
ZooKeeper: Wait-free coordination for Internet-scale systems

Patrick Hunt and Mahadev Konar
Yahoo! Grid

{phunt,mahadev}@yahoo-inc.com

Flavio P. Junqueira and Benjamin Reed
Yahoo! Research

{fpj,breed}@yahoo-inc.com

Abstract
In this paper, we describe ZooKeeper, a service for co-
ordinating processes of distributed applications. Since
ZooKeeper is part of critical infrastructure, ZooKeeper
aims to provide a simple and high performance kernel
for building more complex coordination primitives at the
client. It incorporates elements from group messaging,
shared registers, and distributed lock services in a repli-
cated, centralized service. The interface exposed by Zoo-
Keeper has the wait-free aspects of shared registers with
an event-driven mechanism similar to cache invalidations
of distributed file systems to provide a simple, yet pow-
erful coordination service.

The ZooKeeper interface enables a high-performance
service implementation. In addition to the wait-free
property, ZooKeeper provides a per client guarantee of
FIFO execution of requests and linearizability for all re-
quests that change the ZooKeeper state. These design de-
cisions enable the implementation of a high performance
processing pipeline with read requests being satisfied by
local servers. We show for the target workloads, 2:1
to 100:1 read to write ratio, that ZooKeeper can handle
tens to hundreds of thousands of transactions per second.
This performance allows ZooKeeper to be used exten-
sively by client applications.

1 Introduction

Large-scale distributed applications require different
forms of coordination. Configuration is one of the most
basic forms of coordination. In its simplest form, con-
figuration is just a list of operational parameters for the
system processes, whereas more sophisticated systems
have dynamic configuration parameters. Group member-
ship and leader election are also common in distributed
systems: often processes need to know which other pro-
cesses are alive and what those processes are in charge
of. Locks constitute a powerful coordination primitive

that implement mutually exclusive access to critical re-
sources.

One approach to coordination is to develop services
for each of the different coordination needs. For exam-
ple, Amazon Simple Queue Service [3] focuses specif-
ically on queuing. Other services have been devel-
oped specifically for leader election [25] and configura-
tion [27]. Services that implement more powerful prim-
itives can be used to implement less powerful ones. For
example, Chubby [6] is a locking service with strong
synchronization guarantees. Locks can then be used to
implement leader election, group membership, etc.

When designing our coordination service, we moved
away from implementing specific primitives on the
server side, and instead we opted for exposing an API
that enables application developers to implement their
own primitives. Such a choice led to the implementa-
tion of a coordination kernel that enables new primitives
without requiring changes to the service core. This ap-
proach enables multiple forms of coordination adapted to
the requirements of applications, instead of constraining
developers to a fixed set of primitives.

When designing the API of ZooKeeper, we moved
away from blocking primitives, such as locks. Blocking
primitives for a coordination service can cause, among
other problems, slow or faulty clients to impact nega-
tively the performance of faster clients. The implemen-
tation of the service itself becomes more complicated
if processing requests depends on responses and fail-
ure detection of other clients. Our system, Zookeeper,
hence implements an API that manipulates simple wait-
free data objects organized hierarchically as in file sys-
tems. In fact, the ZooKeeper API resembles the one of
any other file system, and looking at just the API signa-
tures, ZooKeeper seems to be Chubby without the lock
methods, open, and close. Implementing wait-free data
objects, however, differentiates ZooKeeper significantly
from systems based on blocking primitives such as locks.

Although the wait-free property is important for per-

1

formance and fault tolerance, it is not sufficient for co-
ordination. We have also to provide order guarantees for
operations. In particular, we have found that guarantee-
ing both FIFO client ordering of all operations and lin-
earizable writes enables an efficient implementation of
the service and it is sufficient to implement coordination
primitives of interest to our applications. In fact, we can
implement consensus for any number of processes with
our API, and according to the hierarchy of Herlihy, Zoo-
Keeper implements a universal object [14].

The ZooKeeper service comprises an ensemble of
servers that use replication to achieve high availability
and performance. Its high performance enables appli-
cations comprising a large number of processes to use
such a coordination kernel to manage all aspects of co-
ordination. We were able to implement ZooKeeper us-
ing a simple pipelined architecture that allows us to have
hundreds or thousands of requests outstanding while still
achieving low latency. Such a pipeline naturally enables
the execution of operations from a single client in FIFO
order. Guaranteeing FIFO client order enables clients to
submit operations asynchronously. With asynchronous
operations, a client is able to have multiple outstanding
operations at a time. This feature is desirable, for exam-
ple, when a new client becomes a leader and it has to ma-
nipulate metadata and update it accordingly. Without the
possibility of multiple outstanding operations, the time
of initialization can be of the order of seconds instead of
sub-second.

To guarantee that update operations satisfy lineariz-
ability, we implement a leader-based atomic broadcast
protocol [23], called Zab [24]. A typical workload
of a ZooKeeper application, however, is dominated by
read operations and it becomes desirable to scale read
throughput. In ZooKeeper, servers process read opera-
tions locally, and we do not use Zab to totally order them.

Caching data on the client side is an important tech-
nique to increase the performance of reads. For example,
it is useful for a process to cache the identifier of the
current leader instead of probing ZooKeeper every time
it needs to know the leader. ZooKeeper uses a watch
mechanism to enable clients to cache data without man-
aging the client cache directly. With this mechanism,
a client can watch for an update to a given data object,
and receive a notification upon an update. Chubby man-
ages the client cache directly. It blocks updates to in-
validate the caches of all clients caching the data being
changed. Under this design, if any of these clients is
slow or faulty, the update is delayed. Chubby uses leases
to prevent a faulty client from blocking the system indef-
initely. Leases, however, only bound the impact of slow
or faulty clients, whereas ZooKeeper watches avoid the
problem altogether.

In this paper we discuss our design and implementa-

tion of ZooKeeper. With ZooKeeper, we are able to im-
plement all coordination primitives that our applications
require, even though only writes are linearizable. To val-
idate our approach we show how we implement some
coordination primitives with ZooKeeper.
To summarize, in this paper our main contributions are:
Coordination kernel: We propose a wait-free coordi-

nation service with relaxed consistency guarantees
for use in distributed systems. In particular, we de-
scribe our design and implementation of a coordi-
nation kernel, which we have used in many criti-
cal applications to implement various coordination
techniques.

Coordination recipes: We show how ZooKeeper can
be used to build higher level coordination primi-
tives, even blocking and strongly consistent primi-
tives, that are often used in distributed applications.

Experience with Coordination: We share some of the
ways that we use ZooKeeper and evaluate its per-
formance.

2 The ZooKeeper service

Clients submit requests to ZooKeeper through a client
API using a ZooKeeper client library. In addition to ex-
posing the ZooKeeper service interface through the client
API, the client library also manages the network connec-
tions between the client and ZooKeeper servers.

In this section, we first provide a high-level view of the
ZooKeeper service. We then discuss the API that clients
use to interact with ZooKeeper.

Terminology. In this paper, we use client to denote a
user of the ZooKeeper service, server to denote a process
providing the ZooKeeper service, and znode to denote
an in-memory data node in the ZooKeeper data, which
is organized in a hierarchical namespace referred to as
the data tree. We also use the terms update and write to
refer to any operation that modifies the state of the data
tree. Clients establish a session when they connect to
ZooKeeper and obtain a session handle through which
they issue requests.

2.1 Service overview

ZooKeeper provides to its clients the abstraction of a set
of data nodes (znodes), organized according to a hierar-
chical name space. The znodes in this hierarchy are data
objects that clients manipulate through the ZooKeeper
API. Hierarchical name spaces are commonly used in file
systems. It is a desirable way of organizing data objects,
since users are used to this abstraction and it enables bet-
ter organization of application meta-data. To refer to a

2

given znode, we use the standard UNIX notation for file
system paths. For example, we use /A/B/C to denote
the path to znode C, where C has B as its parent and B
has A as its parent. All znodes store data, and all znodes,
except for ephemeral znodes, can have children.

/

/app1 /app2

/app1/p_1 /app1/p_2 /app1/p_3

Figure 1: Illustration of ZooKeeper hierarchical name
space.

There are two types of znodes that a client can create:
Regular: Clients manipulate regular znodes by creating

and deleting them explicitly;
Ephemeral: Clients create such znodes, and they ei-

ther delete them explicitly, or let the system remove
them automatically when the session that creates
them terminates (deliberately or due to a failure).

Additionally, when creating a new znode, a client can
set a sequential flag. Nodes created with the sequen-
tial flag set have the value of a monotonically increas-
ing counter appended to its name. If n is the new znode
and p is the parent znode, then the sequence value of n
is never smaller than the value in the name of any other
sequential znode ever created under p.

ZooKeeper implements watches to allow clients to
receive timely notifications of changes without requir-
ing polling. When a client issues a read operation
with a watch flag set, the operation completes as nor-
mal except that the server promises to notify the client
when the information returned has changed. Watches
are one-time triggers associated with a session; they
are unregistered once triggered or the session closes.
Watches indicate that a change has happened, but do
not provide the change. For example, if a client is-
sues a getData(‘‘/foo’’, true) before “/foo”
is changed twice, the client will get one watch event
telling the client that data for “/foo” has changed. Ses-
sion events, such as connection loss events, are also sent
to watch callbacks so that clients know that watch events
may be delayed.

Data model. The data model of ZooKeeper is essen-
tially a file system with a simplified API and only full
data reads and writes, or a key/value table with hierar-

chical keys. The hierarchal namespace is useful for al-
locating subtrees for the namespace of different applica-
tions and for setting access rights to those subtrees. We
also exploit the concept of directories on the client side to
build higher level primitives as we will see in section 2.4.

Unlike files in file systems, znodes are not designed
for general data storage. Instead, znodes map to abstrac-
tions of the client application, typically corresponding
to meta-data used for coordination purposes. To illus-
trate, in Figure 1 we have two subtrees, one for Applica-
tion 1 (/app1) and another for Application 2 (/app2).
The subtree for Application 1 implements a simple group
membership protocol: each client process pi creates a
znode p i under /app1, which persists as long as the
process is running.

Although znodes have not been designed for general
data storage, ZooKeeper does allow clients to store some
information that can be used for meta-data or configu-
ration in a distributed computation. For example, in a
leader-based application, it is useful for an application
server that is just starting to learn which other server is
currently the leader. To accomplish this goal, we can
have the current leader write this information in a known
location in the znode space. Znodes also have associated
meta-data with time stamps and version counters, which
allow clients to track changes to znodes and execute con-
ditional updates based on the version of the znode.

Sessions. A client connects to ZooKeeper and initiates
a session. Sessions have an associated timeout. Zoo-
Keeper considers a client faulty if it does not receive any-
thing from its session for more than that timeout. A ses-
sion ends when clients explicitly close a session handle
or ZooKeeper detects that a clients is faulty. Within a ses-
sion, a client observes a succession of state changes that
reflect the execution of its operations. Sessions enable a
client to move transparently from one server to another
within a ZooKeeper ensemble, and hence persist across
ZooKeeper servers.

2.2 Client API
We present below a relevant subset of the ZooKeeper
API, and discuss the semantics of each request.
create(path, data, flags): Creates a znode

with path name path, stores data[] in it, and
returns the name of the new znode. flags en-
ables a client to select the type of znode: regular,
ephemeral, and set the sequential flag;

delete(path, version): Deletes the znode
path if that znode is at the expected version;

exists(path, watch): Returns true if the znode
with path name path exists, and returns false oth-
erwise. The watch flag enables a client to set a

3

watch on the znode;
getData(path, watch): Returns the data and

meta-data, such as version information, associated
with the znode. The watch flag works in the same
way as it does for exists(), except that Zoo-
Keeper does not set the watch if the znode does not
exist;

setData(path, data, version): Writes
data[] to znode path if the version number is
the current version of the znode;

getChildren(path, watch): Returns the set of
names of the children of a znode;

sync(path): Waits for all updates pending at the start
of the operation to propagate to the server that the
client is connected to. The path is currently ignored.

All methods have both a synchronous and an asyn-
chronous version available through the API. An applica-
tion uses the synchronous API when it needs to execute
a single ZooKeeper operation and it has no concurrent
tasks to execute, so it makes the necessary ZooKeeper
call and blocks. The asynchronous API, however, en-
ables an application to have both multiple outstanding
ZooKeeper operations and other tasks executed in par-
allel. The ZooKeeper client guarantees that the corre-
sponding callbacks for each operation are invoked in or-
der.

Note that ZooKeeper does not use handles to access
znodes. Each request instead includes the full path of
the znode being operated on. Not only does this choice
simplifies the API (no open() or close() methods),
but it also eliminates extra state that the server would
need to maintain.

Each of the update methods take an expected ver-
sion number, which enables the implementation of con-
ditional updates. If the actual version number of the zn-
ode does not match the expected version number the up-
date fails with an unexpected version error. If the version
number is −1, it does not perform version checking.

2.3 ZooKeeper guarantees

ZooKeeper has two basic ordering guarantees:
Linearizable writes: all requests that update the state

of ZooKeeper are serializable and respect prece-
dence;

FIFO client order: all requests from a given client are
executed in the order that they were sent by the
client.

Note that our definition of linearizability is different
from the one originally proposed by Herlihy [15], and
we call it A-linearizability (asynchronous linearizabil-
ity). In the original definition of linearizability by Her-
lihy, a client is only able to have one outstanding opera-
tion at a time (a client is one thread). In ours, we allow a

client to have multiple outstanding operations, and con-
sequently we can choose to guarantee no specific order
for outstanding operations of the same client or to guar-
antee FIFO order. We choose the latter for our property.
It is important to observe that all results that hold for
linearizable objects also hold for A-linearizable objects
because a system that satisfies A-linearizability also sat-
isfies linearizability. Because only update requests are A-
linearizable, ZooKeeper processes read requests locally
at each replica. This allows the service to scale linearly
as servers are added to the system.

To see how these two guarantees interact, consider the
following scenario. A system comprising a number of
processes elects a leader to command worker processes.
When a new leader takes charge of the system, it must
change a large number of configuration parameters and
notify the other processes once it finishes. We then have
two important requirements:
• As the new leader starts making changes, we do not

want other processes to start using the configuration
that is being changed;
• If the new leader dies before the configuration has

been fully updated, we do not want the processes to
use this partial configuration.

Observe that distributed locks, such as the locks pro-
vided by Chubby, would help with the first requirement
but are insufficient for the second. With ZooKeeper,
the new leader can designate a path as the ready znode;
other processes will only use the configuration when that
znode exists. The new leader makes the configuration
change by deleting ready, updating the various configu-
ration znodes, and creating ready. All of these changes
can be pipelined and issued asynchronously to quickly
update the configuration state. Although the latency of a
change operation is of the order of 2 milliseconds, a new
leader that must update 5000 different znodes will take
10 seconds if the requests are issued one after the other;
by issuing the requests asynchronously the requests will
take less than a second. Because of the ordering guaran-
tees, if a process sees the ready znode, it must also see
all the configuration changes made by the new leader. If
the new leader dies before the ready znode is created, the
other processes know that the configuration has not been
finalized and do not use it.

The above scheme still has a problem: what happens
if a process sees that ready exists before the new leader
starts to make a change and then starts reading the con-
figuration while the change is in progress. This problem
is solved by the ordering guarantee for the notifications:
if a client is watching for a change, the client will see
the notification event before it sees the new state of the
system after the change is made. Consequently, if the
process that reads the ready znode requests to be notified
of changes to that znode, it will see a notification inform-

4

ing the client of the change before it can read any of the
new configuration.

Another problem can arise when clients have their own
communication channels in addition to ZooKeeper. For
example, consider two clients A and B that have a shared
configuration in ZooKeeper and communicate through a
shared communication channel. If A changes the shared
configuration in ZooKeeper and tells B of the change
through the shared communication channel, B would ex-
pect to see the change when it re-reads the configuration.
If B’s ZooKeeper replica is slightly behind A’s, it may
not see the new configuration. Using the above guar-
antees B can make sure that it sees the most up-to-date
information by issuing a write before re-reading the con-
figuration. To handle this scenario more efficiently Zoo-
Keeper provides the sync request: when followed by
a read, constitutes a slow read. sync causes a server
to apply all pending write requests before processing the
read without the overhead of a full write. This primitive
is similar in idea to the flush primitive of ISIS [5].

ZooKeeper also has the following two liveness and
durability guarantees: if a majority of ZooKeeper servers
are active and communicating the service will be avail-
able; and if the ZooKeeper service responds successfully
to a change request, that change persists across any num-
ber of failures as long as a quorum of servers is eventu-
ally able to recover.

2.4 Examples of primitives
In this section, we show how to use the ZooKeeper API
to implement more powerful primitives. The ZooKeeper
service knows nothing about these more powerful primi-
tives since they are entirely implemented at the client us-
ing the ZooKeeper client API. Some common primitives
such as group membership and configuration manage-
ment are also wait-free. For others, such as rendezvous,
clients need to wait for an event. Even though ZooKeeper
is wait-free, we can implement efficient blocking primi-
tives with ZooKeeper. ZooKeeper’s ordering guarantees
allow efficient reasoning about system state, and watches
allow for efficient waiting.

Configuration Management ZooKeeper can be used
to implement dynamic configuration in a distributed ap-
plication. In its simplest form configuration is stored in
a znode, zc. Processes start up with the full pathname
of zc. Starting processes obtain their configuration by
reading zc with the watch flag set to true. If the config-
uration in zc is ever updated, the processes are notified
and read the new configuration, again setting the watch
flag to true.

Note that in this scheme, as in most others that use
watches, watches are used to make sure that a process has

the most recent information. For example, if a process
watching zc is notified of a change to zc and before it
can issue a read for zc there are three more changes to
zc, the process does not receive three more notification
events. This does not affect the behavior of the process,
since those three events would have simply notified the
process of something it already knows: the information
it has for zc is stale.

Rendezvous Sometimes in distributed systems, it is
not always clear a priori what the final system config-
uration will look like. For example, a client may want to
start a master process and several worker processes, but
the starting processes is done by a scheduler, so the client
does not know ahead of time information such as ad-
dresses and ports that it can give the worker processes to
connect to the master. We handle this scenario with Zoo-
Keeper using a rendezvous znode, zr, which is an node
created by the client. The client passes the full pathname
of zr as a startup parameter of the master and worker
processes. When the master starts it fills in zr with in-
formation about addresses and ports it is using. When
workers start, they read zr with watch set to true. If zr

has not been filled in yet, the worker waits to be notified
when zr is updated. If zr is an ephemeral node, master
and worker processes can watch for zr to be deleted and
clean themselves up when the client ends.

Group Membership We take advantage of ephemeral
nodes to implement group membership. Specifically, we
use the fact that ephemeral nodes allow us to see the state
of the session that created the node. We start by designat-
ing a znode, zg to represent the group. When a process
member of the group starts, it creates an ephemeral child
znode under zg . If each process has a unique name or
identifier, then that name is used as the name of the child
znode; otherwise, the process creates the znode with the
SEQUENTIAL flag to obtain a unique name assignment.
Processes may put process information in the data of the
child znode, addresses and ports used by the process, for
example.

After the child znode is created under zg the process
starts normally. It does not need to do anything else. If
the process fails or ends, the znode that represents it un-
der zg is automatically removed.

Processes can obtain group information by simply list-
ing the children of zg . If a process wants to monitor
changes in group membership, the process can set the
watch flag to true and refresh the group information (al-
ways setting the watch flag to true) when change notifi-
cations are received.

5

Simple Locks Although ZooKeeper is not a lock ser-
vice, it can be used to implement locks. Applications
using ZooKeeper usually use synchronization primitives
tailored to their needs, such as those shown above. Here
we show how to implement locks with ZooKeeper to
show that it can implement a wide variety of general syn-
chronization primitives.

The simplest lock implementation uses “lock files”.
The lock is represented by a znode. To acquire a lock,
a client tries to create the designated znode with the
EPHEMERAL flag. If the create succeeds, the client
holds the lock. Otherwise, the client can read the zn-
ode with the watch flag set to be notified if the current
leader dies. A client releases the lock when it dies or ex-
plicitly deletes the znode. Other clients that are waiting
for a lock try again to acquire a lock once they observe
the znode being deleted.

While this simple locking protocol works, it does have
some problems. First, it suffers from the herd effect. If
there are many clients waiting to acquire a lock, they will
all vie for the lock when it is released even though only
one client can acquire the lock. Second, it only imple-
ments exclusive locking. The following two primitives
show how both of these problems can be overcome.

Simple Locks without Herd Effect We define a lock
znode l to implement such locks. Intuitively we line up
all the clients requesting the lock and each client obtains
the lock in order of request arrival. Thus, clients wishing
to obtain the lock do the following:

Lock
1 n = create(l + “/lock-”, EPHEMERAL|SEQUENTIAL)
2 C = getChildren(l, false)
3 if n is lowest znode in C, exit
4 p = znode in C ordered just before n
5 if exists(p, true) wait for watch event
6 goto 2

Unlock
1 delete(n)

The use of the SEQUENTIAL flag in line 1 of Lock
orders the client’s attempt to acquire the lock with re-
spect to all other attempts. If the client’s znode has the
lowest sequence number at line 3, the client holds the
lock. Otherwise, the client waits for deletion of the zn-
ode that either has the lock or will receive the lock be-
fore this client’s znode. By only watching the znode
that precedes the client’s znode, we avoid the herd effect
by only waking up one process when a lock is released
or a lock request is abandoned. Once the znode being
watched by the client goes away, the client must check
if it now holds the lock. (The previous lock request may
have been abandoned and there is a znode with a lower
sequence number still waiting for or holding the lock.)

Releasing a lock is as simple as deleting the zn-
ode n that represents the lock request. By using the

EPHEMERAL flag on creation, processes that crash will
automatically cleanup any lock requests or release any
locks that they may have.

In summary, this locking scheme has the following ad-
vantages:

1. The removal of a znode only causes one client to
wake up, since each znode is watched by exactly
one other client, so we do not have the herd effect;

2. There is no polling or timeouts;
3. Because of the way we have implemented locking,

we can see by browsing the ZooKeeper data the
amount of lock contention, break locks, and debug
locking problems.

Read/Write Locks To implement read/write locks we
change the lock procedure slightly and have separate
read lock and write lock procedures. The unlock pro-
cedure is the same as the global lock case.

Write Lock
1 n = create(l + “/write-”, EPHEMERAL|SEQUENTIAL)
2 C = getChildren(l, false)
3 if n is lowest znode in C, exit
4 p = znode in C ordered just before n
5 if exists(p, true) wait for event
6 goto 2

Read Lock
1 n = create(l + “/read-”, EPHEMERAL|SEQUENTIAL)
2 C = getChildren(l, false)
3 if no write znodes lower than n in C, exit
4 p = write znode in C ordered just before n
5 if exists(p, true) wait for event
6 goto 3

This lock procedure varies slightly from the previous
locks. Write locks differ only in naming. Since read
locks may be shared, lines 3 and 4 vary slightly because
only earlier write lock znodes prevent the client from ob-
taining a read lock. It may appear that we have a “herd
effect” when there are several clients waiting for a read
lock and get notified when the “write-” znode with the
lower sequence number is deleted; in fact, this is a de-
sired behavior, all those read clients should be released
since they may now have the lock.

Double Barrier Double barriers enable clients to syn-
chronize the beginning and the end of a computation.
When enough processes, defined by the barrier thresh-
old, have joined the barrier, processes start their compu-
tation and leave the barrier once they have finished. We
represent a barrier in ZooKeeper with a znode, referred
to as b. Every process p registers with b – by creating
a znode as a child of b – on entry, and unregisters – re-
moves the child – when it is ready to leave. Processes
can enter the barrier when the number of child znodes
of b exceeds the barrier threshold. Processes can leave
the barrier when all of the processes have removed their
children. We use watches to efficiently wait for enter and

6

exit conditions to be satisfied. To enter, processes watch
for the existence of a ready child of b that will be cre-
ated by the process that causes the number of children to
exceed the barrier threshold. To leave, processes watch
for a particular child to disappear and only check the exit
condition once that znode has been removed.

3 ZooKeeper Applications

We now describe some applications that use ZooKeeper,
and explain briefly how they use it. We show the primi-
tives of each example in bold.

The Fetching Service Crawling is an important part of
a search engine, and Yahoo! crawls billions of Web doc-
uments. The Fetching Service (FS) is part of the Yahoo!
crawler and it is currently in production. Essentially, it
has master processes that command page-fetching pro-
cesses. The master provides the fetchers with configura-
tion, and the fetchers write back informing of their status
and health. The main advantages of using ZooKeeper
for FS are recovering from failures of masters, guaran-
teeing availability despite failures, and decoupling the
clients from the servers, allowing them to direct their re-
quest to healthy servers by just reading their status from
ZooKeeper. Thus, FS uses ZooKeeper mainly to man-
age configuration metadata, although it also uses Zoo-
Keeper to elect masters (leader election).

 0

 500

 1000

 1500

 2000

66h60h54h48h42h36h30h24h18h12h6h0h

N
um

be
r

of
 o

pe
ra

tio
ns

Time in seconds

read
write

Figure 2: Workload for one ZK server with the Fetching
Service. Each point represents a one-second sample.

Figure 2 shows the read and write traffic for a Zoo-
Keeper server used by FS through a period of three days.
To generate this graph, we count the number of opera-
tions for every second during the period, and each point
corresponds to the number of operations in that second.
We observe that the read traffic is much higher compared
to the write traffic. During periods in which the rate is
higher than 1, 000 operations per second, the read:write
ratio varies between 10:1 and 100:1. The read operations
in this workload are getData(), getChildren(),
and exists(), in increasing order of prevalence.

Katta Katta [17] is a distributed indexer that uses Zoo-
Keeper for coordination, and it is an example of a non-
Yahoo! application. Katta divides the work of indexing
using shards. A master server assigns shards to slaves
and tracks progress. Slaves can fail, so the master must
redistribute load as slaves come and go. The master can
also fail, so other servers must be ready to take over in
case of failure. Katta uses ZooKeeper to track the status
of slave servers and the master (group membership),
and to handle master failover (leader election). Katta
also uses ZooKeeper to track and propagate the assign-
ments of shards to slaves (configuration management).

Yahoo! Message Broker Yahoo! Message Broker
(YMB) is a distributed publish-subscribe system. The
system manages thousands of topics that clients can pub-
lish messages to and receive messages from. The topics
are distributed among a set of servers to provide scala-
bility. Each topic is replicated using a primary-backup
scheme that ensures messages are replicated to two ma-
chines to ensure reliable message delivery. The servers
that makeup YMB use a shared-nothing distributed ar-
chitecture which makes coordination essential for correct
operation. YMB uses ZooKeeper to manage the distribu-
tion of topics (configuration metadata), deal with fail-
ures of machines in the system (failure detection and
group membership), and control system operation.

broker domain

broker_disabledtopicsnodesshutdown migration_prohibited

<hos tname><hos tname> <hos tname>

load
of topics

< t o p i c > < t o p i c > < t o p i c >....

pr imary backup

hostname

Figure 3: The layout of Yahoo! Message Broker (YMB)
structures in ZooKeeper

Figure 3 shows part of the znode data layout for YMB.
Each broker domain has a znode called nodes that has
an ephemeral znode for each of the active servers that
compose the YMB service. Each YMB server creates
an ephemeral znode under nodes with load and sta-
tus information providing both group membership and
status information through ZooKeeper. Nodes such as
shutdown and migration prohibited are mon-
itored by all of the servers that make up the service and
allow centralized control of YMB. The topics direc-
tory has a child znode for each topic managed by YMB.
These topic znodes have child znodes that indicate the

7

primary and backup server for each topic along with the
subscribers of that topic. The primary and backup
server znodes not only allow servers to discover the
servers in charge of a topic, but they also manage leader
election and server crashes.

Request
Processor

Atomic
Broadcast

Replicated
Database

Write
Request

Response

ZooKeeper Service

txn

txn

Read
Request

Figure 4: The components of the ZooKeeper service.

4 ZooKeeper Implementation

ZooKeeper provides high availability by replicating the
ZooKeeper data on each server that composes the ser-
vice. We assume that servers fail by crashing, and such
faulty servers may later recover. Figure 4 shows the high-
level components of the ZooKeeper service. Upon re-
ceiving a request, a server prepares it for execution (re-
quest processor). If such a request requires coordina-
tion among the servers (write requests), then they use an
agreement protocol (an implementation of atomic broad-
cast), and finally servers commit changes to the Zoo-
Keeper database fully replicated across all servers of the
ensemble. In the case of read requests, a server simply
reads the state of the local database and generates a re-
sponse to the request.

The replicated database is an in-memory database con-
taining the entire data tree. Each znode in the tree stores a
maximum of 1MB of data by default, but this maximum
value is a configuration parameter that can be changed in
specific cases. For recoverability, we efficiently log up-
dates to disk, and we force writes to be on the disk media
before they are applied to the in-memory database. In
fact, as Chubby [8], we keep a replay log (a write-ahead
log, in our case) of committed operations and generate
periodic snapshots of the in-memory database.

Every ZooKeeper server services clients. Clients con-
nect to exactly one server to submit its requests. As we
noted earlier, read requests are serviced from the local
replica of each server database. Requests that change the
state of the service, write requests, are processed by an
agreement protocol.

As part of the agreement protocol write requests are
forwarded to a single server, called the leader1. The
rest of the ZooKeeper servers, called followers, receive

1Details of leaders and followers, as part of the agreement protocol,
are out of the scope of this paper.

message proposals consisting of state changes from the
leader and agree upon state changes.

4.1 Request Processor
Since the messaging layer is atomic, we guarantee that
the local replicas never diverge, although at any point in
time some servers may have applied more transactions
than others. Unlike the requests sent from clients, the
transactions are idempotent. When the leader receives
a write request, it calculates what the state of the sys-
tem will be when the write is applied and transforms it
into a transaction that captures this new state. The fu-
ture state must be calculated because there may be out-
standing transactions that have not yet been applied to
the database. For example, if a client does a conditional
setData and the version number in the request matches
the future version number of the znode being updated,
the service generates a setDataTXN that contains the
new data, the new version number, and updated time
stamps. If an error occurs, such as mismatched version
numbers or the znode to be updated does not exist, an
errorTXN is generated instead.

4.2 Atomic Broadcast
All requests that update ZooKeeper state are forwarded
to the leader. The leader executes the request and
broadcasts the change to the ZooKeeper state through
Zab [24], an atomic broadcast protocol. The server that
receives the client request responds to the client when it
delivers the corresponding state change. Zab uses by de-
fault simple majority quorums to decide on a proposal,
so Zab and thus ZooKeeper can only work if a majority
of servers are correct (i.e., with 2f + 1 server we can
tolerate f failures).

To achieve high throughput, ZooKeeper tries to keep
the request processing pipeline full. It may have thou-
sands of requests in different parts of the processing
pipeline. Because state changes depend on the appli-
cation of previous state changes, Zab provides stronger
order guarantees than regular atomic broadcast. More
specifically, Zab guarantees that changes broadcast by a
leader are delivered in the order they were sent and all
changes from previous leaders are delivered to an estab-
lished leader before it broadcasts its own changes.

There are a few implementation details that simplify
our implementation and give us excellent performance.
We use TCP for our transport so message order is main-
tained by the network, which allows us to simplify our
implementation. We use the leader chosen by Zab as
the ZooKeeper leader, so that the same process that cre-
ates transactions also proposes them. We use the log to
keep track of proposals as the write-ahead log for the in-

8

memory database, so that we do not have to write mes-
sages twice to disk.

During normal operation Zab does deliver all mes-
sages in order and exactly once, but since Zab does not
persistently record the id of every message delivered,
Zab may redeliver a message during recovery. Because
we use idempotent transactions, multiple delivery is ac-
ceptable as long as they are delivered in order. In fact,
ZooKeeper requires Zab to redeliver at least all messages
that were delivered after the start of the last snapshot.

4.3 Replicated Database
Each replica has a copy in memory of the ZooKeeper
state. When a ZooKeeper server recovers from a crash, it
needs to recover this internal state. Replaying all deliv-
ered messages to recover state would take prohibitively
long after running the server for a while, so ZooKeeper
uses periodic snapshots and only requires redelivery of
messages since the start of the snapshot. We call Zoo-
Keeper snapshots fuzzy snapshots since we do not lock
the ZooKeeper state to take the snapshot; instead, we do
a depth first scan of the tree atomically reading each zn-
ode’s data and meta-data and writing them to disk. Since
the resulting fuzzy snapshot may have applied some sub-
set of the state changes delivered during the generation of
the snapshot, the result may not correspond to the state
of ZooKeeper at any point in time. However, since state
changes are idempotent, we can apply them twice as long
as we apply the state changes in order.

For example, assume that in a ZooKeeper data tree two
nodes /foo and /goo have values f1 and g1 respec-
tively and both are at version 1 when the fuzzy snap-
shot begins, and the following stream of state changes
arrive having the form 〈transactionType, path,
value, new-version〉:

〈SetDataTXN, /foo, f2, 2〉
〈SetDataTXN, /goo, g2, 2〉
〈SetDataTXN, /foo, f3, 3〉

After processing these state changes, /foo and /goo
have values f3 and g2 with versions 3 and 2 respec-
tively. However, the fuzzy snapshot may have recorded
that /foo and /goo have values f3 and g1 with ver-
sions 3 and 1 respectively, which was not a valid state
of the ZooKeeper data tree. If the server crashes and
recovers with this snapshot and Zab redelivers the state
changes, the resulting state corresponds to the state of the
service before the crash.

4.4 Client-Server Interactions
When a server processes a write request, it also sends out
and clears notifications relative to any watch that corre-

sponds to that update. Servers process writes in order
and do not process other writes or reads concurrently.
This ensures strict succession of notifications. Note that
servers handle notifications locally. Only the server that
a client is connected to tracks and triggers notifications
for that client.

Read requests are handled locally at each server. Each
read request is processed and tagged with a zxid that cor-
responds to the last transaction seen by the server. This
zxid defines the partial order of the read requests with re-
spect to the write requests. By processing reads locally,
we obtain excellent read performance because it is just an
in-memory operation on the local server, and there is no
disk activity or agreement protocol to run. This design
choice is key to achieving our goal of excellent perfor-
mance with read-dominant workloads.

One drawback of using fast reads is not guaranteeing
precedence order for read operations. That is, a read op-
eration may return a stale value, even though a more
recent update to the same znode has been committed.
Not all of our applications require precedence order, but
for applications that do require it, we have implemented
sync. This primitive executes asynchronously and is
ordered by the leader after all pending writes to its lo-
cal replica. To guarantee that a given read operation re-
turns the latest updated value, a client calls sync fol-
lowed by the read operation. The FIFO order guarantee
of client operations together with the global guarantee of
sync enables the result of the read operation to reflect
any changes that happened before the sync was issued.
In our implementation, we do not need to atomically
broadcast sync as we use a leader-based algorithm, and
we simply place the sync operation at the end of the
queue of requests between the leader and the server ex-
ecuting the call to sync. In order for this to work, the
follower must be sure that the leader is still the leader.
If there are pending transactions that commit, then the
server does not suspect the leader. If the pending queue
is empty, the leader needs to issue a null transaction to
commit and orders the sync after that transaction. This
has the nice property that when the leader is under load,
no extra broadcast traffic is generated. In our implemen-
tation, timeouts are set such that leaders realize they are
not leaders before followers abandon them, so we do not
issue the null transaction.

ZooKeeper servers process requests from clients in
FIFO order. Responses include the zxid that the response
is relative to. Even heartbeat messages during intervals
of no activity include the last zxid seen by the server that
the client is connected to. If the client connects to a new
server, that new server ensures that its view of the Zoo-
Keeper data is at least as recent as the view of the client
by checking the last zxid of the client against its last zxid.
If the client has a more recent view than the server, the

9

server does not reestablish the session with the client un-
til the server has caught up. The client is guaranteed to
be able to find another server that has a recent view of the
system since the client only sees changes that have been
replicated to a majority of the ZooKeeper servers. This
behavior is important to guarantee durability.

To detect client session failures, ZooKeeper uses time-
outs. The leader determines that there has been a failure
if no other server receives anything from a client ses-
sion within the session timeout. If the client sends re-
quests frequently enough, then there is no need to send
any other message. Otherwise, the client sends heartbeat
messages during periods of low activity. If the client
cannot communicate with a server to send a request or
heartbeat, it connects to a different ZooKeeper server to
re-establish its session. To prevent the session from tim-
ing out, the ZooKeeper client library sends a heartbeat
after the session has been idle for s/3 ms and switch to a
new server if it has not heard from a server for 2s/3 ms,
where s is the session timeout in milliseconds.

5 Evaluation

We performed all of our evaluation on a cluster of 50
servers. Each server has one Xeon dual-core 2.1GHz
processor, 4GB of RAM, gigabit ethernet, and two SATA
hard drives. We split the following discussion into two
parts: throughput and latency of requests.

5.1 Throughput

To evaluate our system, we benchmark throughput when
the system is saturated and the changes in throughput
for various injected failures. We varied the number of
servers that make up the ZooKeeper service, but always
kept the number of clients the same. To simulate a large
number of clients, we used 35 machines to simulate 250
simultaneous clients.

We have a Java implementation of the ZooKeeper
server, and both Java and C clients2. For these experi-
ments, we used the Java server configured to log to one
dedicated disk and take snapshots on another. Our bench-
mark client uses the asynchronous Java client API, and
each client has at least 100 requests outstanding. Each
request consists of a read or write of 1K of data. We
do not show benchmarks for other operations since the
performance of all the operations that modify state are
approximately the same, and the performance of non-
state modifying operations, excluding sync, are approx-
imately the same. (The performance of sync approxi-
mates that of a light-weight write, since the request must

2The implementation is publicly available at http://hadoop.
apache.org/zookeeper.

go to the leader, but does not get broadcast.) Clients
send counts of the number of completed operations ev-
ery 300ms and we sample every 6s. To prevent memory
overflows, servers throttle the number of concurrent re-
quests in the system. ZooKeeper uses request throttling
to keep servers from being overwhelmed. For these ex-
periments, we configured the ZooKeeper servers to have
a maximum of 2, 000 total requests in process.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0 20 40 60 80 100

O
pe

ra
tio

ns
 p

er
 s

ec
on

d

Percentage of read requests

Throughput of saturated system

3 servers
5 servers
7 servers
9 servers

13 servers

Figure 5: The throughput performance of a saturated sys-
tem as the ratio of reads to writes vary.

Servers 100% Reads 0% Reads
13 460k 8k
9 296k 12k
7 257k 14k
5 165k 18k
3 87k 21k

Table 1: The throughput performance of the extremes of
a saturated system.

In Figure 5, we show throughput as we vary the ratio
of read to write requests, and each curve corresponds to
a different number of servers providing the ZooKeeper
service. Table 1 shows the numbers at the extremes of
the read loads. Read throughput is higher than write
throughput because reads do not use atomic broadcast.
The graph also shows that the number of servers also has
a negative impact on the performance of the broadcast
protocol. From these graphs, we observe that the number
of servers in the system does not only impact the num-
ber of failures that the service can handle, but also the
workload the service can handle. Note that the curve for
three servers crosses the others around 60%. This situ-
ation is not exclusive of the three-server configuration,
and happens for all configurations due to the parallelism
local reads enable. It is not observable for other config-
urations in the figure, however, because we have capped
the maximum y-axis throughput for readability.

There are two reasons for write requests taking longer
than read requests. First, write requests must go through
atomic broadcast, which requires some extra processing

10

and adds latency to requests. The other reason for longer
processing of write requests is that servers must ensure
that transactions are logged to non-volatile store before
sending acknowledgments back to the leader. In prin-
ciple, this requirement is excessive, but for our produc-
tion systems we trade performance for reliability since
ZooKeeper constitutes application ground truth. We use
more servers to tolerate more faults. We increase write
throughput by partitioning the ZooKeeper data into mul-
tiple ZooKeeper ensembles. This performance trade off
between replication and partitioning has been previously
observed by Gray et al. [12].

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0 20 40 60 80 100

O
pe

ra
tio

ns
 p

er
 s

ec
on

d

Percentage of read requests

Throughput of saturated system (all requests to leader)

3 servers
5 servers
7 servers
9 servers

13 servers

Figure 6: Throughput of a saturated system, varying the
ratio of reads to writes when all clients connect to the
leader.

ZooKeeper is able to achieve such high throughput by
distributing load across the servers that makeup the ser-
vice. We can distribute the load because of our relaxed
consistency guarantees. Chubby clients instead direct all
requests to the leader. Figure 6 shows what happens if
we do not take advantage of this relaxation and forced
the clients to only connect to the leader. As expected the
throughput is much lower for read-dominant workloads,
but even for write-dominant workloads the throughput is
lower. The extra CPU and network load caused by ser-
vicing clients impacts the ability of the leader to coor-
dinate the broadcast of the proposals, which in turn ad-
versely impacts the overall write performance.

The atomic broadcast protocol does most of the work
of the system and thus limits the performance of Zoo-
Keeper more than any other component. Figure 7 shows
the throughput of the atomic broadcast component. To
benchmark its performance we simulate clients by gen-
erating the transactions directly at the leader, so there is
no client connections or client requests and replies. At
maximum throughput the atomic broadcast component
becomes CPU bound. In theory the performance of Fig-
ure 7 would match the performance of ZooKeeper with
100% writes. However, the ZooKeeper client commu-
nication, ACL checks, and request to transaction con-

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 2 4 6 8 10 12 14

Re
qu

es
ts

 p
er

 s
ec

on
d

Size of ensemble

Atomic Broadcast Throughput

Figure 7: Average throughput of the atomic broadcast
component in isolation. Error bars denote the minimum
and maximum values.

versions all require CPU. The contention for CPU low-
ers ZooKeeper throughput to substantially less than the
atomic broadcast component in isolation. Because Zoo-
Keeper is a critical production component, up to now our
development focus for ZooKeeper has been correctness
and robustness. There are plenty of opportunities for im-
proving performance significantly by eliminating things
like extra copies, multiple serializations of the same ob-
ject, more efficient internal data structures, etc.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 50 100 150 200 250 300

dnoces rep s noit ar ep
O

Seconds since start of series

Time series with failures

Throughput

1 2

3

4a

5

64b

4c

Figure 8: Throughput upon failures.

To show the behavior of the system over time as fail-
ures are injected we ran a ZooKeeper service made up
of 5 machines. We ran the same saturation benchmark
as before, but this time we kept the write percentage at
a constant 30%, which is a conservative ratio of our ex-
pected workloads. Periodically we killed some of the
server processes. Figure 8 shows the system throughput
as it changes over time. The events marked in the figure
are the following:

1. Failure and recovery of a follower;
2. Failure and recovery of a different follower;
3. Failure of the leader;
4. Failure of two followers (a, b) in the first two marks,

and recovery at the third mark (c);
5. Failure of the leader.

11

6. Recovery of the leader.
There are a few important observations from this

graph. First, if followers fail and recover quickly, then
ZooKeeper is able to sustain a high throughput despite
the failure. The failure of a single follower does not pre-
vent servers from forming a quorum, and only reduces
throughput roughly by the share of read requests that the
server was processing before failing. Second, our leader
election algorithm is able to recover fast enough to pre-
vent throughput from dropping substantially. In our ob-
servations, ZooKeeper takes less than 200ms to elect a
new leader. Thus, although servers stop serving requests
for a fraction of second, we do not observe a throughput
of zero due to our sampling period, which is on the order
of seconds. Third, even if followers take more time to re-
cover, ZooKeeper is able to raise throughput again once
they start processing requests. One reason that we do
not recover to the full throughput level after events 1, 2,
and 4 is that the clients only switch followers when their
connection to the follower is broken. Thus, after event 4
the clients do not redistribute themselves until the leader
fails at events 3 and 5. In practice such imbalances work
themselves out over time as clients come and go.

5.2 Latency of requests

To assess the latency of requests, we created a bench-
mark modeled after the Chubby benchmark [6]. We cre-
ate a worker process that simply sends a create, waits
for it to finish, sends an asynchronous delete of the new
node, and then starts the next create. We vary the number
of workers accordingly, and for each run, we have each
worker create 50,000 nodes. We calculate the throughput
by dividing the number of create requests completed by
the total time it took for all the workers to complete.

Number of servers
Workers 3 5 7 9

1 776 748 758 711
10 2074 1832 1572 1540
20 2740 2336 1934 1890

Table 2: Create requests processed per second.

Table 2 show the results of our benchmark. The cre-
ate requests include 1K of data, rather than 5 bytes in
the Chubby benchmark, to better coincide with our ex-
pected use. Even with these larger requests, the through-
put of ZooKeeper is more than 3 times higher than the
published throughput of Chubby. The throughput of the
single ZooKeeper worker benchmark indicates that the
average request latency is 1.2ms for three servers and
1.4ms for 9 servers.

of clients
of barriers 50 100 200

200 9.4 19.8 41.0
400 16.4 34.1 62.0
800 28.9 55.9 112.1

1600 54.0 102.7 234.4

Table 3: Barrier experiment with time in seconds. Each
point is the average of the time for each client to finish
over five runs.

5.3 Performance of barriers
In this experiment, we execute a number of barriers se-
quentially to assess the performance of primitives imple-
mented with ZooKeeper. For a given number of barriers
b, each client first enters all b barriers, and then it leaves
all b barriers in succession. As we use the double-barrier
algorithm of Section 2.4, a client first waits for all other
clients to execute the enter() procedure before mov-
ing to next call (similarly for leave()).

We report the results of our experiments in Table 3.
In this experiment, we have 50, 100, and 200 clients
entering a number b of barriers in succession, b ∈
{200, 400, 800, 1600}. Although an application can have
thousands of ZooKeeper clients, quite often a much
smaller subset participates in each coordination oper-
ation as clients are often grouped according to the
specifics of the application.

Two interesting observations from this experiment are
that the time to process all barriers increase roughly lin-
early with the number of barriers, showing that concur-
rent access to the same part of the data tree did not pro-
duce any unexpected delay, and that latency increases
proportionally to the number of clients. This is a con-
sequence of not saturating the ZooKeeper service. In
fact, we observe that even with clients proceeding in
lock-step, the throughput of barrier operations (enter and
leave) is between 1,950 and 3,100 operations per second
in all cases. In ZooKeeper operations, this corresponds
to throughput values between 10,700 and 17,000 opera-
tions per second. As in our implementation we have a
ratio of reads to writes of 4:1 (80% of read operations),
the throughput our benchmark code uses is much lower
compared to the raw throughput ZooKeeper can achieve
(over 40,000 according to Figure 5). This is due to clients
waiting on other clients.

6 Related work

ZooKeeper has the goal of providing a service that mit-
igates the problem of coordinating processes in dis-
tributed applications. To achieve this goal, its design uses
ideas from previous coordination services, fault tolerant
systems, distributed algorithms, and file systems.

12

We are not the first to propose a system for the coor-
dination of distributed applications. Some early systems
propose a distributed lock service for transactional ap-
plications [13], and for sharing information in clusters
of computers [19]. More recently, Chubby proposes a
system to manage advisory locks for distributed appli-
cations [6]. Chubby shares several of the goals of Zoo-
Keeper. It also has a file-system-like interface, and it uses
an agreement protocol to guarantee the consistency of the
replicas. However, ZooKeeper is not a lock service. It
can be used by clients to implement locks, but there are
no lock operations in its API. Unlike Chubby, ZooKeeper
allows clients to connect to any ZooKeeper server, not
just the leader. ZooKeeper clients can use their local
replicas to serve data and manage watches since its con-
sistency model is much more relaxed than Chubby. This
enables ZooKeeper to provide higher performance than
Chubby, allowing applications to make more extensive
use of ZooKeeper.

There have been fault-tolerant systems proposed in
the literature with the goal of mitigating the problem of
building fault-tolerant distributed applications. One early
system is ISIS [5]. The ISIS system transforms abstract
type specifications into fault-tolerant distributed objects,
thus making fault-tolerance mechanisms transparent to
users. Horus [30] and Ensemble [31] are systems that
evolved from ISIS. ZooKeeper embraces the notion of
virtual synchrony of ISIS. Finally, Totem guarantees total
order of message delivery in an architecture that exploits
hardware broadcasts of local area networks [22]. Zoo-
Keeper works with a wide variety of network topologies
which motivated us to rely on TCP connections between
server processes and not assume any special topology or
hardware features. We also do not expose any of the en-
semble communication used internally in ZooKeeper.

One important technique for building fault-tolerant
services is state-machine replication [26], and Paxos [20]
is an algorithm that enables efficient implementations
of replicated state-machines for asynchronous systems.
We use an algorithm that shares some of the character-
istics of Paxos, but that combines transaction logging
needed for consensus with write-ahead logging needed
for data tree recovery to enable an efficient implementa-
tion. There have been proposals of protocols for practical
implementations of Byzantine-tolerant replicated state-
machines [7, 10, 18, 1, 28]. ZooKeeper does not assume
that servers can be Byzantine, but we do employ mech-
anisms such as checksums and sanity checks to catch
non-malicious Byzantine faults. Clement et al. dis-
cuss an approach to make ZooKeeper fully Byzantine
fault-tolerant without modifying the current server code
base [9]. To date, we have not observed faults in produc-
tion that would have been prevented using a fully Byzan-
tine fault-tolerant protocol. [29].

Boxwood [21] is a system that uses distributed lock
servers. Boxwood provides higher-level abstractions to
applications, and it relies upon a distributed lock service
based on Paxos. Like Boxwood, ZooKeeper is a com-
ponent used to build distributed systems. ZooKeeper,
however, has high-performance requirements and is used
more extensively in client applications. ZooKeeper ex-
poses lower-level primitives that applications use to im-
plement higher-level primitives.

ZooKeeper resembles a small file system, but it only
provides a small subset of the file system operations
and adds functionality not present in most file systems
such as ordering guarantees and conditional writes. Zoo-
Keeper watches, however, are similar in spirit to the
cache callbacks of AFS [16].

Sinfonia [2] introduces mini-transactions, a new
paradigm for building scalable distributed systems. Sin-
fonia has been designed to store application data,
whereas ZooKeeper stores application metadata. Zoo-
Keeper keeps its state fully replicated and in memory for
high performance and consistent latency. Our use of file
system like operations and ordering enables functionality
similar to mini-transactions. The znode is a convenient
abstraction upon which we add watches, a functionality
missing in Sinfonia. Dynamo [11] allows clients to get
and put relatively small (less than 1M) amounts of data in
a distributed key-value store. Unlike ZooKeeper, the key
space in Dynamo is not hierarchal. Dynamo also does
not provide strong durability and consistency guarantees
for writes, but instead resolves conflicts on reads.

DepSpace [4] uses a tuple space to provide a Byzan-
tine fault-tolerant service. Like ZooKeeper DepSpace
uses a simple server interface to implement strong syn-
chronization primitives at the client. While DepSpace’s
performance is much lower than ZooKeeper, it provides
stronger fault tolerance and confidentiality guarantees.

7 Conclusions

ZooKeeper takes a wait-free approach to the problem of
coordinating processes in distributed systems, by expos-
ing wait-free objects to clients. We have found Zoo-
Keeper to be useful for several applications inside and
outside Yahoo!. ZooKeeper achieves throughput val-
ues of hundreds of thousands of operations per second
for read-dominant workloads by using fast reads with
watches, both of which served by local replicas. Al-
though our consistency guarantees for reads and watches
appear to be weak, we have shown with our use cases that
this combination allows us to implement efficient and
sophisticated coordination protocols at the client even
though reads are not precedence-ordered and the imple-
mentation of data objects is wait-free. The wait-free
property has proved to be essential for high performance.

13

Although we have described only a few applications,
there are many others using ZooKeeper. We believe such
a success is due to its simple interface and the powerful
abstractions that one can implement through this inter-
face. Further, because of the high-throughput of Zoo-
Keeper, applications can make extensive use of it, not
only course-grained locking.

Acknowledgements

We would like to thank Andrew Kornev and Runping Qi
for their contributions to ZooKeeper; Zeke Huang and
Mark Marchukov for valuable feedback; Brian Cooper
and Laurence Ramontianu for their early contributions
to ZooKeeper; Brian Bershad and Geoff Voelker made
important comments on the presentation.

References
[1] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K. Reiter,

and J. J. Wylie. Fault-scalable byzantine fault-tolerant services.
In SOSP ’05: Proceedings of the twentieth ACM symposium on
Operating systems principles, pages 59–74, New York, NY, USA,
2005. ACM.

[2] M. Aguilera, A. Merchant, M. Shah, A. Veitch, and C. Karamano-
lis. Sinfonia: A new paradigm for building scalable distributed
systems. In SOSP ’07: Proceedings of the 21st ACM symposium
on Operating systems principles, New York, NY, 2007.

[3] Amazon. Amazon simple queue service. http://aws.
amazon.com/sqs/, 2008.

[4] A. N. Bessani, E. P. Alchieri, M. Correia, and J. da Silva Fraga.
Depspace: A byzantine fault-tolerant coordination service. In
Proceedings of the 3rd ACM SIGOPS/EuroSys European Systems
Conference - EuroSys 2008, Apr. 2008.

[5] K. P. Birman. Replication and fault-tolerance in the ISIS system.
In SOSP ’85: Proceedings of the 10th ACM symposium on Oper-
ating systems principles, New York, USA, 1985. ACM Press.

[6] M. Burrows. The Chubby lock service for loosely-coupled dis-
tributed systems. In Proceedings of the 7th ACM/USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI),
2006.

[7] M. Castro and B. Liskov. Practical byzantine fault tolerance and
proactive recovery. ACM Transactions on Computer Systems,
20(4), 2002.

[8] T. Chandra, R. Griesemer, and J. Redstone. Paxos made live: An
engineering perspective. In Proceedings of the 26th annual ACM
symposium on Principles of distributed computing (PODC), Aug.
2007.

[9] A. Clement, M. Kapritsos, S. Lee, Y. Wang, L. Alvisi, M. Dahlin,
and T. Riche. UpRight cluster services. In Proceedings of the 22
nd ACM Symposium on Operating Systems Principles (SOSP),
Oct. 2009.

[10] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and L. Shira. Hq
replication: A hybrid quorum protocol for byzantine fault toler-
ance. In SOSP ’07: Proceedings of the 21st ACM symposium on
Operating systems principles, New York, NY, USA, 2007.

[11] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lak-
shman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vo-
gels. Dynamo: Amazons highly available key-value store. In

SOSP ’07: Proceedings of the 21st ACM symposium on Operat-
ing systems principles, New York, NY, USA, 2007. ACM Press.

[12] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers of
replication and a solution. In Proceedings of SIGMOD ’96, pages
173–182, New York, NY, USA, 1996. ACM.

[13] A. Hastings. Distributed lock management in a transaction pro-
cessing environment. In Proceedings of IEEE 9th Symposium on
Reliable Distributed Systems, Oct. 1990.

[14] M. Herlihy. Wait-free synchronization. ACM Transactions on
Programming Languages and Systems, 13(1), 1991.

[15] M. Herlihy and J. Wing. Linearizability: A correctness condi-
tion for concurrent objects. ACM Transactions on Programming
Languages and Systems, 12(3), July 1990.

[16] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols,
M. Satyanarayanan, R. N. Sidebotham, and M. J. West. Scale
and performance in a distributed file system. ACM Trans. Com-
put. Syst., 6(1), 1988.

[17] Katta. Katta - distribute lucene indexes in a grid. http://
katta.wiki.sourceforge.net/, 2008.

[18] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong.
Zyzzyva: speculative byzantine fault tolerance. SIGOPS Oper.
Syst. Rev., 41(6):45–58, 2007.

[19] N. P. Kronenberg, H. M. Levy, and W. D. Strecker. Vaxclus-
ters (extended abstract): a closely-coupled distributed system.
SIGOPS Oper. Syst. Rev., 19(5), 1985.

[20] L. Lamport. The part-time parliament. ACM Transactions on
Computer Systems, 16(2), May 1998.

[21] J. MacCormick, N. Murphy, M. Najork, C. A. Thekkath, and
L. Zhou. Boxwood: Abstractions as the foundation for storage
infrastructure. In Proceedings of the 6th ACM/USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI),
2004.

[22] L. Moser, P. Melliar-Smith, D. Agarwal, R. Budhia, C. Lingley-
Papadopoulos, and T. Archambault. The totem system. In Pro-
ceedings of the 25th International Symposium on Fault-Tolerant
Computing, June 1995.

[23] S. Mullender, editor. Distributed Systems, 2nd edition. ACM
Press, New York, NY, USA, 1993.

[24] B. Reed and F. P. Junqueira. A simple totally ordered broad-
cast protocol. In LADIS ’08: Proceedings of the 2nd Workshop
on Large-Scale Distributed Systems and Middleware, pages 1–6,
New York, NY, USA, 2008. ACM.

[25] N. Schiper and S. Toueg. A robust and lightweight stable leader
election service for dynamic systems. In DSN, 2008.

[26] F. B. Schneider. Implementing fault-tolerant services using the
state machine approach: A tutorial. ACM Computing Surveys,
22(4), 1990.

[27] A. Sherman, P. A. Lisiecki, A. Berkheimer, and J. Wein. ACMS:
The Akamai configuration management system. In NSDI, 2005.

[28] A. Singh, P. Fonseca, P. Kuznetsov, R. Rodrigues, and P. Ma-
niatis. Zeno: eventually consistent byzantine-fault tolerance.
In NSDI’09: Proceedings of the 6th USENIX symposium on
Networked systems design and implementation, pages 169–184,
Berkeley, CA, USA, 2009. USENIX Association.

[29] Y. J. Song, F. Junqueira, and B. Reed. BFT for the
skeptics. http://www.net.t-labs.tu-berlin.de/

˜petr/BFTW3/abstracts/talk-abstract.pdf.
[30] R. van Renesse and K. Birman. Horus, a flexible group com-

munication systems. Communications of the ACM, 39(16), Apr.
1996.

[31] R. van Renesse, K. Birman, M. Hayden, A. Vaysburd, and
D. Karr. Building adaptive systems using ensemble. Software
- Practice and Experience, 28(5), July 1998.

14

