
Don't Settle for Eventual:
Scalable Causal Consistency for Wide-Area Storage with COPS

Presented by Zach Carey

W. Lloyd, M. Freedman, M. Kaminsky, and D. Andersen

Let's build a distributed data store!

Store items as key-value pairs

Desired operations:

Read a value based on key: val = get(key)

Write a value to a key: put(key,val)

Let's build a distributed data store!

Desired properties:

1. Availability

2. Network Partition Tolerance

3. Strong Consistency

CAP Theorem

A distributed data store cannot provide availability, network partition
tolerance, and strong consistency.

Real Systems

Desired properties:

1. Availability

2. Network Partition Tolerance

3. Strong Consistency

Real Systems

Desired properties:

1. Availability

2. Network Partition Tolerance

3. No strong consistency...

"Eventual" Consistency

For a given key, replicas will eventually converge on the correct value.

Can we do better?

Consistency Options

Linearizability

Sequential

Causal Per-Key Sequential

Eventual FIFO

Strength

Consistency Options

Linearizability

Sequential

Causal Per-Key Sequential

Eventual FIFO

Strength

CAP Theorem...

Consistency Options

Linearizability

Sequential

Causal Per-Key Sequential

Eventual FIFO

Strength

Latency Requirements...

Consistency Options

Linearizability

Sequential

Causal Per-Key Sequential

Eventual FIFO

Strength

Want to do better...

Introduce Causal+

Linearizability

Sequential

Causal Per-Key Sequential

Eventual FIFO

Strength

Causal+

Agenda

● Motivation

● Define Causal+

● COPS & COPS-GT

● Evaluation

● Conclusion + Discussion

Agenda

● Motivation

● Define Causal+

● COPS & COPS-GT

● Evaluation

● Conclusion + Discussion

Let a ↝ b denote that b is potentially dependent on a.

Rule 1: "Execution Thread"

If a happens before b on the same thread of execution, then a ↝ b

Client A put(x,1) put(y,4)

a b↝

Rule 2: "Gets From"

If a is a put and b is a get that returns the same value, then a ↝ b

Client A put(x,1)

a

Client B 1=get(x)

b

↝

Rule 3: Transitivity

If a ↝ b and b ↝ c, then a ↝ c

Client A put(x,1)

a

Client B 4=get(y)

b

put(y,4)

c

↝

↝

Potential Causality a↝b

1. Execution Thread: if a happens before b on the same thread of

execution, then a ↝ b

2. Gets From: if a is a put and b is a get that returns the same value,

then a ↝ b

3. Transitivity: if a ↝ b and b ↝ c, then a ↝ c

Causal Consistency

Values returned from get operations at a replica are
consistent with the order defined by ↝

Problem: Conflicts

Two put operations to the same key that are not causally related

x = 0

x = 0

Client A

Client B

Problem: Conflicts

Two put operations to the same key that are not causally related

x = 0

x = 0

Client A

Client B

put(x,1)

put(x,2)

Problem: Conflicts

Two put operations to the same key that are not causally related

x = 0

x = 0

Client A

Client B

put(x,1)

put(x,1)

put(x,2)

put(x,2)

Problem: Conflicts

Two put operations to the same key that are not causally related

x = 2

x = 1

Client A

Client B

Replicas have
diverged!

Causal+ Consistency

Values returned from get operations at a replica are
consistent with the order defined by ↝ with convergent
conflict resolution.

COPS Overview

Client Client Library

Node

Node

Node

Local Datacenter

Other Datacenters

Client Library Interface

Read a value based on key: val = get(key, ctx)

Write a value to a key: put(key, val, ctx)

Create context: ctx = createContext()

Delete context: bool = deleteContext(ctx)

Client Library Storage

The client library will be storing <key, version> pairs.

On a get, retrieved <key, version> pair is added

On a put, entries are cleared and replaced with this put

Datacenter Interface

put_after(key, value, nearest, version)

<value, version> = get_by_version(key, version)

Conflict Detection

Invoke the "last-writer-wins" rule with the version number

● Use Lamport Timestamp

Lamport Timestamp

Lamport Clock Unique Node ID

Example put

1. Client calls put(key, val)

Client put(x,4) Client Library

Example put

2. Client Library calculates nearest dependency

Client Library

put(x,4)

key version

y 1

z 2

Example put

3. Client Library sends put_after request

Client Library

put(x,4)

key version

y 1

z 2

put_after(x,4,<z,2>)

Node

Primary
Node

Node

Local Datacenter

Example put

4. Return new version

Client Library

put(x,4)

key version

y 1

z 2

3

Node

Primary
Node

Node

Local Datacenter

Example put

5. Client Library updates metadata and returns

Client Library

key version

x 3

Client
SUCCESS

Example put

6. Local Datacenter forwards to others

Node

Primary
Node

Node

Local Datacenter

put_after(x,4,<z,2>, 3)

Node

Primary
Node

Node

Example get

1. Client calls get(key)

Client get(y) Client Library

Example get

2. Client Library sends get_by_version request

Client Library get_by_version(y,
LATEST)

Node

Node

Primary
Node

Local Datacenter

key version

x 3

get(y)

Example get

3. Returns <value, version>

Client Library <100, 4>

Node

Node

Primary
Node

Local Datacenter

key version

x 3

get(y)

Example get

4. Client Library updates metadata and returns

Client LibraryClient
100

key version

x 3

y 4

We can write values with put.

We can retrieve values with get.

These operations respect causal+ consistency.

But there is still in issue...

Consistent Dependent get Requests

Let x and y be dependent keys

Client A

Client B

put(x,0)

0=get(x)

put(y,0) put(x,1) put(y,1)

1=get(y)

These values are inconsistent with each other

Client Library Interface

Read a value based on key: val = get(key, ctx)

Write a value to a key: put(key, val, ctx)

Create context: ctx = createContext()

Delete context: bool = deleteContext(ctx)

Get collection of keys: <values> = get_trans(<keys>,ctx)

COPS-GT Client Library Changes

The client library will be storing <key, version, dep> tuples.

On a get, retrieved <key, version, dep> tuple is added

On a put, that key's deps are set to all other keys in that context

Datacenter Interface Changes

put_after(key, value, [deps], nearest, version)

<value, version, deps> = get_by_version(key, version)

Example put (COPS-GT)

1. Client calls put(key, val)

Client put(x,4) Client Library

Example put (COPS-GT)

2. Client Library calculates all dependencies

Client Library

put(x,4)

key version deps

y 1

z 2 <y, 1>

Example put (COPS-GT)

3. Client Library sends put_after request

Client Library

put(x,4)

key version deps

y 1

z 2 <y,1>

put_after(x,4,deps)

Node

Primary
Node

Node

Local Datacenter

Example put (COPS-GT)

4. Return new version

Client Library

put(x,4)

3

Node

Primary
Node

Node

Local Datacenter

key version deps

y 1

z 2 <y,1>

Example put (COPS-GT)

5. Client Library updates metadata and returns

Client LibraryClient
SUCCESS

key version deps

y 1

z 2 <y,1>

x 3 <y,1>
<z,2>

Example put (COPS-GT)

6. Local Datacenter forwards to others

Node

Primary
Node

Node

Local Datacenter

put_after(x,4,deps, 3)

Node

Primary
Node

Node

Example get (COPS-GT)

1. Client calls get(key)

Client get(y) Client Library

Example get (COPS-GT)

2. Client Library sends get_by_version request

Client Library get_by_version(y,
LATEST)

Node

Node

Primary
Node

Local Datacenter

get(y)

key version deps

y 1

z 2 <y,1>

x 3 <y,1>
<z,2>

Example get (COPS-GT)

3. Returns <value, version, deps>

Client Library <100, 4, deps>

Node

Primary
Node

Node

Local Datacenter

get(y)

key version deps

y 1

z 2 <y,1>

x 3 <y,1>
<z,2>

Example get (COPS-GT)

4. Client Library updates metadata and returns

Client LibraryClient
100

key version deps

y 4 <z, 2>
<x, 3>

z 2 <y,1>

x 3 <y,1>
<z,2>

COPS-GT Get Transaction: Two Rounds

Round 1:

● Issue a get_by_version for each key concurrently
● Check dependencies. Satisfied if:

○ Dependency was not in the request
○ OR Key was requested, and its version is ≥ dependency

Example:
Value Requested X Y

Version 2 3

Dependencies <Z, 5> <X, 4>

<Y, 1>

COPS-GT Get Transaction: Two Rounds

Round 2

● For each inconsistent key, call get_by_version again

In this example, request version 4 of X

Value Requested X Y

Version 2 3

Dependencies <Z, 5> <X, 4>

<Y, 1>

Let's revisit this example

Let x and y be dependent keys

Client A

Client B

put(x,0)

0=get(x)

put(y,0) put(x,1) put(y,1)

1=get(y)

These values are inconsistent with each other

Let's revisit this example

Let x and y be dependent keys

Client A

Client B

put(x,0)

get_trans(x, y)

put(y,0) put(x,1) put(y,1)

Round 1:

Call get_by_version for X and Y

Value Requested X Y

Version 1 4

Dependencies <X, 3>

Round 2:

Call get_by_version(x, 3) to satisfy Y's dependencies

Problem Solved!

Garbage Collection

Define a timeout T for get_trans

1. Key Versions: Clean up after T seconds

2. Dependencies: Clean up T seconds after all data centers commit value

3. Client Metadata: Clean up when Datacenter communicates:

a. A "never-depend" flag

b. Global Checkpoint Time

Fault Tolerance
1. Client Failures: Do nothing

2. Node Failures: Chain Replication

3. Datacenter Failures:

a. put_after operations lost / delayed

b. Garbage Collection: Fix Partition or System reconfiguration

Conflict Detection

Invoke the "last-writer-wins" rule with the version number

● Use Lamport Timestamp

Lamport Timestamp

Lamport Clock Unique Node ID

Evaluation: Scalability

Number of Servers

Throughput
(Kops/s)

LOG

COPS

COPS-GT

Doubles as servers double

Evaluation: Latency

Number of dependencies

Control

Evaluation: Throughput

Throughput
(Kops/s)

Put:Get Ratio Key Variance

Conclusion

● Distributed data stores should strive for higher consistency than the

eventual consistency model

● COPS & COPS-GT are scalable implementations of causal+

consistency

Thank you!

Discussion

