UNIVERSITY OF

MICHIGAN

CORFU: A Shared Log Design for Flash Clusters

Paper by Mahesh Balakrishnan et al.
Presented by Qingyi Chen

Before Entering the topic...

A paper about “design”
* unlike previous papers about insights and optimization
* unlike a specific problem-solving algorithm or protocol
* acollection of problems met when building a system, and proposed solutions

* A paper about a complex system

* different problems in the system are not always closely related
* logic flow is not linear, but like breath-first search
* think as the designer

e Let’s get into the topic

M UNIVERSITY OF MICHIGAN

Introduction

CORFU:
 “A Shared Log Design for Flash Clusters” log
e Uses a cluster of flash drives
* Implements a shared log

Detailed design and Implementations
e User interface *

e Core functions - - - - ;
* Flash Unit Specifications

"*vf’)‘“uf’)l‘,_f k,f)hqu“u”) H-r"“')r‘“‘x-f’) »w‘“‘w.f
’ COCGGOOCSS
Evaluations a cluster of flash drives

M UNIVERSITY OF MICHIGAN

Applications

Motivation

* Why shared log?
* High consistency
 Making ordering easy
* Straight-forward applications in distributed systems
e State Machine Replication

* Flash Drives
* Persistence, high throughput, low latency
* Fast random read
e Fast append

M UNIVERSITY OF MICHIGAN

Design - Overview

* C(lient: interact using CORFU CLIENT

e CORFU: the abstraction with “API1”s

0(1(2(3(4(5(6(7(8 - ={ -

Each log position is mapped
to flash pages in the cluster

“x,/” ka)ﬁv)lv/\/*vf’“\/j&vf’huf

<> <D << <> <O <<
Cluster of Network-Attached Flash Units

M UNIVERSITY OF MICHIGAN

* Flash Units: the “log”

Design - Client Interface

e C(lient: interact using CORFU
o Append (b) CLIENT
// Append an entry b, gets the log position | it occupies

* Read(1l) 1@CECAEEGEeaaaaaas
// Gets the entry at log position | Each log position is mapped
to flash pages in the cluster

e Trim(1l)

& G <4 1 S
// Indicates that no valid data exist at log position | P / oL ‘/ < “v’”‘

OGO OOCSH
Cluster of Network-Attached Flash Units

e Fill(1l)
// Fills log position | with junk

M UNIVERSITY OF MICHIGAN

Design - CORFU AP

e CORFU: the abstraction with “API1”s

CLIENT

A mapping function
Maps logical positions to flash pages

0(1(2(3(4(5(6(7(8(-

* A tail-finding mechanism Each log position is mappedjx

Finds the next available logical position on the log to flaSh pages in the cluster

L. P JC«/L/ /«Jh\/ ,/k\/-:
* A replication protocol S S GOG S SSS
Writes a log entry consistently on multiple flash pages Cluster of Network-Attached Flash Units

M UNIVERSITY OF MICHIGAN

Design - Flash Unit Specifications

* Flash Unit: the “log”
» Supports read/write in the unit of pages CLIENT

* Holds “Write-once” semantics

* Returns an error if read on unwritten pages 0(1(2(3(4(5(6(7(8(-
* Returns an error if written on written pages Each log position is mapped
to flash pages in the cluster

e Supports a “trim” command

_ ‘*df’ uf’&/t,/ ,/aﬂk/ ,/“\/
* Releases occupied pages

PO OCOCH
Cluster of Network-Attached Flash Units

e Supports a “seal” command
* Everyrequest is tagged with an epoch number
* Rejects subsequent requests with a lower or equal epoch number

M UNIVERSITY OF MICHIGAN

Design - The Full View

* When aclient requests read (1), CORFU
e consults its mapping function CLIENT
* finds the corresponding flash pages in the flash units
* |ssues a read to the hardware

0@EeCeaeeGeeaeeaanes

* When a client requests append (b), CORFU Each log position is mapped\ix
« finds the tail position of the log toflash pages in the cluster

* maps it to flash pages kj,, JEJ&/ /,v,;k\/ f“\/
* initiates the replication protocol to write to hardware <> < > < oo < o<
CIuster of Network-Attached Flash Units

M UNIVERSITY OF MICHIGAN

Implementation - Mapping (Overview)

* “Projection”: (1) splits log into disjoint ranges (2) maps log position to a list of extents

 default: round-robin (right figure) F, 020K)
e e.g., logposition0->F0:0 Example Projection = o-aok | *F, 0:20K
. . Range [0 — 40K) is
 e.g. -> F1:
e.g., log pos!t!on 1->F1:0 mapped to FO and FL. \/ o0k N
* e.g.,logposition2->F0:1 Range [40K — 80K) is 2 7
e mapped to F2 and F3 40k-80K) oF; 0:20K)
* |log position 45k -> ? PP :

* log position 45k -> F2: 2500

* Any mapping function works

* Replication 0 :

e each extent associated with a replica set of units 2 3
« e.g. FO: 0:20K -> FO / FO’: 0:20K _-

* Essentially providing a logical address space

M UNIVERSITY OF MICHIGAN

40K-2 40K-1

Implementation - Mapping (View Change)

* Problem: “projection” is like views, and is subject to change
* e.g., when a flash unit fails
 therefore, we need seal

* Requirement: during change,
* completed writes/trims must be kept
* in-flight activities must be aborted and re-tried

* Solution: an auxiliary-driven reconfiguration protocol:

* stores a sequence of projections called “auxiliary”
« seals the current projection: in-flight activities rejected AU
* writes the new projection at the auxiliary Projectiond Projectionl Projection?

epoch:0 epoch:1 epoch:2

M UNIVERSITY OF MICHIGAN

Implementation - Tail-Finding

* Naive Approach:
* clients contend for positions
* Sequencer:

 “asimple networked counter”

* client reserves a log position by consulting the
sequencer first

e Hole?

* let other clients fill the holes by marking a
position “junk”

* what if the writing client is just slow?

what if a client reserves a log position, but fails...

Sequencer

0012034506 (7(8(-(-(-(-(-¢(-

Each log position is mapped
to flash pages in the cluster
ST '_,.-"'ﬁ'“' i s W I,.-*"n“" B | e e S
S S O A O
T R L N N L r__.-f"“‘“-b. J___.-"ﬂ"'\-.._ T,
OGO OCOH

Cluster of Network-Attached Flash Units

M UNIVERSITY OF MICHIGAN

Implementation - Replication

* A log position is mapped to a replica set of flash pages

* Requirement:
» safety-under-contention: when multiple clients write to the replica set for a log position,
reading clients should observe a single value

e durability: written data should be visible to reads only after it reaches f+1 replicas

* Problem:
» different clients writing in parallel?

read

* Solution: a chaining protocol write
* aclient-driven variant of Chain Replication
* write in a deterministic order
* read the last unit of the chain when unsure

M UNIVERSITY OF MICHIGAN

Implementation - Flash Unit

* Requirements:
* write-once semantics
* aseal-capability
e aninfinite address space

* Solutions:
* a hash-map from virtual address to physical address
* anepoch number cur sealer epoch

M UNIVERSITY OF MICHIGAN

Applications - CORFU-SMR

CORFU is ideal for implementing replicated state machine!

Each server

* plays the log forward to execute commands

* proposes new commands by appending them to log

Problem?

e With N servers running T commands/sec, the CORFU log see...
e N *Treads/sec.

* Probably would be solved by multicasting the log to servers

M UNIVERSITY OF MICHIGAN

Evaluation - Latency

3000 . . .
Server:TCP,Flash
e Server: TCP, Flash means 00 S D RAM e
: 500 |- el = |
* server-attached flash unit that r/w on SSD Server:UDP,RAM

FPGA:UDP, Flash mmm

e clients connect over TCP/IP

* The ordering of read/append/fill?
* append/fill -> chain replica

Latency (ms)
p— p— [\©)
) N)
S oS 0D
S S 3
I
|

500 |
* The latency of CORFU is very low —-
Reads Appends Fills

Latency for CORFU operations on different flash-
unit configurations

M UNIVERSITY OF MICHIGAN

Evaluation - Throughput

' 500K — T 2
* High Throughput Append Throughput
Read Throughput

375K 1.5
e Scalability
* nice scalability 250K 1
* appends’ bottleneck: sequencer
125K - I | 0.5
0K J I 0

12 16 20 24 28 32
Number of Flash Units

Throughput for random reads and appends

M UNIVERSITY OF MICHIGAN

4K B Entries/Sec
GB/sec

Evaluation - Replication

read throughput at failure

25K 50
. Sealing Latency
Throu gh puts: ok 2 40 Total Latency
. . . Q g B 7
* appending clients waits & 2
215K 530 |- l
. . . . O &0
* reading clients continue on alive S | =
o —X— @)
replicas £10K | Failure - - - - g20 1]
S 5
£ 5K <10 | w |
Latency: oK o itk punlltnellll] .
: ling | 10 0 5 10 15 20/25 30 35 0 10 20 30 40 50
[J
most of sea Ing atency < ms Time (sgconds) Latency (ms)

* most of reconfiguration latency < 35ms te throuehtat at fail
write rougnput at raliure

M UNIVERSITY OF MICHIGAN

Conclusion

CORFU
* Organizes a cluster of flash drives as a shared log
* Features atomicity and durability

* Applicable in various distributed system problems

Take-away:
* The big-picture of designing a system

* Handling the tricky points with distributed system knowledge
* e.g., replication using chain, sealing by keeping an epoch number

M UNIVERSITY OF MICHIGAN

Ending
* Thank you for listening!

 Some details not covered
* e.g., other applications of CORFU, like CORFU-Store

 Questions/corrections/discussions welcome!

M UNIVERSITY OF MICHIGAN

