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ABSTRACT
The UpRight library seeks to make Byzantine fault toler-
ance (BFT) a simple and viable alternative to crash fault
tolerance for a range of cluster services. We demonstrate
UpRight by producing BFT versions of the Zookeeper lock
service and the Hadoop Distributed File System (HDFS).
Our design choices in UpRight favor simplifying adoption
by existing applications; performance is a secondary con-
cern. Despite these priorities, our BFT Zookeeper and BFT
HDFS implementations have performance comparable with
the originals while providing additional robustness.

Categories and Subject Descriptors
C.2.4 [Computer Systems Organization]: Distributed
Systems—Client/server ; D.4.5 [Operating Systems]: Re-
liability—Fault-tolerance

General Terms
Design, Reliability

Keywords
Byzantine fault tolerance, Cluster services, Reliability

1. INTRODUCTION
Our objective is to make Byzantine fault tolerance (BFT)

something that practitioners can easily adopt both to safe-
guard availability (keeping systems up) and to safeguard cor-
rectness (keeping systems right.) To that end, we construct
UpRight, a new library for fault tolerant replication, and we
use it to build BFT versions of two widely-deployed open-
source crash fault tolerant (CFT) systems, the Zookeeper
coordination service [35] and the Hadoop Distributed File
system (HDFS) [16].

Practitioners routinely pay non-trivial costs to tolerate
crash failures (e.g., off-line backup, on-line redundancy [10,
15], Paxos [6, 20, 31]). However, although non-crash failures
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occur with some regularity and can have significant con-
sequences [2, 7, 30] and although the research community
has done a great deal of work to improve BFT technolo-
gies [1, 8, 11, 12, 18, 19, 32–34], deployment of BFT replica-
tion remains rare.

We believe that for practitioners to see BFT as a viable
option they must be able to use it to build and deploy sys-
tems of interest at low incremental cost compared to the
CFT systems they build and deploy now: BFT systems must
be competitive with CFT systems not just in terms of per-
formance, hardware overheads, and availability, but also in
terms of engineering effort.

With respect to the first three factors, recent research has
put many of the pieces in place—performance can be ex-
cellent [1, 8, 11, 12, 18, 19, 32–34], replication costs low [33,
34], and robustness good [5, 11]. The UpRight library draws
heavily on this work to retain these properties.

With respect to engineering effort, to be truly low cost,
BFT must mesh well with large existing code bases such as
HDFS and Zookeeper. Unfortunately, the current state of
the art often requires rewriting applications from scratch. If
the cost of BFT is “rewrite your cluster file system,” then
widespread adoption will not happen. Our design choices in
UpRight favor minimizing intrusiveness to existing applica-
tions over raw performance.

We construct UpRight-Zookeeper and UpRight-HDFS us-
ing the Zookeeper and HDFS open source code bases. Both
resulting systems provide potentially interesting improve-
ments in fault tolerance. Whereas the existing HDFS sys-
tem can be halted by a single fail-stop node, UpRight-
HDFS has no single points of failure and also provides
end-to-end Byzantine fault tolerance against faulty clients,
DataNodes, and NameNodes. Similarly, although Zookeeper
guards against fail-stop faults, a data center typically runs
a single instance of a coordination service on which a wide
range of cluster services depend [9], so it may be attractive
to invest modest additional resources in this critical service
to protect against a wider range of faults.

In both cases, the cost of BFT over CFT is low in key di-
mensions. Although attaching these applications to the Up-
Right library is not automatic, it is straightforward. With
respect to performance, as Figure 1 highlights, despite our
design choices minimizing intrusiveness on existing code, the
BFT systems are competitive with the original ones. How-
ever, the overheads of computing cryptographic digests on
messages do cause the BFT systems to consume more CPU
cycles than the original systems at a given level of load.
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System Workload Original UpRight

Zookeeper 90/10 read/write 15,645 Ops/s 10,823 Ops/s

HDFS
Read 746.38 MB/s 716.52 MB/s
Write 237.78 MB/s 166.91 MB/s

Figure 1: Throughput for original and UpRight
Zookeeper and HDFS systems. We detail our ex-
periments in Sections 5 and 6.

The contribution of this paper is to establish Byzantine
fault tolerance as a viable alternative to crash fault tolerance
for at least some cluster services rather than any individual
technique. Much of our work involved making existing ideas
fit well together, and in the sections that follow, we highlight
the lessons learned from these engineering efforts and also
highlight where we found that new techniques were needed.
We do not claim that all cluster services can get low-cost
BFT. We merely provide evidence that some interesting ser-
vices can, and we provide a library and experience that may
help others do so.

The paper proceeds as follows:

1. Introduction 5. Zookeeper
2. Model 6. HDFS
3. UpRight applications 7. Related work
4. UpRight agreement 8. Conclusions

2. MODEL
UpRight makes standard assumptions for Byzantine fault

tolerant systems with a few tweaks and clarifications.

Standard assumptions. We assume the Byzantine failure
model where some faulty nodes (servers or clients) may be-
have arbitrarily [22]. We assume a strong adversary that can
coordinate faulty nodes to compromise the replicated ser-
vice. We do, however, assume the adversary cannot break
cryptographic techniques like collision-resistant hashes, en-
cryption, and signatures.

Our system’s safety properties hold in any asynchronous
distributed system where nodes are connected by a net-
work that may fail to deliver, corrupt, delay, or reorder
messages. Liveness, however, is guaranteed only during syn-
chronous intervals in which messages sent between correct
nodes are processed within some fixed (but potentially un-
known) worst case delay from when they are sent.

Tweak: Number of failed nodes. Under the Byzantine
fault model, systems are typically designed to tolerate t
Byzantine failures of any kind. Instead, we allow UpRight
to be configured to tolerate a larger number of nodes that
fail by omission (e.g., crashing) than nodes that fail by com-
mission (e.g., taking incorrect actions).

Configuring separate fault tolerance thresholds for omis-
sion and commission failures is beneficial for three reasons.
(1) Omission failures are likely to be more common than
commission failures. (2) Configuring separate fault toler-
ance thresholds allows us to build systems that match typ-
ical commercial deployment goals with respect to omission
tolerance and add incremental commission tolerance at in-
cremental cost. (3) Tolerating a small number of commis-
sion failures may capture the sweet spot for Byzantine fault
tolerance in cluster environments: tolerating one or a few

Crash

Byzantine

ComissionOmission

Figure 2: Failure hierarchy. We divide the space of
arbitrary Byzantine failures into omission failures
and commission failures. Crash failures are a subset
of omission failures.

uncorrelated failures (e.g., lost disk sectors) will usually be
enough, and when it is not, there may be no feasible way
to tolerate highly-correlated failures such as software bugs
that allows a malicious intruder to control all replicas.

Formally, as Figure 2 illustrates, we divide the space of
arbitrary Byzantine failures into omission failures (includ-
ing crash failures) in which a node fails to send one or more
messages specified by the protocol and sends no incorrect
messages based on the protocol and its inputs and commis-
sion failures, which include all failures that are not omission
failures, including all failures in which a node sends a mes-
sage that is not specified by the protocol.

We design UpRight to provide the following properties

• An UpRight system is safe (“right”) despite r commis-
sion failures and any number of omission failures.

• An UpRight system is safe and eventually live (“up”)
during sufficiently long synchronous intervals when there
are at most u failures of which at most r are commis-
sion failures and the rest are omission failures.1

For example, if u = 3 and r = 1 the system can operate
with 3 crashed nodes or two crashed nodes and one node
whose data structures become corrupted causing it to send
erroneous responses to requests. Notice that configurations
in which u = r are equivalent to the customary formula-
tion of the Byzantine failure model and configurations and
configurations with r = 0 are equivalent to the customary
formulation of the crash failure model.

Clarification: Crash-recover incidents. UpRight is de-
signed to tolerate any number of nodes that crash and re-
cover. In a crash-recover incident, a process loses its volatile
state, may fail to send one or more required messages, but
eventually resumes operation in a state consistent with its
state prior to crashing.

Formally, nodes that crash and recover count as suffering
an omission failure during the interval they are crashed and
count as correct after they recover.

1More generally, the system is eventually live—it outputs a
response to an input—during sufficiently long synchronous
intervals despite u failures of any type. However, this re-
sponse may be incorrect if more than r of the failures are
commission failures. Also note that for simplicity through-
out this paper we assume u ≥ r.
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Figure 3: UpRight architecture.

In an asynchronous system, crash/recover nodes are of-
ten modeled as correct, but temporarily slow, rather than
failed. We explicitly account for crash-recovery incidents be-
cause (1) temporarily failed nodes affect the liveness guaran-
tees our system can provide and (2) ensuring safety despite
widespread crashes (e.g., due to a power outage) raises en-
gineering issues that we discuss in Section 4.2.

Tweak: Robust performance. For our target application
space of critical cluster services, a weak liveness guarantee
such as “Eventually the system makes progress” is insuffi-
cient. It would not be acceptable to design a system whose
throughput falls by orders of magnitude when a single fault
occurs. We must ensure not only that our system is even-
tually live during synchronous intervals, but that it delivers
good performance during uncivil intervals—synchronous in-
tervals during which a bounded number of failures occur [11].

We therefore impose the following requirement

• An UpRight system ensures safety and good perfor-
mance during sufficiently long synchronous intervals
with an application-dependent bound on message de-
livery when there are at most u failures of which at
most r are commission failures.

3. UPRIGHT APPLICATIONS
UpRight implements state machine replication [28], and it

tries to isolate applications from the details of the replication
protocol in order to make it easy to convert a CFT appli-
cation into a BFT one or to construct a new fault tolerant
application. The author of an UpRight application needs to
know the interface provided by the UpRight library and the
details of how the application processes requests and man-
ages its state; the author does not need to know about the
details of fault tolerance or replica coordination.

From the application’s perspective, the architecture of an
UpRight system is simple as shown in Figure 3. A client
sends requests to and receives replies from the UpRight li-
brary, and a server does the reverse; a server also exposes
checkpoints of its local state to the library. More specifically,
each client or server node is composed of the application
itself, which accesses the local UpRight shim via applica-
tion-specific glue. The UpRight shim is generic and handles
communication with the other UpRight components. The
application-specific glue bridges the gap between a legacy
application’s code and the interface exported by the Up-
Right shim; new applications may be written directly to the

shim interface and dispense with a separate glue layer en-
tirely.

The UpRight library ensures that each application server
replica sees the same sequence of requests and maintains
consistent state, and it ensures that an application client
sees responses consistent with this sequence and state. En-
suring that responses and state are consistent raises specific
challenges that applications must address in request execu-
tion and checkpoint management.

3.1 Request execution
UpRight applications follow a basic client-server architec-

ture in which a client issues a request and expects a response
from the server. When processing a sequence of requests,
every server is expected to provide the same sequence of re-
sponses. In order to accomplish this goal, applications must
account for nondeterminism, multithreaded execution, read
only requests, and spontaneous server-initiated replies.

Nondeterminism. Many applications rely on real time or
random numbers as part of normal operation. These fac-
tors can be used in many ways including garbage collecting
soft state, naming new data structures, or declaring uncom-
municative nodes dead. Each request issued by the UpRight
shim to the application server glue is accompanied by a time
and random seed to be used in conjunction with executing
the request [8]. UpRight applications must be modified to
rely on these specified times rather than the local machine
time and to use the random seed as appropriate when using
a pseudo random number generator. An alternative to mod-
ifying the application is to modify the runtime system as is
done in model checking frameworks [17].

Multithreading. Parallel execution allows applications to
take advantage of hardware resources, but application servers
must ensure that the actual execution is equivalent to exe-
cuting the requests sequentially in the order specified by the
UpRight library. The simplest way to enforce this require-
ment is for the glue to complete execution of request i before
beginning execution of request i+1. More sophisticated glue
may issue independent requests in parallel [19, 32].

Some systems include “housekeeping” threads that asyn-
chronously modify application server state. For example, an
HDFS server maintains a list of live data servers, removing
an uncommunicative server from the list after a timeout.
An application must ensure that housekeeping threads run
at well-defined points in the sequence of requests by, for ex-
ample, scheduling such threads at specific points in virtual
time rather than at periodic real time intervals.

Read only replies. As a performance optimization, Up-
Right supports PBFT’s read-only optimization [8], in which
a client shim sends read-only, side-effect-free requests di-
rectly to the server shims and server shims execute them
without ordering them in the global sequence of requests.
If a quorum of replies match, the client can use the reply;
otherwise the request is concurrent with an interfering op-
eration, and the client shim must reissue the request via the
normal path to execute the request in the global sequence of
requests. To support this optimization, the client and server
glue must identify read only requests.
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In some cases, read-only replies may include rapidly chang-
ing state that is likely to differ across replicas but that can
be canonicalized to a legal value at the client. For exam-
ple, if a client receives 2r + 1 read-only replies that match
in all fields except a real-time timestamp, a replica might
map the replies to a canonicalized reply comprising the me-
dian timestamp and the other matching fields. Our client
shim therefore passes read-only replies to the client glue to
optionally do application-specific canonicalization.

Spontaneous replies. Applications may allow the server to
push unsolicited messages to clients. For example, in Zookeeper,
a client can watch an object and be notified of any changes
to it. Unfortunately, in an asynchronous system with unre-
liable networks, there is no bound on the number of push
messages sent by the server but not received by the client.
UpRight must either require unbounded storage or provide
the abstraction of an unreliable channel.

UpRight provides unreliable channels for push events. We
posit that most crash fault tolerant systems will already cope
with the “lost message” case (e.g., to handle the case when
the TCP connection is lost and some events occur before
the connection to the server can be reestablished), so if the
client shim/glue activates this code whenever a message is
lost, existing application semantics are preserved.

For example, in our Zookeeper case study, a client ex-
pects to see all updates on a watched file unless it sees a
TCP connection break event, which causes it to reestablish
the watches. The existing recovery code determines if any
watched files changed while the connection was broken.

In our implementation, the server shim includes sequence
numbers on push events, sends them in FIFO order, and
attempts to resend them until they are acknowledged, but
a node can unilaterally garbage collect any pending push
events at any time. The client shim gathers quorums of push
messages for each sequence number and signals the client
glue if there is a gap in the sequence. The glue exposes such
gaps via the (presumed existing) application lost-message or
lost-connection handler.

3.2 Checkpoints
In an asynchronous system, even correct server replicas

can fall arbitrarily behind, so BFT state machine replica-
tion frameworks must provide a way to checkpoint a server
replica’s state, to certify that a quorum of server replicas
have produced identical checkpoints, and to transfer a certi-
fied checkpoint to a node that has fallen behind [8]. There-
fore, the UpRight server shim periodically tells the server
application to checkpoint its state to stable storage; later,
the shim asks the application to provide a cryptographic
hash to identify that stable checkpoint state. If a replica
falls behind, its server shim communicates with the other
server shims to retrieve the most recent checkpoint, restarts
the server application using that state, and finally replays
the log of ordered requests after that checkpoint to bring the
replica to the current state.

Server application checkpoints must be (1) inexpensive to
generate because checkpoint frequency is relatively high, (2)
inexpensive to apply because the replication framework uses
checkpoints in both the rare case of a machine crashing and
restarting and the more common case of a machine falling
behind on message processing, (3) deterministic because cor-
rect nodes must generate identical checkpoints for a given

request sequence number, and (4) nonintrusive on the code-
base because we must not require extensive modifications of
applications.

There is tension among these requirements. For example,
generating checkpoints more frequently increases generation
cost but reduces recovery time (because the log that must
be applied will be correspondingly shorter.) For example, re-
quiring an application to store its data structures in a mem-
ory array checksummed with a Merkel tree [8] can reduce
checkpoint generation and fetch time (since only changed
parts need be stored or fetched) but may require intrusive
changes to legacy applications.

UpRight therefore allows server applications and server
glue to implement different checkpoint strategies. To sim-
plify development, the UpRight library provides three check-
point glue libraries that implement a hybrid checkpoint/-
delta approach and that provide three simple options for
deterministically checkpointing application state: stop and
copy, helper process, and copy-on-write. A given applica-
tion’s glue can incorporate one of these existing libraries, or
it can implement its own checkpoint strategy [8, 33].

Hybrid checkpoint/delta approach. The hybrid check-
point/delta approach seeks to minimize intrusiveness to
legacy code.

We posit that most crash fault tolerant services will al-
ready have some means to checkpoint their state. So, to
minimize intrusiveness, to lower barriers to adoption, and
to avoid the need for projects to maintain two distinct check-
point mechanisms, we wish to use applications’ existing check-
point mechanisms. Unfortunately, the existing application
code for generating checkpoints is likely to be suitable for in-
frequent, coarse grained checkpoints. For example, both the
HDFS and Zookeeper applications produce their checkpoints
by walking their important in-memory data structures and
writing them all to disk.

The hybrid checkpoint/delta approach uses existing ap-
plication code to take checkpoints at the approximately the
same coarse-grained intervals the original systems use. We
presume that these intervals are sufficiently long that the
overhead is acceptable. To produce the more frequent check-
points required by the UpRight shim, the glue library aug-
ments these infrequent, coarse-grained, application check-
points with frequent fine-grained deltas that comprise a log
of requests from the previous delta or checkpoint to the next.

Within the hybrid checkpoint/delta approach, the appli-
cation’s checkpoints must be produced deterministically. The
three glue libraries support three options for doing so with
different complexity/performance trade-offs.

Stop and copy. If an application’s state is small and an ap-
plication can tolerate a few tens of milliseconds of added la-
tency, the simplest checkpoint strategy is to pause the arrival
of new requests so that the application is quiescent while it
writes it state to disk. Since we eliminate other sources of
nondeterminism as described above, this approach suffices
to ensure that replicas produce identical checkpoints for a
given sequence number.

Helper process. The helper process approach produces
checkpoints asynchronously to avoid pausing request exe-
cution and seeks to minimize intrusiveness to legacy code.
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To ensure that different replicas produce identical check-
points without having to pause request processing, each node
runs two slightly modified instances of the server application
process—a primary and a helper—to which we feed the same
series of requests. We deactivate the checkpoint generation
code at the primary. For the helper, we omit sending replies
to clients, and we pause the sequence of incoming requests
so that it is quiescent while it is producing a checkpoint.

Copy on write. Rather than use a helper process to pro-
duce a deterministic checkpoint, applications can be mod-
ified so that their key data structures are treated as copy
on write while checkpoints are taken [9]. This approach is
more invasive but can have lower overheads than the helper-
based approach. Typically, these changes involve adding a
few fields to each object, modifying each method that mod-
ifies an object’s state to clone the object if a checkpoint is
currently being taken and a clone has not yet been made, and
modifying the serialization code to serialize the clone rather
then the updated object if the clone was created during the
current checkpoint epoch. We currently make these changes
by hand, but we believe the process of modifying each class
that implements the COW interface could be automated via
source-to-source translation or binary modification.

Discussion. With respect to our goal of nonintrusiveness,
our experience so far is positive. While it seems plausible
that most CFT applications of interest will include the abil-
ity to checkpoint their own state in a deterministic way when
they are quiescent, we did consider several alternatives.

Systems in the PBFT lineage [1, 8, 11, 12, 18, 19, 32–34] mod-
ify applications to store their checkpoint state in a special
region of memory and to access that state via a special API
so that the system can track which pages have been modi-
fied. The benefit of this approach is low incremental check-
point generation cost. The disadvantage is more extensive
modification of existing applications.

ZZ [33] uses the PBFT memory system to checkpoint an
application’s in-memory state, but it also supports applica-
tions whose state includes on-disk files. ZZ uses file system
snapshots to inexpensively create copy-on-write versions of
those files, and it allows a server application node to quickly
begin executing from the memory state checkpoint and fetch
file system state in the background or on demand. These
techniques are complementary to the ones we explore for
checkpoints of in-memory state.

We also considered using OS support for fork to pro-
vide copy-on-write snapshots of application state or using
OS support for memory system protection, but such tech-
niques do not easily mesh with a Java application running
in a JVM. Authors of other applications should consider
these approaches for helping to produce deterministic snap-
shots without the performance costs of stop and copy or a
helper process and without the invasiveness of application-
level copy on write.

4. UPRIGHT AGREEMENT
Figure 3 illustrates UpRight’s high-level architecture. At

UpRight’s core is a Byzantine agreement protocol based
on well-explored principles [1, 8, 11, 12, 18, 19, 32–34]. Rather
than repeating the standard details of such protocols, we de-
scribe how we adapt the approach to make it easy to add

BFT to a range of cluster applications. We begin with an
overview, and the subsections that follow provide details.

As the figure illustrates, executing a client request involves
three modules: request quorum, order, and execution. A Up-
Right client deposits its request at a request quorum (RQ),
which stores the request, forwards a digest of the request to
the order module, and supplies the full request to the execu-
tion module. The order module produces a totally ordered
sequence of batches of request digests. The execution module
embodies the application’s server, which executes requests
from the ordered batches and produces replies.

This section discusses three aspects of UpRight agreement
that depart from prior BFT protocols. First, the new RQ
stage helps avoid complex corner cases and avoids sending
large requests through the order stage. Second, the agree-
ment protocol is new: it combines ideas from three prior
systems (Zyzzyva’s speculative execution [18], Aardvark’s
techniques for robustness [11], and Yin et al.’s techniques
for separating agreement and execution [34]), and its imple-
mentation is robust to widespread outages. Third, to mini-
mize replication costs, the UpRight prototype allows one to
separately configure u, the number of failures it can toler-
ate while remaining up, and r the number of failures it can
tolerate while remaining right.

4.1 RQ: Request quorum
UpRight introduces the new request quorum (RQ) stage

for two reasons: (1) to validate requests and thereby avoid
expensive corner cases with inconsistent client MACs and
(2) to separate the data path from the control path so that
large requests are not sent through the order stage.

Validating requests. The use of MAC authenticators rather
than digital signatures is a vital optimization to BFT repli-
cation systems [8]. If node A wants to send a message to n
other nodes B1 . . . Bn, it generates a MAC authenticator—
an array of n message authentication codes (MACs)—by
securely hashing the message with n distinct secret keys.
Because secure hash generation is much faster than gener-
ating a public key signature, this optimization significantly
reduces overheads.

Unfortunately, MAC authenticators do not provide non-
repudiation, so if entries are inconsistent, B1 may validate
the message as authentic but B2 may not. In many prior
protocols, such inconsistent MACs force the system down
complex alternate execution paths including timeouts, view
changes, or signature generation, so a single faulty client can
reduce throughput by orders of magnitude [11].

One solution is to have clients sign requests [11]. Given
asymmetric public key signature schemes in which verifying
a signature is cheap relative to generating one, this approach
is affordable if client costs are ignored. Unfortunately, for the
cluster services we target, the service provider is typically
paying for both the servers and the clients, so ignoring client
overheads is not appropriate.

Instead, we adapt matrix signatures [3] to allow us to re-
tain most of the the performance benefits of MACs while
avoiding the inconsistent-MAC corner cases. As Figure 4 il-
lustrates, a client sends its request to the RQ nodes with a
MAC authenticator. Each RQ node checks its entry in the
authenticator, and if the request appears valid, the RQ node
sends the request to the order nodes with a MAC authenti-
cator for them. By transforming a single client request into
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Figure 4: The RQ stage generates matrix signatures to produce digests of client requests that all correct
order nodes can validate.

a quorum of RQ requests, we ensure that order nodes reach
consistent conclusions.

Request digest. As Figure 3 indicates, RQ nodes send di-
gests of large requests (more than 64 bytes in our prototype)
to the order nodes rather than sending the full requests.
However, if order nodes operate on digests rather than full
requests, we must ensure that an execution node can expand
a digest into a full request. An RQ node therefore stores
each request before forwarding its digest. When an execu-
tion node receives an ordered digest, it notifies all RQ nodes
that the request has been ordered and fetches the request
from one of them.

RQ nodes bound the state to buffer requests with two
limits. First, an RQ node will store at most one unordered
request per client and ignore any new requests from that
client until it learns that the previous request has been or-
dered. Second, as discussed below, Execution nodes produce
a checkpoint every CP INTERVAL batches, and they never
fetch requests older than the two most recent checkpoints.

4.2 Fast, robust ordering
UpRight’s order protocol takes from Zyzzyva [18] a fast

path based on speculative execution in which (1) a client
sends its request (via the RQ) to the primary, (2) the pri-
mary accumulates a batch of requests, assigns the batch a
sequence number, and sends the ordered batch of requests
to the replicas, the replicas send the ordered batch of re-
quests and a hash of the history of prior ordered batches
to the execution nodes, and (3) the execution nodes accept
and execute the batch of ordered request only if a sufficient
number of ordering decisions and histories match.

UpRight’s order protocol takes from Aardvark [11] tech-
niques for ensuring robust performance even when faults
occur: consistent validation of client requests (via the RQ
rather than signatures), resource scheduling and request fil-
tering to prevent faulty nodes from consuming excess re-
sources, and self-tuning performance requirements to replace
a slow primary.

UpRight’s order protocol takes from Yin et al.’s proto-
col [34] separation of ordering and execution, which reduces
the number of application replicas required.

Combining these ideas raises some new issues and provides
some new benefits.

The main issue in combining Zyzzyva’s speculation with
Aardvark’s robustness is that Zyzzyva relies on clients to
trigger slow-path processing when responses from replicas
don’t match, but Aardvark warns against allowing poten-
tially faulty nodes to unilaterally drive the system to expen-
sive execution paths. Therefore, instead of relying on clients
to trigger full agreement among replicas as in Zyzzyva, Up-
Right’s agreement protocol discovers and corrects divergence
among replicas when the order nodes communicate to check-
point their state. Because the protocol waits for order check-
points to correct divergence, faulty order nodes can add la-
tency. We take a checkpoint every CP INTERVAL batches,
which must be low enough to ensure a tolerable latency for
correcting divergence; we use CP INTERVAL=200 in our
prototype. To reduce recovery latency, during periods of low
offered load, the primary has the option of initiating the full
agreement path. The self-tuning performance requirements
ensure that if a faulty primary significantly slows progress
by using the full agreement path when it is not helpful, it
will be replaced.

Separating the order and execution phases fixes a signifi-
cant limitation in Zyzzyva by reducing the cost of correcting
divergence. In Zyzzyva, for example, a faulty primary can
cause a correct replica to execute requests in the wrong se-
quence. The Zyzzyva protocol ensures that clients will not
act on the resulting wrong response, but it requires the di-
vergent replica to correct itself by fetching a checkpoint and
log of subsequent requests from the other replicas, apply the
checkpoint, and replay the log. Since the checkpoint includes
the state of the application and the last response sent to each
client, this recovery from misspeculation can be expensive.

Conversely, in UpRight the order checkpoint is small be-
cause it contains only the identifier of the last request or-
dered by each client and a small amount of global state. In
a system with c clients and 8 byte client and request identi-
fiers, the order checkpoint is only 16c + 58 bytes. Also, log
replay simply entails updating the last ordered table. Notice
that correct UpRight Execution nodes act on quorums of
ordered requests and never diverge from one another.

Separating order and execution revisited. The separa-
tion of the order and execution stages requires coordination
between the two to coordinate garbage collection and to en-
sure agreement on execution checkpoint state.
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After executing batch B with sequence number (i ∗
CP INTERVAL), an execution node begins to produce ex-
ecution checkpoint i. Once that checkpoint has been pro-
duced, the execution node sends a hash of the checkpoint
with a MAC authenticator to the order nodes. An order
node refuses to order batch B′ with sequence number (i + 1
∗ CP INTERVAL) until it has received a quorum of match-
ing hashes for execution checkpoint i. Thus to order batch
B′, order nodes implicitly agree that a quorum of execution
nodes report identical checkpoints.

If an execution node falls behind (e.g., it misses some
batches because of a network fault or a local crash-recover
event), it catches up by sending the order nodes its current
sequence number, and the order nodes respond with the hash
and sequence number of the most recent execution check-
point and with the ordered batches since that checkpoint.
The execution node then fetches the execution checkpoint
from its peers and processes the subsequent ordered batches
to get to the current state.

This coordination is necessary for two reasons. First, it al-
lows order nodes and execution nodes garbage collect their
logs and checkpoints. Once batch B′′ with sequence number
i + 2 ∗ CP INTERVAL has been ordered, the order and exe-
cution nodes garbage collect their logs and checkpoints up to
and including batch B. Second, it is necessary for all correct
execution nodes to eventually agree on the checkpoint that
represents the state of the system after processing batch B.
The execution nodes cannot reach agreement on their own,
so they rely on the order nodes.

Surviving widespread outages. PBFT explicitly requires
that all servers have uninterruptable power supplies and as-
sumes that at most f nodes simultaneously fail so that a
server’s memory can be treated as stable storage [8]; many
subsequent approaches have inherited these assumptions [1,
11, 12, 18, 19, 32–34]. If an environment violates these as-
sumptions, safety could be compromised—nodes’ states may
no longer reflect the effects of previously executed requests
or nodes’ states may diverge from one another. In contrast,
the crash fault tolerant lineage from Paxos typically relies on
the file system for stable storage [6, 31]. Although there exist
interesting techniques for safeguarding DRAM against fail-
ures [23], we judge that UpRight can be most easily adopted
if it makes minimal assumptions about the environment in
which it runs.

We therefore engineer UpRight to be safe and eventually
live even if all nodes crash and lose the contents of their
memory and eventually all but u nodes in each stage re-
cover and resume operation. To that end, an RQ node logs
requests before sending digests to be ordered, and an or-
der node logs ordering decisions before sending them to be
executed. Execution nodes create stable checkpoints every
CP INTERVAL batches so that RQ and order nodes can
garbage collect their state. These extra’ disk writes (com-
pared to the PBFT lineage) are to sequential logs and are
pipelined with other batches of requests to limit the impact
on throughput.

4.3 Replication cost
UpRight allows applications to add Byzantine fault toler-

ance to their existing crash tolerance at minimal cost. Since
users may not want to pay to tolerate as many Byzantine
failures as fail-stop failures, UpRight separately configures

u, the total number of failures it can tolerate and remain
live and r the number of those failures that can be commis-
sion failures while maintaining safety [13, 21]. UpRight also
separates its order and execution stages [34] to allow users
to minimize the number of application replicas.

As is standard and assuming u ≥ r, UpRight requires
u + r + 1 application replicas for the execution stage and
2u + r + 1 nodes for the order stage. The RQ stage requires
2u + r + 1 nodes to ensure that the order stage orders every
properly submitted request and that the execution stage can
fetch any request that is ordered: 2u+r+1 RQ nodes ensures
that the primary order node can always be sent a request
with u + r + 1 valid entries in the matrix signature, which
assures the primary that all order nodes will see u + 1 valid
entries, which assures the order nodes that execution nodes
can fetch the full request even if u RQ nodes subsequently
fail.2 Logical nodes can be multiplexed on the same physical
nodes, so a total of 2u + r + 1 physical nodes can suffice.

The comparison with a crash fault tolerant system is thus
simple: if one has a CFT system that remains up despite u
omission failures, then to use UpRight to also remain right
despite r commission failures, add r machines. For example,
a CFT system that tolerates 2 failures (u = 2) would re-
quire 5 machines, all of which might run some Paxos [20, 24]
variant and three of which also include replicas of the appli-
cation server. In comparison, an UpRight BFT system that
tolerates 2 failures of which 1 may be a commission failure
(u = 2, r = 1) would require 6 machines, all of which run
RQ and order nodes and 4 of which also include replicas of
the application server.

Simply counting nodes presents an incomplete story about
system costs because different nodes have different resource
demands and hence different costs. For example, in many
systems, execution nodes will have more work to do than
order or RQ nodes. Rather than counting nodes, our exper-
iments measure the resources consumed by each instance of
each stage to capture the fundamental costs of UpRight.

Preferred quorums and hot spares. In the worst case
UpRight requires as many as 2u+r+1 RQ nodes, 2u+r+1
order nodes, and u + r + 1 execution nodes, but during
synchronous periods when no faults are observed it is safe,
live, and able to use its optimized fast path with u + r + 1,
2u + r + 1, and u + 1 RQ, order, and execution nodes, re-
spectively. An UpRight deployment can reduce its process-
ing overheads and average replication cost by using preferred
quorums or hot spares.

Using preferred quorums means optimistically sending mes-
sages to the minimum number of nodes and resending to
more nodes if observed progress is slow.

Using hot spares means delaying allocation of some nodes
until needed and then allocating those nodes from a pool
of hot spares [33]. Supporting such configurations is easy—
UpRight, like its predecessors, is configured to be safe and
eventually live in an asynchronous system that will eventu-
ally have a sufficiently long synchronous interval, so off-line

2Note that if we also want to ensure that an order node
can quickly force a view change when it suspects that a
faulty primary is failing to order a request, we would require
2u+2r +1 RQ nodes; UpRight avoids the extra r RQ nodes
while still ensuring that all requests eventually are executed
by instead relying on the frequent, periodic rotation of the
primary discussed in Section 4.2.
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hot spares can simply be regarded as unusually slow nodes
when activated.

In our prototype, we use preferred quorums to minimize
RQ overheads. A client first transmits its request to u + r +
1 RQ nodes. After a timeout, the client resends to all of
the RQ nodes. The first time an RQ node receives a client
request it forwards the request only to the primary; upon
any subsequent receipt of that request the RQ node forwards
the request to all order nodes. The RQ nodes are also good
candidates for on-demand allocation via hot spares because
activating a RQ node does not require transferring state
from other nodes—the RQ module starts in a clean state
and can immediately begin processing client requests.

The order nodes’ agreement algorithm benefits from fast
path speculative agreement when all nodes are correct and
present [18], so use of preferred quorums or configuring an
order node as a hot spare may hurt performance.

Using preferred quorums to send requests to subsets of
execution nodes or making an execution node a hot spare
may be most attractive if the application has only a small
amount of state that must be transferred before a hot spare
begins processing; otherwise it may be more challenging to
configure execution nodes as hot spares without risking un-
acceptably long pauses when a spare is activated. ZZ [33]
masks some of this start-up time by activating an execution
node once the checkpoint for its in-memory data structures
has been transferred and then transferring its on-disk state
in the background, but we have not implemented this opti-
mization in the UpRight prototype.

4.4 Implementation and performance
We implement the agreement protocol in Java and regret-

tably must name the prototype JS-Zyzzyvark (Java Stable
Zyzzyva + Aardvark); J-Zyzzyvark refers to the configura-
tion where we omit writing to disk for comparison with prior
Byzantine agreement protocols and to expose other bottle-
necks in the protocol. We believe that a Java-based solution
is more palatable for widespread deployment with the Java-
based Zookeeper and HDFS systems than a C implementa-
tion despite the performance hit we take. We also note that
logging actions to disk places a ceiling on throughput so the
benefits of further optimization may be limited.

We run our servers on 3GHz dual-core Pentium-IV ma-
chines, each running Linux 2.6 and Sun’s Java 1.6 JVM. We
use the FlexiProvider [14] cryptographic libraries for MACs
and digital signatures. Nodes have 2GB of memory and are
connected via a 100Mbit/s Ethernet. Except where noted,
we use separate machines for RQ, order, and execution.

UpRight’s core library (shims, RQ, order, execution) com-
prise 20,403 lines of code (LOC), and the hybrid check-
point/delta glue libraries comprise 1602 LOC.

Response time and throughput. Figure 5 shows the
throughput and response time of J-Zyzzyvark and JS-
Zyzzyvark. We vary the number of clients issuing 1 byte or
1 KB null requests that produce 1 byte or 1 KB responses
and drive the system to saturation. We configure the system
to tolerate 1 fault (u = r = 1).

For small requests J-Zyzzyvark’s and JS-Zyzzyvark’s peak
throughputs are a respectable 5.5 and 5.1 Kops/second, which
suffices for our applications. They are comparable to un-
modified Zookeeper’s peak throughput for small read/write
requests, and they appear sufficient to support an HDFS
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installation with a few thousand active clients and Data-
Nodes. Peak throughputs fall to 4.5 and 4.2 Kops/second
for a workload with larger 1KB requests and 1KB replies.

For comparison, on the same hardware Clement et al. [11]
measure small request throughputs of 7.6, 23.8, 38.6, 61.7,
and 66.0 Kops/s for the C/C++-based HQ [12], Q/U [1],
Aardvark [11], PBFT [8], and Zyzzyva [18]. For environ-
ments where performance is more important than portability
or easy packaging with existing Java code bases, we believe
a well-tuned C implementation of Zyzzyvark with writes to
stable storage omitted would have throughput between that
of Aardvark and Zyzzyva—our request validation and agree-
ment protocols are cheaper than Aardvark’s, but our request
validation is more expensive than Zyzzyva’s.

Other configurations. Figure 6 shows small-request per-
formance as we vary u and r. Recall that Zyzzyvark requires
2u + r + 1 RQ and order nodes and u + r + 1 execution
nodes to ensure that it can tolerate u failures and remain
up and r failures and remain right. Peak throughput is 11.1
Kops/second when JS-Zyzzyvark is configured with u = 1
and r = 0 to tolerate a single omission failure (e.g., one
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crashed node), and throughput falls as the number of faults
tolerated increases. For reference, we include the u = 0 r = 0
line for which the system has just one RQ, order, and execu-
tion node and cannot tolerate any faults; peak throughput
exceeds 22 Kops/s, at which point we are limited by the load
that our clients can generate.

Figure 7 shows small request performance when the RQ,
order, and execution nodes are co-located on 2u + r + 1
total machines. Splitting phases across machines improves
peak throughput by factors from 1.67 to 1.04 over such co-
location when any fault tolerance is enabled, with the dif-
ference falling as the degree of fault tolerance increases.

Request authentication. Figure 8 examines the through-
put of the JS-Zyzzyvark prototype configured for u = 1
r = 1 and using different strategies for client request authen-
tication. The MAC RQ line shows performance of the default
JS-Zyzzyvark configuration that relies on MAC-based ma-
trix signatures formed at the RQ. In contrast, the SIG no
RQ line omits the RQ stage and shows the significant perfor-
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mance penalty imposed by relying on traditional digital sig-
natures for request authentication as in Aardvark. The MAC
no RQ line shows the performance that is possible in a sys-
tem that relies on MAC authenticators and no RQ stage for
client authentication as in PBFT. In a system where the ro-
bustness risk and corner-case complexity of relying on MAC
authenticators as opposed to matrix signatures are viewed as
acceptable, this configuration may be attractive. For com-
parison, the no auth RQ line shows performance when we
use the RQ stage but turn off calculation and verification of
MACs, and the no auth no RQ line shows performance when
we eliminate the RQ stage and also turn off calculation and
verification of MACs.

Request digests. Figure 9 tests the value of storing re-
quests at the RQ so that the order stage can operate on
digests rather than full requests. We configure the system
for u = 1 r = 1. For small requests (under 64 bytes in
our prototype), RQ sends full requests and the order nodes
operate on full requests; the figure’s 1B Request line shows
performance for 1 byte requests. The 1KB Digest and 10KB
Digest lines show performance for 1KB and 10KB requests
when RQ nodes store requests and send request digests for
ordering, and the 1KB Request and 10KB Request lines show
performance with the request storage and digests turned off
so that order nodes operate on full requests. Storing requests
at the RQ more than doubles peak throughput for 1KB and
10KB requests.

5. ZOOKEEPER CASE STUDY
Zookeeper [35] is an open-source coordination service that,

in the spirit of Chubby [6], provides services like consensus,
group management, leader election, presence protocols, and
consistent storage for small files.

Zookeeper guards against omission failures. However, be-
cause data centers typically run a single instance of a coor-
dination service on which many cluster services depend [9],
and because even a small control error can have dramatic
effects [30], investing modest additional resources to protect
the service against a wider range of faults may be attractive.
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5.1 Baseline system
A Zookeeper deployment comprises 2u+ 1 servers; a com-

mon configuration is 5 servers for u = 2 r = 0. Servers
maintain a set of hierarchically named objects in memory.
Writes are serialized via a Paxos-like protocol, and reads are
optimized to avoid consensus where possible [8]. A client can
set a watch on an object so that it is notified if the object
changes unless the connection from the client to a server
breaks, in which case the client is notified that the connec-
tion broke.

For crash tolerance, each server synchronously logs up-
dates to stable storage. Servers periodically produce fuzzy
snapshots to checkpoint their state: a thread walks the
server’s data structures and writes them to disk, but re-
quests concurrent with snapshot production may alter these
data structures as the snapshot is produced. If a Zookeeper
server starts producing a snapshot after request sstart and
finishes producing it after request send, the fuzzy snapshot
representing the system’s state after request send comprises
the data structures written to disk plus the log of updates
from sstart to send.

5.2 UpRight-Zookeeper
UpRight-Zookeeper is based on Zookeeper version 3.0.1.

Given the UpRight framework, adding Byzantine fault toler-
ance to Zookeeper to produce UpRight-Zookeeper is straight-
forward. Our shims use standard techniques to add authen-
ticators to messages and to send/receive them to/from the
right quorums of nodes. We use the techniques described
above to support watches via server push, to make time-
based events happen deterministically across replicas at the
same virtual time, and to canonicalize read-only replies.
Zookeeper’s fuzzy snapshots align well with our hybrid check-
point/delta approach; we modify Zookeeper to make the
snapshots deterministic and identical across replicas using
the copy on write approach.

The original Zookeeper server comprises 13589 lines of
code (LOC). We add or modify 604 lines to integrate it
with UpRight. The bulk of these changes involved modi-
fying the checkpoint generation code to include all required
state and integrate a helper process for use with the hybrid
checkpoint/delta approach (347 LOC), glue code to handle
communication between Zookeeper and our libraries (129
LOC), and making references to time and randomness de-
terministic across replicas (66 LOC). We also deactivate or
delete some existing code. In particular, we delete 342 LOC
that deal with asynchronous IO and multithreading, and we
no longer use 5644 LOC that handle Zookeeper’s original
replication protocols. We modify an additional 554 LOC to
provide support for copy on write checkpointing.

5.3 Evaluation
We evaluate Zookeeper 3.0.1 and UpRight-Zookeeper run-

ning on the hardware described in Section 4.4. For Zookeeper,
we run with the default 5 servers (u = 2 r = 0). We then
configure UpRight-Zookeeper to tolerate as many or more
faults. In particular, we examine UpRight-Zookeeper with
u = 2 r = 1 for all phases to minimize the replication cost of
adding commission failure tolerance while retaining at least
Zookeeper’s original omission failure tolerance. We also ex-
amine a configuration that we refer to as u =2+ r = 1 that
has u = 2 r = 1 for the RQ and order stages and uexec = 3
rexec = 1 for the execution stage; this configuration retains
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Figure 10: Throughput for UpRight-Zookeeper and
Zookeeper for workloads comprising different mixes
of 1KB reads and writes.

Zookeeper’s default 5 execution replicas. The results pre-
sented here rely on the helper process approach for check-
pointing. We observe similar performance when using copy
on write techniques.

In addition, we evaluate UpRight-Zookeeper’s performance
in CFT configurations (r = 0) to explore whether UpRight
would be a suitable for new applications that want to sup-
port both CFT and BFT configurations using a single li-
brary. We evaluate the performance of UpRight-Zookeeper
with u = 2 r = 0 to match Zookeeper’s omission tolerance
with the minimum degree of replication. We also evaluate
a configuration that we refer to as u =2+ r = 0 that has
u = 2 r = 0 for the RQ and order stages and uexec = 4
rexec = 0 for the execution stage; this configuration retains
Zookeeper’s default 5 execution replicas.

Figure 10 shows throughput for different mixes of 1KB
reads and writes.

For writes, the systems sustain several thousand requests
per second. Nearly a decade of effort to improve various as-
pects of BFT agreement [1, 8, 11, 12, 18, 19, 32–34] have paid
off: when r = 1, UpRight-Zookeeper’s write throughput is
77% of Zookeeper’s for both u = 2 and u =2+. UpRight also
appears to provide competitive write performance for CFT
configurations: for u = 2 or u =2+ and r = 0 UpRight-
Zookeeper’s throughput with r = 0 and either u = 2 or
u =2+ is more than 111% of Zookeeper’s.

For reads that can accept serializability for their consis-
tency semantics, both Zookeeper and UpRight-Zookeeper
exploit the read-only optimization to skip agreement and
issue requests to a quorum of r + 1 execution nodes that
have processed the reader’s most recent write. Both sys-
tems’ read throughputs are many times their write through-
puts, but in configurations where Zookeeper queries fewer
execution nodes or has more total execution nodes, its peak
throughput can be proportionally higher. For example, when
Zookeeper sends read requests to 1 server and spreads these
requests across 5 execution replicas, we expect to see about
2.5 times the throughput of a configuration where UpRight-
Zookeeper sends read requests to 2 servers (for r = 1) and
spreads them across 4 execution replicas. When UpRight-
Zookeeper is configured to tolerate commission failures, it
pays additional CPU overheads for cryptographic checksums
but saves some network overheads by having only one exe-
cution node send a full response and having the others send
a hash [8]. Overall, UpRight-Zookeeper’s serializable read
throughput ranges from 17.5 Kops/s to 43.4 Kops/s, which
is 34% to 85% of Zookeeper’s 51.1 Kops/s throughput.
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Figure 11: Per-request CPU consumption for
UpRight-Zookeeper and Zookeeper for a write-only
workload. The y axis is in jiffies. In our system, one
jiffy is 4 ms of CPU consumption.

Although reading identical results from a properly cho-
sen quorum of r + 1 servers can guarantee that the read
can be sequenced in a global total order, the position in the
sequence may not be consistent with real time: a read by
one client may not reflect the most recently completed write
by another. So, some applications may opt for the stronger
semantics of linearizability. For linearizable reads, UpRight-
Zookeeper can still use the read only optimization, but it
must increase the read quorum size to nexec − rexec. To
enforce linearizability the original Zookeeper issues a sync
request through the agreement protocol and then issues a
read to the same server, which ensures that server has seen
all updates that completed before the sync.

The last group of bars examines performance for a mix
of 90% serializable reads and 10% writes. When UpRight-
Zookeeper is configured to tolerate r = 1 commission fail-
ures, its performance is over 66% of Zookeeper’s. When it is
configured to tolerate omission failures only, its performance
is comparable to Zookeeper’s.

Although the throughputs of our BFT configurations are
comparable to those of the original CFT system, the ex-
tra guarantees come at a cost of resource consumption. Fig-
ure 11 shows that each request consumes significantly more
CPU cycles under UpRight-Zookeeper than under Zookeeper.
The graph shows per-request CPU consumption when both
systems are heavily loaded; we observe similar results across
a wide range of loads.

We note that although using Java rather than C for agree-
ment only modestly hurts our throughput for this applica-
tion, it does significantly increase our resource consumption.
Judging by peak throughputs on similar hardware, agree-
ment protocols like PBFT and Zyzzyva may consume an
order of magnitude fewer CPU cycles per request than J-
Zyzzyvark. Future work is needed to see if a C realization
of UpRight’s agreement protocol would provide a lower cost
option for deployments willing to shift from Java to C.

Figure 12 shows how throughput varies over time as nodes
crash and recover. For this experiment we compare against
Zookeeper 3.1.1 because it fixes a bug in version 3.0.1’s log
garbage collection that prevents this experiment from com-
pleting. The workload is a series of 1KB writes generated by
16 clients, and we compare Zookeeper (u = 2 r = 0) with
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Figure 12: Performance v. time as machines crash
and recover for Zookeeper and UpRight-Zookeeper.

UpRight-Zookeeper configured with u =2+ r = 1. At times
30, 270, 510, 750, and 990 we kill a single execution node and
restart it 60 seconds later. At time 1230 we kill all execu-
tion nodes and restart them 20 seconds later. Both systems
successfully mask partial failures and recover quickly after a
system-wide crash-recover event.

6. HDFS CASE STUDY
The Hadoop Distributed File System (HDFS) [16] is an

open-source cluster file system modeled loosely on the Google
File System [15]. It provides parallel, high-throughput access
to large, write-once, read-mostly files.

UpRight-HDFS enhances HDFS by (1) eliminating a sin-
gle point of failure and improving availability by supporting
redundant NameNodes with automatic failover and (2) pro-
viding end-to-end Byzantine fault tolerance against faulty
clients, DataNodes, and NameNodes.

6.1 Baseline system
An HDFS deployment comprises a single NameNode and

many DataNodes. Files are broken into large (default 64MB)
blocks, and by default each block is stored on three Data-
Nodes. The NameNode keeps the file name to block ID map-
pings and caches the block ID to DataNodes mappings re-
ported by DataNodes as soft state.

To write a new block, a client requests a new block ID from
the NameNode, the NameNode selects a block ID and a list
of DataNodes, the client sends a write comprising the block
ID, the data, a list of 4-byte CRC32 checksums for each 512
bytes of data, and a list of DataNodes to the nearest listed
DataNode, that DataNode stores the data and checksums,
forwards the write to the next DataNode on the list, and
reports the completed write to the NameNode. After the
DataNodes acknowledge the write, the client sends a write
complete request to the NameNode; the write complete re-
quest returns once the NameNode knows that the data has
reached the required number of DataNodes. To read a block,
a client requests a list of the block’s DataNodes from the
NameNode, sends the read request to a DataNode, and gets
the data and checksums in reply.
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DataNodes send periodic heartbeats to the NameNode.
After a number of missed heartbeats, the NameNode de-
clares the DataNode dead and replicates the failed node’s
blocks from the remaining copies to other DataNodes.

The NameNode checkpoints it state to a file with the help
of a Secondary NameNode. The NameNode writes all trans-
actions to a series of log files. Periodically, the Secondary
fetches the most recent log file and the current checkpoint
file. The Secondary then loads the checkpoint, replays the
log, and writes a new checkpoint file. Finally, the Secondary
sends the new checkpoint file back to the NameNode, and
the NameNode can reclaim the corresponding log file. If a
NameNode crashes and recovers, it first loads the checkpoint
and then replays the log.

The fault tolerance of the baseline HDFS system is a bit
unusual. The checksums at the DataNodes protect against
some but not all Byzantine failures. For example, if a Data-
Node suffers a fault that corrupts a disk block but not the
corresponding checksum, then a client would detect the er-
ror and reject the data, but if a faulty DataNode returns the
wrong block and also returns the checksum for that wrong
block, a client would accept the wrong result as correct. In
its default configuration, HDFS can ensure access to all data
even if two DataNodes fail by omission, and it can ensure
that it returns correct data for some but not all commission
failures of up to two DataNodes. We will summarize HDFS
DataNodes’ fault tolerance as u = 2 r = 0/2.

HDFS’s Secondary NameNode’s role is just to compact
the log into the checkpoint file, and there is no provision for
automatically transferring control from the NameNode to
the Secondary NameNode. If the NameNode suffers a catas-
trophic failure, one could imagine manually reconfiguring
the system to run the NameNode on what had been the
Secondary’s hardware, but recent updates could be lost. An
HDFS NameNode’s fault tolerance is u = 0 r = 0.

6.2 UpRight-HDFS
Given the UpRight framework, adding Byzantine fault tol-

erance to HDFS is straightforward.

6.2.1 UpRight-NameNode
Adapting the HDFS NameNode to work with UpRight

requires modifications to less than 1750 lines of code. The
bulk of these changes, almost 1600 lines, relate to check-
point management and generation. In particular, we add
about 730 lines to include additional state in checkpoints.
For example, we include mappings from block IDs to Data-
Nodes in a NameNode’s checkpoints—although we still treat
these mappings as soft state that expires when a DataNode
is silent for too long, including this state in the checkpoint
ensures that NameNode replicas processing a request agree
on whether the state has expired or not. In addition, we
add about 830 lines to modify the logs to record every op-
eration that modifies any NameNode state rather than only
the modifications to the file ID to block ID mapping.

The other major change needed to make the HDFS Name-
Node compatible with UpRight is removing sources of non-
determinism from its request execution path. These changes
affect under 150 lines and fall into 3 categories. We replace
5 references to local system time with references to the time
provided by the order nodes for the current batch of request.
Similarly, we modify 20 calls to random() so that they are
all seeded by the agreed upon order time. The final step to

removing nondeterminism is disabling the threads respon-
sible for running a variety of periodic background jobs and
instead executing those tasks based on the logical time spec-
ified by the order nodes.

6.2.2 UpRight-DataNode
We originally imagined that we would replicate each Data-

Node as a BFT state machine and reduce the application-
level data replication in light of the redundancy in the BFT
DataNode “supernodes.” Although academically pure, sim-
ply using a black box state machine replication library to
construct BFT data nodes would have changed the replica-
tion policies of the system in significant and perhaps unde-
sirable ways. For example, HDFS’s default data placement
policy is to store the first copy on a node in the same rack as
the writer, the second copy on a node in another rack, the
third copy on a different node in the same rack as the second,
and additional copies on randomly selected, distinct nodes.
Further, if a DataNode fails and is replaced, HDFS ends up
spreading the recovery cost approximately evenly across the
remaining DataNodes. Additionally, if a new DataNode is
added, the system gradually makes use of it. Although one
could imagine approximating some of these policies within
a state machine replication approach, we instead leave the
(presumably) carefully-considered HDFS DataNode replica-
tion policies in place.

To that end, our UpRight-DataNode makes a few simple
changes to the existing DataNode. The main changes are to
(1) add a cryptographic subblock hash on each 64KB sub-
block of each 64MB (by default) block and a cryptographic
block hash across all of a block’s subblock hashes and (2)
store each block hash at the NameNode. In particular, Data-
Nodes compute and store subblock and block hashes on the
writes they receive, and they report these block hashes to the
NameNode when they complete the writes. A client includes
the block hash in its write complete request to the Name-
Node, and the NameNode commits a write only if the client
and a sufficient number of DataNodes report the same block
hash. As in the existing code, clients retry on timeout, the
NameNode eventually aborts writes that fail to complete,
and the NameNode eventually garbage collects DataNode
blocks that are not included in a committed write.

To read a block, a client fetches the block hash and list of
DataNodes from the NameNode, fetches the subblock hashes
from a DataNode, checks the subblock hashes against the
block hash, fetches subblocks from a DataNode, and finally
checks the subblocks against the subblock hashes; the client
retries using a different DataNode if there is an error.

These changes require us to change or add 189 LOC at
the client, 519 lines at the DataNode, and 238 lines at the
NameNode.

Finally, we add the expected MACs and MAC authenti-
cators to all messages with the exception of subblock hash
and subblock data read replies from DataNodes to clients,
which are directly or indirectly checked against the block
hash from the NameNode.

6.3 Evaluation
In this section we compare UpRight-HDFS with the orig-

inal. All experiments run on subsets of 107 Amazon EC2
small instances [4]. In each experiment, we have 50 Data-
Nodes and 50 clients, and each client reads or writes a series
of 1GB files. For both systems, we replicate each block to
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Figure 14: CPU consumption (jiffies per GB of data
read or written) for HDFS and UpRight-HDFS.

3 DataNodes, giving u = 2, r = 2/0 for HDFS and u = 2
r = 2 for UpRight. HDFS’s NameNode is a single point of
failure (u = r = 0). For the UpRight-HDFS runs, we config-
ure the NameNodes for u = r = 1 and co-locate the RQ and
order nodes. To evaluate UpRight’s ability to support CFT
configurations, we also look at a u = 1 r = 0 configuration.

Figure 13 shows the throughput achieved with 50 clients
and DataNodes. For both systems, write throughput is lower
than read throughput because each block is written to three
disks but read from one. Even with r = 1, UpRight-HDFS’s
read performance is approximately equal to that of HDFS’s
because only one DataNode is required to read and send
the data. With r = 1, UpRight-HDFS’s write performance
is over 70% of HDFS’s; the slowdown on writes appears to
be due to added agreement for the replicated NameNode
and the overheads of MAC computations for the DataNodes.
With r = 0, the MAC computations are omitted and write
performance is over 80% of HDFS’s; the compensation for
this slowdown is the ability to remain available even if a
NameNode crashes.

Figure 14 shows the CPU consumption for these work-
loads. When r = 1, UpRight-HDFS’s CPU costs are within
a factor of 2.5 of the original for writes and within a fac-
tor of two for reads. Note that CPU consumption is one
of the worst metrics for UpRight-HDFS; other system re-
sources like the disks and networks have much lower over-
heads. When r = 0, the overheads are smaller—factors of
1.1 and 1.6 for writes and reads, respectively.

UpRight-HDFS incurs additional computational overheads
for lower performance than HDFS. These costs come with a
benefit as demonstrated by Figure 15. The two graphs plot
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Figure 15: Completion time for requests issued by a
single client. In (a), the HDFS NameNode fails and
is unable to recover. In (b), a single UpRight-HDFS
NameNode fails, and the system continues correctly.

completion time for requests issued by a single client that
issues each request .5 seconds after the previous request com-
pletes. After 10 seconds of this workload we kill a NameNode
and in the process corrupt its checkpoint log. We then restart
the NameNode after an additional 5 seconds. Progress with
the HDFS NameNode stops at 10 seconds when the log be-
comes corrupted. When the NameNode restarts 5 seconds
later it immediately crashes again after attempting to load
the corrupted log. In UpRight-HDFS, the absence of a sin-
gle NameNode does not prevent progress. Additionally, when
the failed NameNode restarts, it fetches a valid state from
the other replicas and resumes correct operation rather than
attempting to load its corrupted local log.

7. RELATED WORK
We stand on the shoulders of numerous recent efforts to

make BFT a practical reality. PBFT [8] and its succes-
sors [1, 11, 12, 18, 19, 32–34] have significantly reduced the
replication overhead and performance cost of agreement and
state machine replication. Aardvark [11] and Prime [5] focus
on providing good performance even when faults occur. Up-
Right most directly works to combine the high performance
agreement of PBFT [8] and Zyzzyva [18] with low-cost repli-
cation from separating order and execution [34] and with
Aardvark’s robustness [11]. Notably, where Aardvark uses
client signatures and Prime uses a 2 or 3 round pre-ordering
stage that uses order node signatures to validate client re-
quests, UpRight’s RQ stage ensures consistent validation of
client requests using only MACs.

Commercial best practices for replication have evolved to-
wards increasing tolerance to fail-stop faults as hardware
costs fall, as replication techniques become better under-
stood and easier to adopt, and as systems become larger,
more complex, and more important. For example, once it
was typical for storage systems to recover from media fail-
ures using off-line backups; then single-parity or mirrored
RAID [10] became de rigeur; now, there appears to be in-
creasingly routine use of doubly-redundant storage [15, 25,
29]. Similarly, although two-phase commit is often good
enough—it can be always safe and rarely unlive—increasing
numbers of deployments pay the extra cost to use Paxos [20,
24] three-phase commit [6, 31] to simplify their design or
avoid corner cases requiring operator intervention [6].

Deployed systems increasingly include limited Byzantine
fault tolerance aimed at high-risk subsystems. For example
the ZFS [27], GFS [15], and HDFS [16] file systems provide
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checksums for on-disk data [26]. As another example, after
Amazon S3 was felled for several hours by a flipped bit, addi-
tional checksums on system state messages were added [30].
Although it may be cheaper to check for and correct faults
at critical points than to do so end-to-end, we fear that it
may be difficult to identify all significant vulnerabilities a
priori and complex to solve them case by case with ad hoc
techniques. A contribution of this paper is to explore cases
when an end-to-end approach can be employed.

8. CONCLUSIONS
The purpose of the UpRight library is to make Byzan-

tine fault tolerance (BFT) a viable addition to crash fault
tolerance (CFT) for a range of cluster services.

If a designer has an existing CFT service, UpRight can
provide an easy way to also tolerate Byzantine faults. We
test UpRight by constructing BFT versions of Zookeeper
and HDFS. Although our design choices in UpRight favor
minimizing intrusiveness to existing applications over raw
performance, our UpRight-Zookeeper and UpRight-HDFS
implementations have performance comparable with the orig-
inal systems, and they provide additional robustness against
Byzantine clients and servers.

If a designer is building a new service, the UpRight library
makes it straightforward to provide BFT, and it can be at-
tractive even if the designer’s first priority is CFT or if the
designer is uncertain about the need for BFT: UpRight al-
lows separate configuration of its tolerance of omission and
commission failures, so it provides a simple crash fault toler-
ance library with competitive performance when it is config-
ured for crash tolerance only (r = 0). Compared to writing
a crash fault tolerant replication protocol from scratch by,
for example, implementing some Paxos variant, using a stan-
dard library like UpRight may be significantly simpler. Com-
pared to using an existing CFT replication library, UpRight
provides the added option of activating Byzantine fault tol-
erance at some future date or for some deployments.
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