
tagged with an epoch number. When a particular epoch
number is sealed at a flash unit, it must reject all subse-
quent messages sent with an epoch equal or lower to the
sealed epoch. In addition, the flash unit is expected to
send back an acknowledgment for the seal command to
the sealing entity, including the highest page offset that
has been written on its address space thus far.

These requirements – write-once semantics and seal-
ing – are sufficient to ensure CORFU correctness. They
are also enough to ensure efficient appends and reads.
However, for efficient garbage collection on general-
purpose workloads (in terms of network/storage band-
width and flash erase cycles), CORFU requires that the
flash unit expose an infinite address space. We explain
this last requirement in detail when we discuss garbage
collection and the implementation of flash units.

3.2 Mapping in CORFU
Each CORFU client maintains a local, read-only replica
of a data structure called a projection that carves the
log into disjoint ranges. Each such range is mapped to
a list of extents within the address spaces of individual
flash units. Figure 3 shows an example projection, where
range [0, 40K) is mapped to extents on units F0 and F1,
while [40K, 80K) is mapped to extents on F2 and F3.

Within each range in the log, positions are mapped to
flash pages in the corresponding list of extents via a sim-
ple, deterministic function. The default function used is

round-robin: in the example in Figure 3, log position 0
is mapped to F0 : 0, position 1 is mapped to F1 : 0, po-
sition 2 back to F0 : 1, and so on. Any function can be
used as long as it is deterministic given a list of extents
and a log position. The example above maps each log
position to a single flash page; for replication, each ex-
tent is associated with a replica set of flash units rather
than just one unit. For example, for two-way replica-
tion the extent F0 : 0 : 20K would be replaced by
F0/F 0

0 : 0 : 20K and the extent F1 : 0 : 20K would
be replaced by F1/F1 : 0 : 20K.

Accordingly, to map a log position to a set of flash
pages, the client first consults its projection to determine
the right list of extents for that position; in Figure 3, posi-
tion 45K in the log maps to extents on units F2 to F3. It
then computes the log position relative to the start of the
range; in the example, this is 5K. Using this relative log
position, it applies the deterministic function on the list
of extents to determine the flash pages to use. With the
round-robin function and the example projection above,
the resulting page would be F2 : 2500.

By mapping log positions to flash pages, a projection
essentially provides a logical address space implemented
over a cluster of flash units. Clients can read or write to
positions in this address space by using the projection to
determine the flash pages to access. Since CORFU or-
ganizes this address space as a log (using a tail-finding
mechanism which we describe shortly), clients end up
writing only to the last range of positions in the projec-
tion ([40K, 80K) in the example); we call this the active
range in the projection.

3.2.1 Changing the mapping

In a sense, projections are similar to classical views. All
operations on flash units – reads, writes, trims – are is-
sued by clients within the context of a single projection.
When some event occurs that necessitates a change in the
mapping – for example, when a flash unit fails, or when
the tail of the log moves past the current active range –
a new projection has to be installed on all clients in the
system. In effect, each client observes a totally ordered
sequence of projections as the position-to-page mapping
evolves over time; we call a projection’s position in this
sequence its epoch. When an operation executes in the
context of a projection, all the messages it generates are
tagged with the projection’s epoch.

As with conventional view change protocols, all par-
ticipants – in this case, the CORFU clients – must move
consistently to a new projection when a change occurs.
The new projection should correctly reflect all activity
that was successfully completed in any previous projec-
tion; i.e., reads must reflect writes and trims that com-
pleted in older projections. Further, any activity in-flight

Implementation	- Mapping	(View	Change)
• Problem:	“projection”	is	like	views,	and	is	subject	to	change

• e.g.,	when	a	flash	unit	fails
• therefore,	we	need	seal

• Requirement:	during	change,	
• completed	writes/trims	must	be	kept
• in-flight	activities	must	be	aborted	and	re-tried

• Solution:	an	auxiliary-driven	reconfiguration	protocol:
• stores	a	sequence	of	projections	called	“auxiliary”
• seals	the	current	projection:	in-flight	activities	rejected
• writes	the	new	projection	at	the	auxiliary

Auxiliary

Projection0
epoch:0

Projection1
epoch:1

Projection2
epoch:2 …

Implementation	- Tail-Finding
• Naïve	Approach:	

• clients	contend	for	positions

• Sequencer:
• “a	simple	networked	counter”
• client	reserves	a	log	position	by	consulting	the	

sequencer	first

• Hole?
• what	if	a	client	reserves	a	log	position,	but	fails…
• let	other	clients	fill	the	holes	by	marking	a	

position	“junk”
• what	if	the	writing	client	is	just	slow?

Cluster of Network-Attached Flash Units

0 1 2 3 4 5 6 7 8 - - - - - - -

Each log position is mapped
to flash pages in the cluster

Append Read

Clients access flash units
directly over the network
via the Corfu library

Application

Corfu Library

 Database
 Key-Value Store
 Replicated State Machine
 Metadata Service
 Virtual Disk
…

Figure 1: CORFU presents applications running on
clients with the abstraction of a shared log, implemented
over a cluster of flash units by a client-side library.

Our design for this shared log abstraction is driven by a
single imperative: to keep flash units as simple, inexpen-
sive and power-efficient as possible. We achieve this goal
by placing all CORFU functionality at the clients and
treating flash units as passive storage devices. CORFU
clients read and write directly to the address space of
each flash unit, coordinating with each other to ensure
single-copy semantics for the shared log. Individual flash
units do not initiate communication, are unaware of other
flash units, and do not participate actively in replication
protocols. CORFU does require specific functionality
from flash units, which we discuss shortly.

Accordingly, CORFU is implemented as a client-side
library that exposes a simple API to applications, shown
in Figure 2. The append interface adds an entry to the
log and returns its position. The read interface accepts
a position in the log and returns the entry at that posi-
tion. If no entry exists at that position, an error code is
returned. The application can perform garbage collection
using trim, which indicates to CORFU that no valid data
exists at a specific log position. Lastly, the application
can fill a position with junk, ensuring that it cannot be
updated in future with a valid value.

CORFU’s task of implementing a shared log abstrac-
tion with this API over a cluster of flash units – each of
which exposes a separate address space – involves three
functions:

• A mapping function from logical positions in the
log to flash pages on the cluster of flash units.

• A tail-finding mechanism for finding the next

append(b) Append an entry b and return
the log position ` it occupies

read(`) Return entry at log position `
trim(`) Indicate that no valid data exists

at log position `
fill(`) Fill log position ` with junk

Figure 2: API exposed by CORFU to applications

available logical position on the log for new data.

• A replication protocol to write a log entry consis-
tently on multiple flash pages.

These three functions – combined with the ability of
clients to read and write directly to the address space of
each flash unit – are sufficient to support a shared log
abstraction. To read data at a specific log position, the
client-side library uses the mapping function to find the
appropriate flash page, and then directly issues a read to
the device where the flash page is located. To append
data, a client finds the tail position of the log, maps it
to a set of flash pages, and then initiates the replication
protocol that issues writes to the appropriate devices.

Accordingly, the primary challenges in CORFU re-
volve around implementing these three functions in an
efficient and fault-tolerant manner. Crucially, these
functions have to provide single-copy semantics for the
shared log even when flash units fail and clients crash.

In this section, we first describe the assumptions made
by CORFU about each flash unit. We then describe
CORFU’s implementation of the three functions de-
scribed above.

3.1 Flash Unit Requirements
The most basic requirement of a flash unit is that it sup-
port reads and writes on an address space of fixed-size
pages. We use the term ‘flash page’ to refer to a page
on this address space; however, the flash unit is free to
expose a logical address space where logical pages are
mapped internally to physical flash pages, as a conven-
tional SSD does. The flash unit is expected to detect and
re-map bad blocks in this address space.

To provide single-copy semantics for the shared
log, CORFU requires ‘write-once’ semantics on the
flash unit’s address space. Reads on pages that have
not yet been written should return an error code (er-
ror unwritten). Writes on pages that have already
been written should also return an error code (er-
ror overwritten). In addition to reads and writes, flash
units are also required to expose a trim command, allow-
ing clients to indicate that the flash page is not in use
anymore.

CORFU

Sequencer

Implementation	- Replication
*	A	log	position	is	mapped	to	a	replica	set	of	flash	pages
• Requirement:	

• safety-under-contention:	when	multiple	clients	write	to	the	replica	set	for	a	log	position,	
reading	clients	should	observe	a	single	value

• durability:	written	data	should	be	visible	to	reads	only	after	it	reaches	f+1	replicas

• Problem:
• different	clients	writing	in	parallel?

• Solution:	a	chaining	protocol
• a	client-driven	variant	of	Chain	Replication
• write	in	a	deterministic	order
• read	the	last	unit	of	the	chain	when	unsure

F0:0 F0’:0 F0’’:0

write read

Implementation	- Flash	Unit
• Requirements:

• write-once	semantics
• a	seal-capability
• an	infinite	address	space

• Solutions:
• a	hash-map	from	virtual	address	to	physical	address
• an	epoch	number	cur_sealer_epoch

Applications	- CORFU-SMR
CORFU	is	ideal	for	implementing	replicated	state	machine!

Each	server
• plays	the	log	forward	to	execute	commands
• proposes	new	commands	by	appending	them	to	log

Problem?
• With	N	servers	running	T	commands/sec,	the	CORFU	log	see…
• N	*	T	reads/sec.
• Probably	would	be	solved	by	multicasting	the	log	to	servers

Evaluation	- Latency

• Server:	TCP,	Flash	means
• server-attached	flash	unit	that	r/w	on	SSD
• clients	connect	over	TCP/IP

• The	ordering	of	read/append/fill?
• append/fill	->	chain	replica

• The	latency	of	CORFU	is	very	low

N ⇤ T reads/sec. However, we retained this design since
we did not bottleneck at the shared log in our experi-
ments; instead, we were limited by the ability of each
SMR server to receive and process commands. In the fu-
ture, we expect to explore different approaches to playing
the log forward, perhaps by having dedicated machines
multicast the contents of the log out to all SMR servers.

Other Applications: As mentioned previously, we
are implementing the Hyder database [7] over CORFU.
One application in the works is a shared block device
that exposes a conventional fixed-size address space; this
can then be used to expose multiple, independent virtual
disks to client VMs [20]. Another application is reliable
multicast, where senders append to a single, channel-
specific log before multicasting. A receiver can detect
lost packets by observing gaps in the sequence of log po-
sitions, and retrieve them from the log.

5 Evaluation
We evaluate CORFU on a cluster of 32 Intel X25V
drives. Our experiment setup consists of two racks;
each rack contains 8 servers (with 2 drives attached to
each server) and 11 clients. Each machine has a 1
Gbps link. Together, the two drives on a server pro-
vide around 40,000 4KB read IOPS; accessed over the
network, each server bottlenecks on the Gigabit link and
gives us around 30,000 4KB read IOPS. Each server runs
two processes, one per SSD, which act as individual flash
units in the distributed system. Currently, the top-of-rack
switches of the two racks are connected to a central 10
Gbps switch; our experiments do not generate more than
8 Gbps of inter-rack traffic. We run two client processes
on each of the client machines, for a total of 44 client
processes.

In all our experiments, we run CORFU with two-way
replication, where appends are mirrored on drives in ei-
ther rack. Reads go from the client to the replica in the
local rack. Accordingly, the total read throughput possi-
ble on our hardware is equal to 2 GB/sec (16 servers X 1
Gbps each) or 500K/sec 4KB reads. Append throughput
is half that number, since appends are mirrored.

Unless otherwise mentioned, our throughput numbers
are obtained by running all 44 client processes against
the entire cluster of 32 drives. We measure throughput at
the clients over a 60-second period during each run.

In addition to this primary deployment of server-
attached SSDs, we also provide some results over the
prototype FPGA+SSD flash unit. In this case, the FPGA
has two SSDs attached to it and emulates a pair of flash
units, and a single CORFU client accesses it over the
network. The FPGA runs at 1 Gbps or roughly 30K
4KB reads/sec. When running at full speed, it consumes

 0

 500

 1000

 1500

 2000

 2500

 3000

Reads Appends Fills

La
te

nc
y

(m
s)

Server:TCP,Flash
Server:TCP,RAM
Server:UDP,RAM
FPGA:UDP,Flash

Figure 5: Latency for CORFU operations on different
flash unit configurations.

around 15W; in contrast, one of our servers consumes
250W. We also experimented with low-power Atom-
based servers, but found them incapable of serving SSD
reads over the network at 1 Gbps.

5.1 End-to-end Latency
We first summarize the end-to-end latency characteris-
tics of CORFU in Figure 5. We show the latency for
read, append and fill operations issued by clients for four
CORFU configurations. The left-most bar for each oper-
ation type (Server:TCP,Flash) shows the latency of the
server-attached flash unit where clients access the flash
unit over TCP/IP when data is durably stored on the
SSD; this represents the configuration of our 32-drive de-
ployment. To illustrate the impact of flash latencies on
this number, we then show (Server:TCP,RAM), in which
the flash unit reads and writes to RAM instead of the
SSD. Third, (Server:UDP,RAM) presents the impact of
the network stack by replacing TCP with UDP between
clients and the flash unit. Lastly, (FPGA:UDP,Flash)
shows end-to-end latency for the FPGA+SSD flash unit,
with the clients communicating with the unit over UDP.

Against these four configurations we evaluate the la-
tency of three operation types. Reads from the client in-
volve a simple request over the network to the flash unit.
Appends involve a token acquisition from the sequencer,
and then a chained append over two flash unit replicas.
Fills involve an initial read on the head of the chain to
check for incomplete appends, and then a chained ap-
pend to two flash unit replicas.

In this context, Figure 5 makes a number of impor-
tant points. First, the latency of the FPGA unit is very
low for all three operations, providing sub-millisecond
appends and fills while satisfying reads within half a mil-
lisecond. This justifies our emphasis on a client-centric

Latency	for	CORFU	operations	on	different	flash-
unit	configurations

Evaluation	- Throughput Figure 6: Latency distributions for CORFU operations on 4KB entries.

0K

125K

250K

375K

500K

 4 8 12 16 20 24 28 32
 0

 0.5

 1

 1.5

 2

4K
B

 E
nt

rie
s/

Se
c

G
B

/s
ec

Number of Flash Units

Append Throughput
Read Throughput

Figure 7: Throughput for random reads and appends.

design; eliminating the server from the critical path ap-
pears to have a large impact on latency. Second, the la-
tency to fill a hole in the log is very low; on the FPGA
unit, fills complete within 650 microseconds. CORFU’s
ability to fill holes rapidly is key to realizing the bene-
fits of a client-centric design, since hole-inducing client
crashes can be very frequent in large-scale systems. In
addition, the chained replication scheme that allows fast
fills in CORFU does not impact append latency drasti-
cally; on the FPGA unit, appends complete within 750
microseconds.

5.2 Throughput

We now focus on throughput scalability; these experi-
ments are run on our 32-drive cluster of server-attached
SSDs. To avoid burning out the SSDs in the throughput
experiments, we emulate writes to the SSDs; however,
all reads are served from the SSDs, which have ‘burnt-

in’ address spaces that have been written to completely.
Emulating SSD writes also allows us to test the CORFU
design at speeds exceeding the write bandwidth of our
commodity SSDs.

Figure 7 shows how log throughput for 4KB appends
and reads scales with the number of drives in the sys-
tem. As we add drives to the system, both append and
read throughput scale up proportionally. Ultimately, ap-
pend throughput hits a bottleneck at around 180K ap-
pends/sec; this is the maximum speed of our sequencer
implementation, which is a user-space application run-
ning over TCP/IP. Since we were near the append limit of
our hardware, we did not further optimize our sequencer
implementation.

At such high append throughputs, CORFU can wear
out 1 TB of MLC flash in around 4 months. We believe
that replacing a $3K cluster of flash drives every four
months is acceptable in settings that require strong con-
sistency at high speeds, especially since we see CORFU
as a critical component of larger systems (as a consensus
engine or a metadata service, for example).

5.3 Reconfiguration
Reconfiguration is used extensively in CORFU, to re-
place failed drives, to add capacity to the system, and
to add, remove, or relocate replicas. This makes recon-
figuration latency a crucial metric for our system.

Recall that reconfiguration latency has two compo-
nents: sealing the current configuration, which contacts
a subset of the cluster, and writing the new configuration
to the auxiliary. In our experiments, we conservatively
seal all drives, to provide an upper bound on reconfigu-
ration time; in practice, only a subset needs to be sealed.
Our auxiliary is implemented as a networked file share.

Figure 8 (Left) shows throughput behavior at an ap-
pending and reading client when a flash unit fails. When

Throughput	for	random	reads	and	appends

• High	Throughput

• Scalability
• nice	scalability
• appends’	bottleneck:	sequencer

Evaluation	- Replication

Throughputs:
• appending	clients	waits	
• reading	clients	continue	on	alive	

replicas

Latency:
• most	of	sealing	latency	<	10ms
• most	of	reconfiguration	latency	<	35ms

0K

5K

10K

15K

20K

25K

 0 5 10 15 20 25 30 35

Th
ro

ug
hp

ut
 (O

ps
/S

ec
)

Time (seconds)

Reads
Appends

Failure

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50

%
 o

f R
ec

on
fig

ur
at

io
ns

Latency (ms)

Sealing Latency
Total Latency

Figure 8: Reconfiguration performance on 32-drive cluster. Left: Appending client waits on failed drive for 1 second
before reconfiguring, while reading client continues to read from alive replica. Middle: Distribution of sealing and
total reconfiguration latency for 32 drives. Right: Scalability of sealing with number of drives.

the error occurs 25 seconds into the experiment, the ap-
pending client’s throughput flat-lines and it waits for a
1-second timeout period before reconfiguring to a pro-
jection that does not have the failed unit. The reading
client, on the other hand, continues reading from the
other replica; when reconfiguration occurs, it receives an
error from the replica indicating that it has a stale, sealed
projection; it then experiences a minor blip in throughput
as it retrieves the latest projection from the auxiliary. The
graph for sequencer failure looks identical to this graph.

Figure 8 (Middle) shows the distribution of the latency
between the start of reconfiguration and its successful
completion on a 32-drive cluster. The median latency
for the sealing step is around 5 ms, while writing to the
auxiliary takes 25 ms more. The slow auxiliary write is
due to overheads in serializing the projection as human-
readable XML and writing it to the network share; im-
plementing the auxiliary as a static CORFU instance and
writing binary data would give us sub-millisecond auxil-
iary writes (but make the system less easy to administer).

Figure 8 (Right) shows how the median sealing latency
scales with the number of drives in the system. Sealing
involves the client contacting all flash units in parallel
and waiting for responses. The auxiliary write step in
reconfiguration is insensitive to system size.

5.4 Applications

We now demonstrate the performance of CORFU-Store
for atomic multi-key operations. Figure 9 (Left) shows
the performance of multi-put operations in CORFU-
Store. On the x-axis, we vary the number of keys up-
dated atomically in each multi-put operation. The bars
in the graph plot the number of multi-puts executed per

second. The line plots the total number of CORFU log
appends resulting as a result of the multi-put operations;
a multi-put involving k keys generates k+1 log appends,
one for each updated key and a final append for the com-
mit record. For small multi-puts involving one or two
keys, we are bottlenecked by the ability of the CORFU-
Store map-service to handle and process incoming com-
mit records; our current implementation bottlenecks at
around 50K single-key commit records per second. As
we add more keys to each multi-put, the number of log
appends generated increases and the CORFU log bot-
tlenecks at around 180K appends/sec. Beyond 4 keys
per multi-put, the log bottleneck determines the number
of multi-puts we push through; for example, we obtain
180K

6 =30K multi-puts involving 5 keys.

Figure 9 (Right) shows performance for atomic multi-
get operations. As we increase the number of keys ac-
cessed by each multi-get, the overall log throughput stays
constant while multi-get throughput decreases. For 4
keys per multi-get, we get a little over 100K multi-gets
per second, resulting in a load of over 400K reads/s on
the CORFU log.

Figure 10 shows the throughput of CORFU-SMR,
the state machine replication library implemented over
CORFU. In this application, each client acts as a state
machine replica, proposing new commands by append-
ing them to the log and executing commands by playing
the log. Each command consists of a 512-byte payload
and 64 bytes of metadata; accordingly, 7 commands can
fit into a single CORFU log entry with batching. In the
experiment, each client generates 7K commands/sec; as
we add clients on the x-axis, the total rate of commands
injected into the system increases by 7K. On the y-axis,
we plot the average rate (with error bars signifying the

read	throughput	at	failure

write	throughput	at	failure

Conclusion
CORFU
• Organizes	a	cluster	of	flash	drives	as	a	shared	log
• Features	atomicity	and	durability
• Applicable	in	various	distributed	system	problems

Take-away:
• The	big-picture	of	designing	a	system
• Handling	the	tricky	points	with	distributed	system	knowledge

• e.g.,	replication	using	chain,	sealing	by	keeping	an	epoch	number

Ending
• Thank	you	for	listening!

• Some	details	not	covered
• e.g.,	other	applications	of	CORFU,	like	CORFU-Store

• Questions/corrections/discussions	welcome!

