MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Algorand: Scaling Byzantine Agreements
for Cryptocurrencies

Authors: Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, Nickolai
Zeldovich
Presenter: Ximin Lin

MM | MICHIGAN ENGINEERING _Background

UNIVERSITY OF MICHIGAN

Proof of Work:

1 . Assumption: honest people have more computation power than bad people

2 . Compute nounce number in the next block to make hash of the next block start with some length of 0.

Proof of Work ©

SHA256
o

PO\N vy 0000000000000
0000000000000
0000110001100
111010101100..

https://www.coinkolik.com/wp-content/uploads/2021/03/Proof-of-work-no-purple-line.jpg

MM | MICHIGAN ENGINEERING _Background

UNIVERSITY OF MICHIGAN

Byzantine Consensus:

. PBFT: Sybil Attacks

. BFT-2F: Forking-consensus with only over /2 of honest servers
. HoneyBadger: Centralized

. Bitcoin-NG, Hybrid-Consensus: Forks

. Stellar: complex trust structure and assumptions

MM | MICHIGAN ENGINEERING _Background

UNIVERSITY OF MICHIGAN

Proof of Stake:

1 . Honest people have more money than bad people

2 . People with more money tend to be chosen as proposers or acceptors for creation of the next blocks

Proof of Stake

https://coindoo.com/wp-content/uploads/2019/03/Proof-of-Work-vs.-Proof-of-Stake.jpg

MM | MICHIGAN ENGINEERING _Background

UNIVERSITY OF MICHIGAN

Trees and DAGs:

Increase bitcoin throughput by replacing chained structure ledger with tree or directed acyclic graph.

Blockchain (DAG/Directed Acyclic Graph)

https://www.cbcamerica.org/Content/Images/dit.png

M | MICHIGAN ENGINEERING Motivation

UNIVERSITY OF MICHIGAN

1. Pow is slow: (eg. Bitcoin: 10 mins for one block generation, 6 blocks to secure a
transaction, in total 1 hour to confirm a transaction)

2. Fork is slow (Need to wait for more blocks to confirm a branch)

M IMICHIGAN EnINEERING _Challenges

UNIVERSITY OF MICHIGAN

1. Sybil Attack < Pos

2. Scale to millions of users & Consensus by Committee

3. Resilient to DoS Attack < Cryptographic Sortition, Participant Replacement

M |MICHIGAN ENGINEERING G 0als & Assumptions

UNIVERSITY OF MICHIGAN
1. Safety: If one honest user accepts transaction A, all other honest user accepts A.

2. Liveness: make progress

3. Assumption:
1. Honest users hold more than 2/3 of total wealth of chain

2. Strong synchrony for liveness

3. “weak/partial synchrony” for safety: for every period of length b,
there must be a strongly synchronous period s <b

4. loosely synchronous clocks among users

M | MICHIGAN ENGINEERING Overview

UNIVERSITY OF MICHIGAN

. Gossip Protocol
. Cryptographic Sortition to select committee

. Block Proposal

. BA*: Byzantine Agreement Protocol: tentative consensus; final consensus

. Efficiency

M | MICHIGAN ENGINEERING Gossip Protocol

UNIVERSITY OF MICHIGAN

Every user “gossip” the transactions to some other users

To avoid forwarding loop, each user does not relay the same transaction twice.

Block chain |Z «

Pending =
transactions
| TX

M IMICHIGAN ENGINEERING _CTYPtographic Sortition

UNIVERSITY OF MICHIGAN

Cryptographic Sortition:

Algorithm for choosing a random subset of all users to form:

1. Proposers

2 . Consensus Committee

Idea: the probability of selecting a user is proportional to the money it has

M IMICHIGAN ENGINEERING _CTYPtographic Sortition

UNIVERSITY OF MICHIGAN

VRF(verifiable random function):

Input: data x, and a secret key

Output: hash, and proof

Hash appears random to anybody who does not know secret key
Proof enables anybody who knows the public key to verify that the hash corresponds to data x

Can be used to generate hash as random number if provided a random seed.

M IMICHIGAN ENGINEERING _CTYPtographic Sortition

UNIVERSITY OF MICHIGAN

Selection Procedure:
Consider one unit of Algorand as a ’sub-user”.

Total amount of currency is W

Each sub-user is selected with probability p = t/W (t controls the number of selected users)

Each user can be selected multiple times

M IMICHIGAN ENGINEERING _CTYPtographic Sortition

UNIVERSITY OF MICHIGAN

Selection Procedure:

procedure Sortition(sk, seed, 7, role, w, W):
(hash,) < VRFg(seed||role)

P
je0
while 4 ¢ |7 B(k;w,p), T Blk;w, p)) do
L j++
return (hash, ,j)
Algorithm 1: The cryptographic sortition algorithm.

procedure VerifySort(pk, hash, z, seed, T, role, w, W):
if —1VerinyRFpk(hash, 7, seed||role) then return 0;

P
j—0
while /47 ¢ ;zOB(k;w,p),Zf;loB(k;w,p)) do

| J++

return j

Algorithm 2: Pseudocode for verifying sortition of a user
with public key pk.

B() computes the probability that k algos are selected from total w algos.

"ash_ os random number from [0,1].

Consider >

hashlen

j represents the number of times a user is selected.

M IMICHIGAN ENGINEERING _CTYPtographic Sortition

UNIVERSITY OF MICHIGAN

Choosing the seed:

1. Algorand requires a publicly known seed for everyone to use for VRF

2. Cannot be known in advance or controlled by anyone
3. seed, = H(seed,_4]||r). H is a cryptographic hash function

4. Refreshed every R rounds, seed, = H(seed,_1_r moa r)|IT)

M IMICHIGAN ENGINEERING _CTYPtographic Sortition

UNIVERSITY OF MICHIGAN

Cryptographic Sortition:

Algorithm for choosing a random subset of all users to form:

1. Proposers

2 . Consensus Committee

M | MICHIGAN ENGINEERING _Block Proposal

UNIVERSITY OF MICHIGAN

Minimize unnecessary block transmissions:

l. During selection process, priority is also assigned to selected proposers

2. Users only accept blocks with the highest priority

3. Block metadata (priority, timestamp, proof...) has size ~200 Bytes

4. Whole Block (mostly transactions) has size ~ IMB

M | MICHIGAN ENGINEERING _Block Proposal

UNIVERSITY OF MICHIGAN

Timeout for block proposal:
1. Does not affect safety but important for performance
2. 1f timeout, accept an empty block.

3.1f enough user timeout, consensus on empty block will be reached.

4. Timeout value is calculated considering Asteppar + Apriority

M | MICHIGAN ENGINEERING _Block Proposal

UNIVERSITY OF MICHIGAN

Malicious Proposers

1. wil try to propose different blocks for different acceptors

2. Happen in low probability

M | MICHIGAN ENGINEERING BA*

UNIVERSITY OF MICHIGAN

Byzantine Agreement Protocol

l. First phase, every honest user agrees on either empty block or the same non-empty
block.

. Second phase, every honest user agrees on the same block.

. In each step, every committee member vote and count votes. Users receiving more
than a threshold of votes for some value will vote for this value in next step.

. If committee member timeouts on insufficient task, will decide what value to vote
next by the step number.

M MCHGAN ENGINEERNG BA*

UNIVERSITY OF MICHIGAN

Overview Procedure

procedure BAx(ctx, round, block):

hblock < Reduction(ctx, round, H(block))
hblock, <« BinaryBAx(ctx, round, hblock)

// Check if we reached “final” or “tentative” consensus
r « CountVotes(ctx, round, FINAL, Tyixar, Teinars Astep)
if hblock, = r then

| return (FINAL, BlockOfHash(hblock,))

else
| return (TENTATIVE, BlockOfHash(hblock,))

Algorithm 3: Running BAx for the next round, with a
proposed block. H is a cryptographic hash function.

M | MICHIGAN ENGINEERING BA*

UNIVERSITY OF MICHIGAN

Overview Procedure procedure BAx(ctx, round, block):

hblock < Reduction(ctx, round, H(block))

hblock, < BinaryBAx(ctx, round, hblock)

// Check if we reached “final” or “tentative” consensus
r « CountVotes(ctx, round, FINAL, Teinar, Trinars Astep)

if hblock, = r then
| return (FINAL, BlockOfHash(hblock,))

else
| return (TENTATIVE, BlockOfHash(hblock,))

Algorithm 3: Running BAx for the next round, with a
proposed block. H is a cryptographic hash function.

For efficiency, BAx votes for hashes of blocks, instead of entire block contents. The
BAx also determines whether it established final or tentative consensus.

M | MICHIGAN ENGINEERING BA*

UNIVERSITY OF MICHIGAN

procedure CommitteeVote(ctx, round, step, T, value):

// check if user is in committee using Sortition (Alg. 1)
role «< (“committee”, round, step)

(sorthash, r,j) « Sortition(user.sk, ctx.seed, T, role,
ctx. weight{ user.pk], ctx.W)
// only committee members originate a message
if j > 0 then
Gossip({user.pk,Signed,,, i (round, step,
L sorthash, r, H(ctx.last_block), value)))

Algorithm 4: Voting for value by committee members.
user.sk and user.pk are the user’s private and public keys.

M | MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Counting Votes

procedure CountVotes(ctx, round, step,T,7,A):

start < Time()
counts < {} // hash table, new keys mapped to 0
voters < {}
msgs «— incomingMsgs| round, step].iterator()
while TrUE do
m «— msgs.next()
if m = 1 then
L if Time() > start + A then return TIMEOUT;

else
(votes, value, sorthash) < ProcessMsg(ctx,7,m)
if pk € voters or votes = 0 then continue;
voters U = {pk}
counts| value] + = votes
/1 if we got enough votes, then output this value
if counts[value] > T - r then

L return value

procedure ProcessMsg(ctx, 7, m):

(pk,signed_m) < m
if VerifySignature(pk, signed_m) # OK then
| return (0,1,1)
(round, step, sorthash, i, hprev, value) « signed_m
// discard messages that do not extend this chain
if hprev # H(ctx.last_block) then return (0, L, L);
votes «— VerifySort(pk, sorthash, , ctx.seed, t,
(“committee”, round, step), ctx. weight|[pk], ctx.W)
return (votes, value, sorthash)

Algorithm 5: Counting votes for round and step.

Algorithm 6: Validating incoming vote message m.

M | MICHIGAN ENGINEERING BA*

UNIVERSITY OF MICHIGAN

Reduction procedure Reduction(ctx, round, hblock):

// step 1: gossip the block hash
CommitteeVote(ctx, round, REDUCTION_ONE,
Tsrep, RDlOCK)
// other users might still be waiting for block proposals,
// so set timeout for Agiock+ Astep
hblock; < CountVotes(ctx, round, REDUCTION_ONE,

TSTEP > TSTEP» ABLOCK + ASTEP)

// step 2: re-gossip the popular block hash
empty_hash «— H(Empty(round, H(ctx.last_block)))

if hblock; = TiMEOUT then
L CommitteeVote(ctx, round, REDUCTION_TWO,

Tstee, empty_hash)

else
L CommitteeVote(ctx, round, REDUCTION_TWO,

Tsree, hblock,)
hblock, < CountVotes(ctx, round, REDUCTION_TWO,

Tsrees Tsters Aster)
if hblock, = TimeouT then return empty_hash ;

else return hblock, ;

Algorithm 7: The two-step reduction.

MICHIGAN ENGINEERING ~_BA™

UNIVERSITY OF MICHIGAN

procedure BinaryBAx(ctx, round, block_hash):

step «— 1

o r < block_hash
Blnary Agreement empty_hash <« H(Empty(round, H(ctx.last_block)))
while step < MaxSTEPs do
CommitteeVote(ctx, round, step, Tsrgp, I)
r « CountVotes(ctx, round, step, Tsrzp, Tsree, Aster)
if r = TiMEOUT then
| r « block_hash
else if r # empty_hash then
for step < s’ < step+3 do
| CommitteeVote(ctx, round, s’, Tsep, 1)
if step = 1then
| CommitteeVote(ctx, round, FINAL, Tenar, T)
returnr
step++

CommitteeVote(ctx, round, step, Tsrgp, I)
r « CountVotes(ctx, round, step, Tsrzp, Tsree, Aster)
if r = TiMEOUT then

| r < empty_hash
else if r = empty_hash then

\\ for step < s” < step+3 do

| CommitteeVote(ctx, round, s’, Tsrgs,)
returnr

step++

CommitteeVote(ctx, round, step, Tsrgp, T)
r « CountVotes(ctx, round, step, Tsrzp, Tsree, Astee)
if r = TiMEOUT then
if CommonCoin(ctx, round, step, Tszp) = 0 then
| r « block_hash
else
| r < empty_hash

| step++

// No consensus after MAXSTEPS; assume network
// problem, and rely on §8.2 to recover liveness.
HangForever()

Algorithm 8: BinaryBAx executes until consensus is
reached on either block_hash or empty_hash.

M | MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Binary Agreement

1. Safety with strong synchrony

2. Safety with weak synchrony

M | MICHIGAN ENGINEERING BA*

UNIVERSITY OF MICHIGAN

Binary Agreement

procedure CommonCoin(ctx, round, step, 7):
2hashlen

minhash «
for m € incomingMsgs| round, step] do
(votes, value, sorthash) < ProcessMsg(ctx,t,m)

for 1 <j < votesdo
L h < H(sorthash||j)

if h < minhash then minhash < h;

return minhash mod 2
Algorithm 9: Computing a coin common to all users.

M | MICHIGAN ENGINEERING Evaluation

UNIVERSITY OF MICHIGAN

Latency

P AP

—e— Round Completion —e— Round Completion

o N
o ST & 5

Number of Users Number of Users

Figure 5: Latency for one round of Algorand, with 5,000 to Figure 6: Latency for one round of Algorand in a configura-
50,000 users. tion with 500 users per VM, using 100 to 1,000 VMs.

0
NI o

M | MICHIGAN ENGINEERING Evaluation

UNIVERSITY OF MICHIGAN

Block Size

BA* Final Step
B BA* w/o Final Step
Block Proposal

&

NN

N
43\ Vv

N
Block Size

Figure 7: Latency for one round of Algorand as a function
of the block size.

M | MICHIGAN ENGINEERING Evaluation

UNIVERSITY OF MICHIGAN

Malicious Users

—e— Round Completion

0 5 10 15
% Malicious Users

Figure 8: Latency for one round of Algorand with a varying
fraction of malicious users, out of a total of 50,000 users.

M | MICHIGAN ENGINEERING Conclusion

UNIVERSITY OF MICHIGAN

Algorand can scale well to millions of users.

Algorand produces no fork.

Algorand resilient to various types of attacks

M | MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Thank you

Any Questions?

