Bigtable: A Distributed Storage

System for Structured Data

F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T Chandra, A. Fikes, R. E. Gruber

Presenter: Wei-Lun Huang

° Fay Chang et al. Bigtable: A Distributed Storage System for Structured Data

Outline

% Problem Formulation
% Data Model

¢ Building Blocks

% Implementation

< Evaluation

Outline

% Problem Formulation
% Data Model

¢ Building Blocks

% Implementation

< Evaluation

Google Projects

X/

% Quantity
> Petabytes of Data
> Thousands of Machines

/7

% Variety
> Structured Data of Different Formats
> Different Demands: throughput vs. latency

Goal: one distributed storage system

Expectations

% Scalability: more, more, and more tables/machines
% Applicability: a variety of Google projects as clients
% Performance: (concurrent) reads/writes from many clients

% Availability: crash failures, network partition, and more

Key Ideas: in my opinion

X/

% Performance! Performance! Performance!

> Structured Data: a weak assumption
> Locality: old but classic

/7

% Base the design on existing infrastructures!

> |t's Google. Why reinventing the wheel?
> (Much of the) Availability

Outline

% Problem Formulation
% Data Model

¢ Building Blocks

% Implementation

< Evaluation

Data Model: Row

« Atomic Read/Write

<+ Row Keys: sorted in lexicographic order ~ < _

~
~

% Locality
% Dynamic Partition by Row Range -
> One Table — Several Tablets =" -
> One Tablet <> One Row Range =~
> Distribution & Load Balancing

Data Model: Column Family

X/

% Columns of the Same Data Type

% Column Key = Family:Qualifier

X/

% At the column-family level, ...
> Access Control

> Memory/Disk Accounting

> Locality Group + Compression

Data Model: Timestamp

R/
0‘0

o

*

Y/
0‘0

One Cell/Data, Multiple Versions
> The Latest Version First

From Bigtable? From client applications?
> Real Time in us vs. Customized Collision Avoidance

Garbage Collection: the last n copies vs. in the last m days

10

Example: Webtable

"contents:" "anchor:cnnsi.com" "anchor:my.look.ca"
I I | | I ' ' I !
| } | | ¢ : : ‘ [
Lo B e o o Wi e e e ven B e s m S s o s s e P R T e s SR T T QO P | g S S
 Ti<htmib>n | t, | - —
"com.cnn.www" — T <Atmb>at "CNN" =t CNN.com" (= tg
(1] e " | | <
| =, ‘_JIG_____I ______________________ e e o =
I I | |
| | | |

° Fay Chang et al. Bigtable: A Distributed Storage System for Structured Data

11

Outline

% Problem Formulation
% Data Model

% Building Blocks

% Implementation

< Evaluation

12

AP]

% {Creation, Deletion} of {Table, Column Family}

% Metadata Change: access control rights

% Row Read, Value Write/Deletion, Column Family Iteration, ...
% Single-Row Transaction: read-modify-write

s Execution of Client-Supplied Scripts
> No writes back into Bigtable!

13

Google Infrastructures Availability

X/

% Google File System (GFS): persistent log/data storage

% Cluster Management System

> What if other distributed applications on the same machines?
> Job Scheduling + Resource Management

% Sorted String Table (SSTable): “data” file format in GFS

14

Google Infrastructures: Chubby Availability

+ Paxos-Based Distributed Lock Service

> Directory/File as a Lock
> Atomic File Read/Write + Consistent Client-Side Caching

% One Client, One Session with Chubby
> Session Expiration — All Locks + Open Handles Lost

% Bigtable relies heavily on Chubby.
> Chubby Unavailable — Bigtable Unavailable
> Bigtable Debugging — Cubby Debugging

15

Chubby in Bigtable

% Always <1 Active Master Server
«» Tablet Server Existence/Death

% Metadata Storage
> Access Control
> Column Family
> Bootstrap Location of Bigtable Data

16

17

METADATA

Pointer to

Outline

% Problem Formulation
% Data Model

¢ Building Blocks

% Implementation

< Evaluation

18

Three Components

% One Master Server
> Tablet Assignment: to tablet servers V
> Addition/Expiration Detection: of tablet servers
> Load Balancing: for tablet servers

/7

% Many Tablet Servers: dynamic addition/removal
> Tablet Serving: reads/writes from clients V

% Client-Side Library
> Tablet Location V

19

Three Components: more tasks

X/

< One Master Server

> Schema Change: table/column family creation
> GFS Garbage Collection

/7

% Many Tablet Servers: dynamic addition/removal
> Tablet Split: if a tablet >100~200 MB

% Client-Side Library

20

Tablet
Server
Tablet
Server

Tablet
Server

Master
Server

e e ———

Pointer to
METADATA

servers/

21

Tablet Location: three-level hierarchy

UserTable1
Other pozzzozooiss

METADATA -
Bblels Tl

Root tablet / —————— = :
Chubby file (1st METADATA tablet) F-ooooIzoooos
(y)_>:::::::::::::/y UserTableN

= 128K b e
128MB /1KB YT

= 128K 128K x 128K
=16G (128MB Tablet)

128MB/1K§\\"__: ______

° Fay Chang et al. Bigtable: A Distributed Storage System for Structured Data

Tablet Location

< METADATA: a special Bigtable
> One Row = One Tablet’s Location
> Row Key = Table Identifier + End Row
> No Root-Tablet Split (*." Three-Level Hierarchy)

% Caching by Client-Side Library
> Unknown/Incorrect Location — Recursive Move-Up
> Empty Cache? 3 Network Round-Trips
> Stale Cache? <6 Network Round-Trips

23

Tablet Assignment

% Tablet Server «— Chubby File: servers/unique _file_name
> Start — File Creation + Exclusive Lock Acquisition

\l

Stop Serving <« Exclusive Lock Lost
Recover — Exclusive Lock Reacquisition
Kill Itself < File Deleted

V.V

> Terminate — Exclusive Lock Release

24

Tablet Assignment

Master Server should know ...

> Live Tablet Servers

> Unassigned Tablets

> Assigned Tablet vs. Tablet Server

> Unassigned Tablet vs. Available Tablet Server

How? Ask Chubby + Tablet Servers!

> Hi Chubby, any news in servers/?
> Hi Tablet Server, still own the lock?

New Master? Ask Chubby + Tablet Servers + METADATA!

25

Tablet Serving

R/
0‘0

/7
0’0

Y/
0‘0

Persistent Tablet Contents: SSTables @GFS

> Location Info — METADATA
> Commit Logs @GFS <« Redo Points < METADATA

Latest Updates: memtable @memory + Commit Log @GFS

How to Write? Read? Tablet Recovery?

26

Compactions

X/

% Minor Compaction
> Current memtable x1 as New SSTable x1
> Memory Usage | + Reads from Commit Log |

/7

% Major Compaction

> (SSTable xN + memtable x1) as New SSTable x1
> Read Complexity | (*." No Changes/Deletions)
> Security 1 (." Timely Deletion)

27

Refinements

R/
0‘0

/
X4

Y/
0‘0

Locality Group x1 -- Relevant Column Family xN -- SSTable x1

Fast Two-Pass Per-SSTable Compression
> Window: Large (long common strings) vs. Small (repetitions)
> (Compression Ratio? Row Locality!

Two-Level Caching for Read

> Key-Value Pairs
> SSTable Blocks

28

Refinements

R/
0‘0

/
X4

Y/
0‘0

/7
0’0

Bloom Filter for <Row, Col> Existence in SSTable

Per-Tablet-Server Commit Log
> Tablet Recovery? Commit Log Sorting First!
> GFS Issues? Log Writer Threads x2!

SSTable Immutability: tablet split, concurrent read/write, etc.

Minor Compactions before Tablet Transfer

29

Outline

% Problem Formulation
% Data Model

¢ Building Blocks

% Implementation

< Evaluation

30

Per-Server #Read/#Write

of Tablet Servers
Experiment 1 S50 250 500
random reads 1212 593 479 241
random reads (mem) | 10811 8511 | 8000 | 6250
random writes 8850 3745 | 3425 | 2000
sequential reads 4425 2463 | 2625 | 2469
sequential writes 8547 3623 | 2451 | 1905
scans 15385 | 10526 | 9524 | 7843

° Fay Chang et al. Bigtable: A Distributed Storage System for Structured Data

31

Single-Server #Read/#Write

of Tablet Servers
Experiment 1
random reads 1212 SSTable Fetch ++++
random reads (mem) | 10811 Networking/GFS ----
random writes 8850 Per-Server Commit Log
sequential reads 4425 SSTable Block Caching
sequential writes 85477 Group Commit

SCans

15385

Client RPC ----

° Fay Chang et al. Bigtable: A Distributed Storage System for Structured Data

32

Aggregate #Read/#Write

—— scans
— M- random reads (mem)
3M ——¢— random writes

— -A— sequential reads
—>— sequential writes
— —+— random reads

N
<

P
-

)
<

IM

100 200 300 400 500
Number of tablet servers

Values read/written per second

Fay Chang et al. Bigtable: A Distributed Storage System for Structured Data

CPU-Intensive

|

Load Imbalance

|

Network Saturation

33

Summary

*

Distributed Storage of Structured Data
> Locality for Performance: data model, refinements, etc.
> Google Infrastructure for Availability + Reliability

*

Tablet Location/Assignment/Serving + Minor/Major Compaction
> Chubby for METADATA + Tablet Server Existence
> GES for Persistent Storage of Commit Log + Tablets (SSTables)

% Bigtable/GFS: latency/throughput, table/file, write/append, Chubby/lease
% Bigtable as MapReduce Input/Output: Google Analytics/Earth/PSearch

34

Backup Slides

Google Infrastructures Availability

% Google File System (GFS): persistent log/data storage

% Cluster Management System

> What if other distributed applications on the same machines?
> Job Scheduling + Resource Management + Fault Tolerance

% Sorted String Table (SSTable): data file format

> Block Index: in-memory when SSTable opened
> Block Sequence: block-index binary search — disk seek x1

36

