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Abstract
The guarantees of formally verified systems are only as

strong as their trusted specifications (specs). As observed by
previous studies [22, 52], bugs in formal specs invalidate the
assurances that proofs provide. Unfortunately, specs—by their
very nature—cannot be proven correct. Currently, the only
way to identify spec bugs is by careful, manual inspection.

In this paper we introduce IronSpec, a framework of au-
tomatic and manual techniques to increase the reliability of
formal specifications. IronSpec draws inspiration from clas-
sical software testing practices, which we adapt to the realm
of formal specs. IronSpec facilitates spec testing with au-
tomated sanity checking, a methodology for writing Spec-
Testing Proofs (STPs), and automated spec mutation testing.

We evaluate IronSpec on 14 specs, including six specs of
real-world verified codebases. Our results show that IronSpec
is effective at flagging discrepancies between the spec and
the developer’s intent, and has led to the discovery of ten
specification bugs across all six real-world verified systems.

1 Introduction

Formal verification has emerged as a promising technique
for increasing the robustness of complex systems by helping
developers prove that their implementation meets a formal
specification. As promising as this approach is, it has a funda-
mental Achilles’ heel: its guarantees of eliminating all bugs
in the implementation rely on the specification being correct.

The crucial observation that the guarantees of a mechanized
proof are only as strong as their specifications is not new and
was first identified in 1985 [33]. Specifications (a.k.a. specs)
are inherently trusted, rather than proven correct. Relying
on trust alone is not enough to ensure that specs remain bug
free. If a spec contains a bug, proving that the system meets
this spec may be meaningless; the proven system could also
contain a bug that is hidden by the buggy spec.

The correctness of specifications is the rock upon which the
entire edifice of formal verification is built.

Despite the importance of writing correct specs, current
best practices rely solely on manual inspection. Developers
argue [25,26] that because specs are typically small compared
to the size of the corresponding proof and implementation,
it is feasible to manually inspect specs thoroughly enough
to ensure that they capture the intended behavior of the
system. While expert developers are more likely to write
correct specs, they are not infallible. As formal verification
becomes widely adopted, more and more non-experts will
write specs, only exacerbating the risk of introducing bugs.
Thus, it is imperative that the process of writing specs be as
robust as possible.

In fact, several studies [22, 32, 52], through extensive man-
ual effort, have shown that formally verified systems—many
of which were developed by experts in formal verification—
contain critical bugs, which originate with problems and in-
consistencies in their specs. For example, in January 2022,
Notional Finance found a double-spending vulnerability in
a deployed verified smart contract missed by manual inspec-
tion [34]. In this case, part of the spec was vacuous, causing
it to be too weak, and thus the proof would still pass with a
buggy implementation.

Since a spec is a formal expression of a developer’s intent,
proving the spec correct is ultimately impossible. Ensuring a
spec matches a developer’s intent will always be best-effort.
Whilst no approach can guarantee a bug-free spec, that does
not mean attempts to do so must exclusively rely on extensive
manual effort and system expertise to resolve. Indeed, there
are no structured or automated approaches for a developer
to debug this complicated state space. To fill this gap, we
propose a means to better handle this challenge.

Inspired by classic testing techniques [17, 24, 48], we in-
troduce IronSpec, a spec testing framework. To enable test-
ing specs, IronSpec adapts the automation of mutation test-
ing [19, 31] and sanity checking along with a customized
manual testing approach inspired by unit testing. Together,
this framework introduces a systematic way to boost assur-
ance that a spec captures the intended behavior of the system.

If there is a bug in a spec, it originates in the same manner



as any other type of bug; there is a disconnect between the
intent of the developer and what is written. A spec is incorrect
if it is too weak, allowing for the existence of even a single
implementation that exhibits undesired behavior, or if the spec
is too strong, precluding some desired behavior. To identify
spec bugs, we leverage the insight that spec bugs manifest
themselves as a consequence of a disconnect of intent to
search for and highlight such disconnects through structure
and automation.

IronSpec aids in pinpointing where the developer’s intent
diverged from the current spec by providing various tools
that encapsulate this notion. Common cases where the in-
tent of the developer deviated from the spec can be flagged
with IronSpec’s Automatic Sanity Checker. If a system has a
passing proof, IronSpec leverages this to provide additional
automation with spec mutation testing. Mutation testing can
automatically identify cases where the behavior of the imple-
mentation differs from the spec, by using the proof to identify
relevant mutations. The hints of potential intent disconnect
provided by automation are bolstered by a manual methodol-
ogy for writing Spec-Testing Proofs (STPs). STPs are inspired
by traditional unit testing and allow developers to test if their
understanding of what behavior the spec should allow matches
the current spec. STPs can be used to investigate the hints
provided by automation to either confirm the existence of a
bug or to absolve the disconnect as intended behavior.

We evaluate IronSpec by testing six specs produced in-
house, two specs containing artificial bugs that were studied
in Abreu et al. [6], and six specs of open-source verified sys-
tems. We demonstrate the effectiveness of the automation and
manual testing methodology of IronSpec by describing ten
spec bugs found across a verified Distributed Validator Proto-
col [4], a verified SAT solver [7], a verified QBFT system [2],
a formal spec of the Eth2.0 spec [1], daisy-nfsd [15], and a
verified AWS Encryption SDK library [3].

Overall, this paper makes the following contributions:

• Introduces IronSpec, a spec testing framework that al-
lows developers to pinpoint places where the current
spec may have diverged from their original intent.

• Proposes an Automatic Sanity Checker, a testing method-
ology for writing Spec-Testing Proofs (STPs), which are
applicable to test specs even in the absence of a com-
pleted proof or implementation, and describes how to
adapt mutation testing to specs to automatically identify
divergences between the spec and the implementation.

• Demonstrates the effectiveness of IronSpec, by illustrat-
ing how we applied IronSpec to six real-world, verified
systems leading to the discovery of ten spec bugs.

2 Manually Scrutinizing Specifications

Relying on manual inspection alone to ensure an intended
specification is not practical. Fonseca et al. [22] performed a

study aimed to challenge the assumption that just because a
system is verified, it is bug-free. In this study, the authors thor-
oughly examined three formally verified distributed systems,
IronFleet [26], Verdi [53], and Chapar [41] and identified six-
teen bugs across their specifications, verification tools, and
their unverified shim layers. Two of these bugs were found
to be in specifications. This study was chiefly manual and
required close examination of the respective specifications to
identify. The authors do introduce some basic automation, yet
their techniques still rely predominantly on manual effort and
expertise in the system. This work demonstrated the need for
and acknowledges the lack of a more rigorous and automated
approach to testing formal specifications. Similarly, Yang et
al. [54] conducted a bug study of compilers and discovered
two bugs within the verified compiler CompCert due to under-
specification, and similarly observed that specifications are
complex and lack scrutiny.

The concerning discovery of these previous works identi-
fies the gap that this work aims to fill; to provide a means for
developers to help automatically and methodically identify
specification bugs across the spectrum of specifications.

Complicating this problem, specifications can take on dif-
ferent forms, making uniform debugging approaches difficult.
In their simplest form, specifications can be in-line predicate
assertions [29]; boolean functions that check the state of the
system against some property. A more specific class of predi-
cate assertions based on the Floyd-Hoare style logic [21, 28]
are preconditions and postconditions, which establish invari-
ants about the state of the program before and after the exe-
cution of a piece of code. For more complex systems, rather
than directly proving properties about the system, it can be
easier [26, 53] to prove state machine refinement [37]. For
refinement, the specification is an abstract state machine that
encapsulates the desired behavior of the system.

To highlight the subtlety of trying to manually ensure a
specification is correct, consider an incorrect specification
for a simple Sort method found on line 3 of Specification 1.
This Sort method takes a sequence of integers as input and
promises to return a sorted sequence of integers in ascend-
ing order. The specification for this method is a single post-
condition which ensures that the value at every index in the
output sequence is less than or equal to the value at subse-
quent indices. At first glance, this may seem to be a correct
specification for Sort—a mistake that many newcomers to
verification make.

However, this specification is incorrect, as it neglects to
mention any relationship between the input and output se-
quences. This is considered a buggy specification because
a proof could still pass even with an incorrect implementa-
tion that exhibits undesired behavior, erroneously giving the
illusion of correctness. For example, if the input sequence
were [1,6,7,2], an incorrect implementation could arbitrar-
ily return [1,42,100] or even the empty sequence [ ]. The
incorrect implementation for Sort in Specification 1 is triv-



Specification 1 Incorrect Sort Spec
1 method Sort(input:seq<int>)
2 returns (out:seq<int>)
3 ensures forall i | 0 <= i < |output| - 1 ::
4 out[i] <= out[i+1]
5 { return []; }

Specification 2 Correct Sort Spec
1 method Sort(input:seq<int>)
2 returns (out:seq<int>)
3 ensures forall i | 0 <= i < |output| - 1 ::
4 out[i] <= out[i+1]
5 ensures multiset(input) == multiset(output)
6 { /* body omitted */ }

ial and always returns an empty sequence. Yet, the proof for
this method would still pass, as this trivial implementation
satisfies the incorrect, too-weak specification.

Manually identifying a spec bug, like that in Specification 1,
can be challenging. In fact, a correct specification for Sort
should also capture the relationship between the input and
output by adding an additional post-condition to ensure that
the multiset of the input is equal to the multiset of the output,
see line 5 in Specification 2.

The opposite case, where a specification is too strong, can
be equally as important and challenging to manually iden-
tify. For example, if we replace line 5 in Specification 2 with
ensures input == output, the specification becomes un-
necessarily strong. Multisets do not take order into account,
whereas sequences do, so the updated postcondition is overly
strong. The only input and output pair that could satisfy this
specification is if the sequences are identical and already in
ascending order. Even if one has a correct implementation of
Sort, proving that the implementation upholds this specifica-
tion is impossible. To debug the inevitably failing proof, the
developer must examine their implementation for bugs, check
their proof for missing invariants and manually inspect their
spec to make sure it captures the intended behavior. Having
high confidence in the spec would make this scenario much
more unlikely and would give the developer more time to
focus on the proof itself, knowing they are proving the right
property.

3 How To Test A Specification

It is challenging to diagnose spec bugs because specs are
trusted, and a buggy spec can often be at odds with a devel-
oper’s original understanding of the system. Complicating
the problem, specs are often intended to be abstract, allowing
different, correct implementations to meet the spec. Hence,
we introduce IronSpec, a framework for testing specs to help
gain confidence that a spec is bug-free. This work represents
the first systematic effort to bridge the gap between the mature

and extensive work in software testing and the lack of rigor
in ensuring spec correctness.

IronSpec is inspired by the insight that the existence of
a spec bug is inherently due to a disconnect between what
the developer intended and what properties were actually
captured in the spec. IronSpec provides tools to allow a tester
to identify and test possible occurrences where the original
intent of the developer may have diverged from the current
spec. Some aspects of IronSpec only rely on the spec and
have no dependence on the existence of an implementation or
a passing proof. However, if there is an implementation and
a corresponding passing proof, IronSpec can leverage this to
use the implementation as an additional reference point to
help focus the testing process.

This section introduces and provides a high-level overview
behind the ideas of why each testing component of IronSpec
is useful in exposing disconnects between the intent of the
developer and their spec. Section 4 discusses each in more
detail.

3.1 Testing Specifications In The Absence Of
A Passing Proof

Akin to test-driven development [10], it is desirable to test a
spec without requiring a proof or corresponding implementa-
tion. If there is a bug in the spec when it comes time to write a
proof, a developer may struggle and expend unnecessary man-
ual effort in debugging in the wrong place. The Automatic
Sanity Checker and Spec-Testing Proofs (STPs) provide two
frames of reference for a tester to check their specs against,
even in the absence of an implementation and proof.

Regardless of the context of the system, it is clearly never in-
tended for a verified method to be permitted to return arbitrary
values. If the spec is too weak, an incorrect implementation
might be free to return any value, unconstrained by the spec.
The Automatic Sanity Checker raises high-confidence flags
when the spec of a verified method fails to properly constrain
its output based on the given input. The sanity checker also
alerts the developer to partially constrained input and output,
which provide weaker hints to the existence of spec bugs but
are also worthwhile to investigate further.

Because the Automatic Sanity checker only looks for under-
constrained input and output, this technique can be used even
in the absence of an implementation or proof. Section 4.1
describes the Automatic Sanity Checker in more detail.

The Automatic Sanity Checker excels at automatically find-
ing common spec bugs by leveraging generic code patterns,
but cannot leverage any user-provided hints and insights. We
address this gap by introducing a methodology for manu-
ally writing Spec-Testing Proofs (STPs). STPs are inspired
by traditional unit tests and are proofs about the spec for
context-specific input and output. STPs help developers ex-
pose differences between the expected behaviors they intend
to include in the spec and what is currently permitted. This



testing methodology is useful in the presence of a passing
or failing proof, but can also be applied in the absence of a
proof. Section 4.2 explains how to write STPs and interpret
their results.

An STP is, by definition, a proof; this is the key difference
between STPs and standard unit tests. Since STPs are proofs,
STPs help to answer different questions than what unit tests
allow for. Instead of attempting to prove a general property, an
STP demonstrates the validity of the spec for a specific, con-
cretized value or a range of values. This testing methodology
exploits the insight that crafting proofs for specific cases is
often less challenging than producing a comprehensive proof
and can frequently be proved by the verifier with minimal
manual intervention. Each STP is a small proof about distinct
properties of the spec. The steps of writing STPs are generic,
and so can be useful tools in investigating the correctness of
many variations of specs.

Differing from a failed unit test, if an STP fails to verify,
it could be for various reasons. The STP may fail due to a
divergence between the expectation of the spec and the STP,
indicating a bug. If the tester suspects that a disconnect caused
the failed proof, the appropriate next step is to write a con-
crete Counterexample STP. The counterexample proves that
unintended behavior is permitted by the spec. Alternatively,
an STP may fail because the STP body lacks sufficient proof
annotations for the verifier to prove the final postcondition.
Distinguishing between a spec bug and the need to add proof
to the body of the STP is impossible to immediately diag-
nose for every case because in this work we are targeting
undecidable programs.

3.2 Testing Specifications With The Assistance
Of A Passing Proof

Even when a system is verified with a passing proof, it is still
possible for the system to contain bugs if the spec itself is
buggy; thus testing a spec at this point is still very valuable. A
too-weak spec could allow for a proof to pass with an incor-
rect implementation, falsely giving the illusion of correctness.
Alternatively, even if the current implementation contains no
bugs, a too-weak spec could allow for a buggy update to the
current implementation, such that a proof would still pass
with the same too-weak spec. Relying on a developer to write
a bug-free implementation given a buggy spec, goes against
the very reason to verify systems in the first place; so it is just
as vital to identify spec bugs when the proof passes.

Using the Automatic Sanity Checker and writing STPs
are applicable when testing a spec with a passing proof, but
the proof and implementation together contain untapped in-
formation that can further assist testing. Like the spec, the
implementation also captures the intent of the developer. Iden-
tifying the difference of intent between the behavior allowed
by the spec and what is actually in the implementation, calls
the developer’s attention to potential disconnects. IronSpec

can take advantage of the proof and implementation to auto-
matically test a spec with mutation testing. Mutation testing
identifies cases when the spec is weaker than the current im-
plementation. IronSpec uses the passing proof as a reference
point to automatically distinguish cases where the existing
implementation is weaker than the behavior allowed by the
spec. Further details concerning how IronSpec adapts muta-
tion testing to specs are described in Section 4.3.

Departing from traditional mutation testing, IronSpec starts
with a spec, implementation, and passing proof and then only
mutates the spec. IronSpec relies on an existing passing proof
to indicate whether a mutation should be killed, whereas tradi-
tional mutation testing relies on a test suite. A mutation is kept
and considered alive if the original proof still passes with the
mutated spec, indicating that the implementation also meets
this different spec. The behavior allowed by the original spec
but not the mutated spec serves as an example of a subset of
behavior that may not be intended.

The existence of even a single alive spec mutation serves
as a flag to the developer. An alive mutation is clear evidence
that a different spec still allows the proof to pass with the
unmodified implementation, and represents specific behavior
unaccounted for by the original spec. The difference between
the original spec and the passing mutated spec is a strong hint
for the tester to determine if that specific behavior is intended.
Identifying alive mutations is accomplished automatically, but
understanding the implication of any such alive mutation can-
not be automated and ultimately still relies on the developer’s
intuition to understand.

An alive mutation is simply a hint highlighting a diver-
gence between the spec and the implementation. However,
not all alive mutations immediately lead to the discovery of a
spec bug. If a spec is correct but also weaker than the current
implementation, there is a chance for an alive mutation to be
considered a false positive and marked as intended behavior.
In a contrasting, albeit rare case, if both the spec and imple-
mentation are buggy, but the implementation is not weaker
than the buggy spec, then no alive mutations may be found.

To reduce the chance of false positives only a subset of
the generated mutations are eventually considered. Logically
equivalent or weaker mutations than the original spec and mu-
tations that trivially make the proof pass can be safely ignored.
The details for how specs are mutated and what constitutes
valid mutations are expounded upon in Section 4.3.

Note that we deliberately mutate only specs and not im-
plementations for two reasons. Firstly, specs are smaller than
implementations, therefore reducing the number of mutations
necessary to consider. Secondly, mutating only the spec rather
than the implementation is advantageous for automation.
Specs, being boolean functions, enable automatic filtering
of irrelevant mutations. Assuming the proof passes given the
original spec, any logically weaker spec mutation will still
allow the proof to pass and does not provide any new relevant
information. By automatically checking the relative logical



strength of a mutated spec in relation to the original, weaker
mutations can be identified and ignored. This automation
is impossible when mutating the implementation, as deter-
mining relative logical strength is not possible in all cases.
Logical relationships can be determined automatically for
boolean functions, like specs, whereas not all imperative code
shares this attribute. Implementation-based mutations would
increase the manual burden on the tester, as many more false
positives would be an unavoidable outcome that would require
manual effort to sift through. The process of automatically
filtering spec mutations is further explained in Section 4.3.2.

In certain cases, mutation testing is also useful in identi-
fying too-strong specs. A spec in the Hoare-Logic style can
also be considered incorrect by virtue of having a too strong
precondition. IronSpec’s mutation testing is still applicable
in this case. If the spec mutation target is a precondition,
rather than attempting to identify where the spec is discon-
nected from the implementation due to weakness, IronSpec
reverses the criteria used to determine relevant mutations by
considering mutations that are weaker than the original spec.

Mutation testing does not provide complete coverage of
spec testing but rather focuses the attention of the tester on a
disconnect between the spec and the implementation. STPs
can be used to help fill this gap. Focusing on writing STPs
about the discrepancy hinted at by an alive mutation leads to
a more efficient way of identifying bugs. STPs guided by the
hint of alive mutations can allow a tester either to arrive at a
counterexample, showing a bug in the spec, or to absolve the
alive mutation as intended behavior.

4 The IronSpec framework

IronSpec consists of three spec testing tools; an Automatic
Sanity Checker, a methodology for writing Spec-Testing
Proofs (STPs), and an automatic mutation testing framework.
Each assists in identifying and flagging divergences between
the developer’s intent and the existing spec.

The IronSpec prototype is built in C# as an extension to
Dafny [40], a verification-aware programming language that
enables verification with the Z3 SMT solver, and also supports
practical imperative implementations by compiling to C#,
Java, JavaScript, and Go. IronSpec was applied to test specs
written in Dafny, but the concepts of how to test specifications
are not Dafny-specific and could be re-implemented in other
environments.

4.1 Automatic Sanity Checker
The Automatic Sanity Checker (ASC) examines the input,
output, and spec of verified methods to identify cases where
the spec may be weaker than intended. The ASC implemen-
tation consists of approximately 300 lines of C# code and
achieves this check by traversing the AST of the method un-
der test while maintaining some local state. Table 1 outlines

Table 1: Automatic Sanity Checking Flags
Flag Severity Condition

LOW
Post conditions only depend

on a portion of the input

MED
Only part of the output is

constrained by the postconditions

HIGH
None of the postconditions
depend on any of the input

HIGH
None of the output is constrained

by any of the postconditons

the properties that are checked and their assigned severities.
All of these properties can be determined by examining the
AST, and as such, they can be checked efficiently without
invoking a verifier. Either of the HIGH severity flags signifies
a high likelihood of spec bugs, whereas the other severity
levels indicate a cause for additional manual inspection. Both
HIGH severity flags reveal a weakness in the flagged spec.
If the postconditions do not depend on the input, then the
weakness is in regard to the lack of necessity for that input.
Whereas, if the postconditions do not constrain the output, an
implementation with a passing proof could return arbitrary
output values. Regardless of the particular functionality of the
system, either case represents a clear disconnect between the
intent of a correct spec and the current spec.

The power of the Automatic Sanity Checker arises from ex-
ploiting the relationship between a spec and the input/output
of its corresponding method. Both HIGH severity flags signal
the condition when the spec constraints on the input/output
of the method are non-existent. If no postcondition depends
on any of the input values, then an obvious aspect of the spec
is missing. The buggy sort spec in Specification 1 exempli-
fies this scenario. The spec is not constrained at all by the
input, making the spec weak enough to allow for a proof of an
incorrect implementation to pass. Similarly, if a method has
an output not constrained by its postconditions, an incorrect
implementation can return any output. The lower severity
flags hint to partial violations of the general properties and do
not immediately indicate bugs; rather, they signal a missing
part of the spec that could be the source of a bug.

4.2 STP Methodology

The testing methodology outlines four classes of STPs. The
first three help guide developers in understanding the Useful-
ness, Correctness, and Provability of their specs. Lastly, if
there is a bug in the spec, developers can prove its existence
with a Counterexample STP. The methodology focuses on
specs written following the Hoare-Logic style [51] but can
be applied to any type of predicate-based spec. All types of
STPs enable the developer to prove a specific property about
their spec. A developer proves that context-specific input and



Lemma 3 General Precondition STP
1 lemma PreconditionSTP(in:InType)
2 requires TestInputProperty(in)
3 ensures Precondition(in)
4 // or !Precondition(in)

Lemma 4 General Postcondition STP
1 lemma PostconditionSTP(in:InType,out:OutType)
2 requires TestInputProperty(in,out)
3 ensures Precondition(in)
4 ensures Postcondition(in,out)
5 // or !Postcondition(in,out)

output values are valid or invalid, and gauge if those results
match their intent based on their understanding of what the
spec should or should not permit. Lemma 5 is an example
of an STP which tests if a sort spec is strong enough to re-
ject specific invalid values. A passing STP shows that the
intent of the developer matches the spec and is a proof for
that particular property of the spec.

4.2.1 Writing STPs

The construction of different types of STPs share many simi-
larities, but the results are interpreted differently. STPs also
enable decoupling of pre- and postconditions so that they can
be tested individually. The general form for these STPs are
found in Lemmas 3 and 4.

Usefulness STPs help to answer the question of whether
the preconditions are weak enough to remain useful; the pre-
conditions should accept all intended valid inputs. Usefulness
STPs follow the general form of Lemma 3. The specific input
values are defined as part of the precondition for this lemma
as the TestInputProperty, and should be a value that the
test writer expects to be a valid input allowed by the spec. The
postcondition for a Usefulness STP should be the precondi-
tions from the spec, i.e. ensures Precondition(in).

Correctness STPs examine whether the postconditions are
strong enough to reject all intended invalid outputs. Writing
Correctness STPs is based on the general form of Lemma 4.
To test if the postcondition is strong enough to reject buggy
behavior, the test writer supplies an output value that is ex-
pected to be invalid and should not be allowed by the spec
i.e. ensures !Postcondition(in). To isolate testing the
postcondition from the precondition, the test writer should
also prove that the undesired output does not satisfy the spec
as a result of an invalid input value (Line 3 in Lemma 4),
ideally with a separate Usefulness STP validating the input.

Conversely to Usefulness and Correctness STPs, Provabil-
ity STPs test whether the preconditions are strong enough
and whether the postconditions are weak enough for the ex-
istence of a provable implementation. Provability STPs are
most useful before having a passing proof, as a passing proof
is evidence that the spec has this property. That said, they

Lemma 5 Correctness STP Example - Incorrect Sort Spec
1 lemma CorrectnessSTPSort(
2 input:seq<int>, sorted:seq<int>)
3 requires input == [42, 1, 500]
4 requires sorted == [42, 500]
5 ensures !SortSpec(input, sorted)
6 { }

can still provide value in the presence of a passing proof, as
they can test the strength of transitions in a state machine (see
Section 5.2.2).

STPs for Provability are concerned with both preconditions
and postconditions, thus follow the structure from both Lem-
mas 3, and 4. Precondition STPs prompt the test writer to
prove that expected invalid input should not pass the precondi-
tion, i.e. ensures !Precondition(in). Whereas postcon-
dition STPs check that input and output expected to be permit-
ted by the spec is allowed by the postconditions, i.e. ensures
Postcondition(in,out).

If suspecting a spec bug, a test writer can also directly write
a Counterexample STP. A passing Counterexample STP is
concrete evidence of a bug in the spec. Counterexample STPs
can take on two different forms but are still derivative of
Lemma 4 if concerned with postconditions and Lemma 3 for
preconditions. A Counterexample STP can either show that
an expected valid input-output pair is rejected by the spec
or that an expected invalid input-output pair is accepted.

4.2.2 Adding Proof Help To STPs

When an STP fails to verify, it could be due to a divergence
between the expectations of the test writer and the current
spec, indicating a spec bug, which can be confirmed with
a Counterexample STP, or it could be the result of the fun-
damental undecidability of this type of problem. If it is the
latter case, it is possible to circumvent this roadblock in some
instances by adding additional proof to the STP body.

The process of proving an STP is no different than writing a
proof for any lemma, but the specificity of the STP narrows the
scope necessary to reason about. However, before spending
the manual effort to add proof annotations to the body of an
STP, the first step is to negate the conclusion, i.e. the ensures
of the STP. Negating the conclusion transforms an STP into
a Counterexample STP. Thus, if the proof now passes there
is a clear indication of a bug.

As an example of the process of writing an STP, consider
the Correctness STP in Lemma 5 for the incorrect sort spec
from Specification 1. This STP tests that the sort spec should
reject the case when the output sequence is sorted, but only
contains a subset of the original input. The Sort method does
not have a precondition, so any input sequence would satisfy
a Usefulness STP, so this step can be skipped. Running a ver-
ifier on this STP would initially result in failing to prove the
postcondition automatically. Before spending manual effort to



Table 2: Mutation Operators
Operator Description

AOR Arithmetic Operator Replacement
LOR Logical Operator Replacement
ROR Relational Operator Replacement
COI Constant Operator Insertion
UOR Unary Operator Replacement
ENO Expression Negation Operator

VNOR Variable Name Operator Replacement
SOR Set Operator Replacement
HOR Heap Operator Replacement

prove this STP, the first step is always to negate the postcon-
dition (i.e. changing Line 5 to ensures SortSpec(input,
sorted)), transforming the Correctness STP into a Coun-
terexample STP. The attempt to prove this counterexample
would now pass and serves as a concrete example of where
the spec has diverged from the test writer’s understanding.

4.3 Mutation Testing
If the system has a passing proof, IronSpec can leverage the
proof and implementation as a reference point for further au-
tomation. IronSpec systematically generates a set of specifica-
tion mutations, slight syntactical modifications of the original
spec, but only considers those that are not weaker than the
original spec. If the original proof still passes with one of
these stronger specs, this alerts the developer to the original
spec being weaker than the implementation; a disconnect that
may hint at an unintentional spec weakness.

All mutations are subjected to three verification-assisted
checks, outlined in the following subsections. Each of these
checks filter the set of mutations by discarding irrelevant
mutations; any discarded mutation is deemed killed. If a mu-
tation is still alive after all three checks, it serves as a hint of
a potential spec bug.

4.3.1 Mutation Generation

We generate mutations inspired by the method-level mutation
operators from MuJava [44,45] and from a study that used the
Z3 SMT solver to optimize a set of mutation operators based
on subsumption relationships [23]. We further introduce an
additional predicate-based mutation operator, Set Operator
Replacement (SOR). SOR introduces mutations about set
inclusion, for example, an expression, e∈ s, would be mutated
to become, e /∈ s or vice versa.

The IronSpec prototype is implemented in Dafny, so all
mutations are applied to expressions in the Dafny AST. For
Dafny expressions that reason about the heap, we introduce
the Heap Operator Replacement (HOR) mutation operator,
which mutates expressions containing the Dafny keyword

Lemma 6 IsAtLeastAsWeak Lemma
1 lemma IsAtLeastAsWeak(p:Params)
2 requires OriginalPredicate(p:Params)
3 ensures MutatedPredicate(p:Params)

Predicate 7 Mutation Target Example
1 predicate SafetyProperty(p:Params)
2 { SubPredA(p) ==> SubPredB(p) }

old. The full list of the mutation operators used in IronSpec
is shown in Table 2.

Each generated mutated spec is the result of IronSpec ap-
plying a single mutation operator at a time. The set of all
mutated specs consists of all possible single-operator muta-
tions for a given spec applied to each subexpression in the
mutation target.

An example of one of the many possible spec mutants start-
ing with the single postcondition from Specification 1 would
be: forall i | 0 <= i < |output| - 1 :: out[i] <
out[i+1]. This mutation is generated using the Relational
Operator Replacement (ROR) mutation operator which gen-
erates mutations by replacing relational-based operators from
the set of {==, <, <=, >, >=, !=}. One application of
this mutation operator results in replacing the <= to a < in the
RHS of the forall expression.

4.3.2 First Pass: Logical Redundancy

Not all mutations produced from the original spec are relevant.
A spec defines a set of behaviors, and a passing proof shows
that the behavior of a specific implementation is a subset of
the behavior allowed by the spec. A spec that is weaker than
the original would allow a larger set of implementations to
satisfy this subset property. Any mutated spec that is logi-
cally equivalent or weaker than the original spec would not
provide any new information to the tester about the current
implementation and can be safely disregarded.

A mutation can cause a spec to become weaker if it weakens
a postcondition or if it strengthens a precondition. Either case
allows for a larger set of implementations to satisfy the spec.
Therefore, for each mutation to a postcondition, IronSpec tests
if the mutation is at least as weak as the original spec.

Definition 4.1. Given predicates S and S′ with parameters p,
S is at least as weak as predicate S′ iff ∀p.S′(p) =⇒ S(p)

IronSpec captures this definition by automatically formu-
lating Lemma 6 for the original and mutated specs. If this
lemma passes, then the mutated spec must be equivalent to or
weaker than the original spec, indicating that it can be killed.

Conversely, if the mutation modified a precondition, Iron-
Spec checks the opposite, to see if the mutation is at least as
strong as the original spec. The lemma to check if a spec is at
least as strong as the original is similar to Lemma 6, but with
the requires and ensures reversed.
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Figure 1: A mutated spec can either be strictly weaker (Spec
A), strictly stronger (Spec C), logically equivalent, or partially
stronger and weaker (Spec B) than the original spec.

As an example of Definition 4.1, consider Figure 1, where
each circle represents the set of behaviors allowed by each
respective spec. Any behavior in the circle encapsulated by
the Original Spec is still inside the set of allowable behaviors
of Spec A, making Spec A strictly weaker than the Original
Spec and thus would be automatically discarded based on
the result of Lemma 6. Both Specs B and C are not at least
as weak as the Original Spec and would survive the Logical
Redundancy pass.

The IsAtLeastAsWeak lemma is generated automatically to
test the spec’s overall safety property, rather than directly test-
ing the mutated expression. This is important to avoid false
positives. For example, consider if SubPredB(p) in Predi-
cate 7 contains the mutated expression. Testing the IsAtLeast-
AsWeak Lemma with just SubPredB(p) may fail, indicating
that this mutation is stronger than the unmodified version of
SubPredB(p), but this mutation may cause its caller, Predi-
cate 7, to become weaker.

4.3.3 Second Pass: Vacuity

IronSpec’s second pass aims to identify the mutations
that cause vacuity [36]. For example, if a mutation to
SubPredA(p) from Predicate 7 resulted in it always eval-
uating to false, then Predicate 7 would always be true. A
vacuous spec would allow for the system’s proof to pass triv-
ially because any behavior of the system would be allowed by
the vacuous spec. Checking vacuity is more complicated than
purely checking if the mutated predicate is itself vacuous, as
the conditions of a predicate that calls the mutated predicate,
in conjunction with the mutated predicate could result in the
caller becoming vacuous. This is especially important with
specs that are state machines where a mutation could cause a
state transition to become false, removing that behavior from
the spec. IronSpec automatically generates a lemma to check
for vacuity by considering the full call path.

4.3.4 Third Pass: Full Proof

The final check is to see if the full proof will pass with the
mutated spec. In this final pass, the system is re-verified with

the addition of the mutated spec to ensure that no intermediary
lemmas now fail. If the full proof passes, the mutation is
considered alive and serves as a flag to the developer to re-
examine the spec.

4.3.5 Hierarchical Classification of Alive Mutations

Rather than providing the tester with a list of all alive muta-
tions, IronSpec performs an additional pass to characterize
the alive mutations, minimizing the output to the most rel-
evant. To maximize the hint provided by an alive mutation,
IronSpec evaluates the set of alive mutations to calculate a
Direct Acyclic Graph (DAG) indicating which mutations are
weaker or stronger in relation to one another. The DAG is
structured so that each node is stronger than all of its children.
The tester need only further concern themselves with the root
of each connected component of this mutation DAG, as all
children are weaker than the root in each component. This
hierarchical classification is inspired by previous research to
classify and remove equivalent mutations [8, 23, 46, 50].

4.4 Using Alive Mutations As Hints For STPs
When testing specs, human intuition is always the final oracle,
thus, STPs are still needed to finish the investigation started by
mutation testing. On their own, alive mutations only indicate a
relative divergence between the spec and the implementation,
but these hints can be used to write focused STPs. The relative
strength of an alive mutation can be used to shrink the state
space necessary to test, focusing on the divergence between
the original spec and the mutation.

Armed with an alive mutation, a test writer can effectively
exploit its hint by deviating from the standard guidelines of
writing STPs and work backwards from the spec difference.
The spec difference is the set of behaviors allowed by the orig-
inal spec S and not by the alive mutation S′; essentially S−S′.
The spec difference embodies the fundamental insight Iron-
Spec is based on; it captures a specific disconnect between the
original spec and the implementation. The behavior allowed
by this reduced expression is permitted by the original spec,
but not by the more restrictive mutation. The spec difference
uniquely presents the tester with this subset of behavior to
determine if that particular disparity is intended.

Working backwards allows the test writer to find concrete
values that satisfy only the spec difference, achieving more
concentrated STPs. Typically, when writing STPs, a tester
starts by manually specifying values they intend for the spec
to allow or disallow. This process increases in difficulty with
the additional constraint that these intended values also need
to satisfy the spec difference. The shift of working backwards
helps to alleviate this burden.

Driven by the insight that the actual semantic change be-
tween the mutation and the original spec is small—only a
single mutation—the expression of the spec difference is min-



Table 3: Spec bugs identified using the Automatic Sanity
Checker. All bugs were confirmed with Counterexample STPs
based on the initial hint of either MED or HIGH flags.

Bug Specification Method Name Flag
TS1 TrueSat [7] Formula Ctor HIGH
TS2 TrueSat [7] Start MED

ETH1 Eth2.0 [1] on_block MED
AES1 AWS ESDK [3] Encrypt MED
AES2 AWS ESDK [3] Decrypt MED

imal. Working backwards allows the test writer to generate
any input and output, and then use the verifier to check that
the input and output are accepted by the expression constitut-
ing the spec difference. After generating such values, the final
decision relies on the tester to decide whether the input-output
pair is intended. At this stage, the existence of an unintended
value is a counterexample to the original spec.

5 Evaluation

We evaluate the effectiveness of the IronSpec prototype by
applying the Automated Sanity Checker, the STP Method-
ology and the automated mutation testing framework to test
14 different specifications written in Dafny [40]. Six of these
specifications are produced in-house and include artificially
introduced bugs, with an additional two specs containing arti-
ficial bugs described by Abreu et al. [6]. Six of the specifica-
tions are of real-world, open-source verified systems, which
include: QBFT [2], DVT [4], TrueSat [7], Eth2.0 [1], daisy-
nfsd [15] and an AWS Encryption SDK library [3].

When testing a spec, the ultimate oracle is the test writer,
thus the final step is always to write an STP. When testing
a spec, a tester could start with any aspect of IronSpec. We
discuss the various facets of IronSpec by highlighting their
use in supplying the initial hints used to discover ten spec
bugs, all confirmed by their corresponding authors.

We consider all spec bugs identified and discussed in this
section useful and significant; all could have allowed or did
allow an incorrect implementation that would violate safety
while still allowing the proof to pass.

The IronSpec artifact is publicly available on GitHub [5].

5.1 Automatic Sanity Checking Evaluation
Applying the Automatic Sanity Checker to the six open-
source verified systems led to the discovery of five spec bugs
across three specs, listed in Table 3.

Of the bugs identified, only TS1 was identified immediately
with a HIGH severity flag, whereas the other four bugs were
each discovered in less than an hour by writing STPs based on
the hint of MED severity flags. The corresponding implemen-
tation for all five spec bugs appeared correct, but the specs

were buggy, being too weak. To confirm these spec bugs, we
wrote buggy implementations as Counterexample STPs for
each spec and demonstrated that the proof still passed.

Spec bugs TS2, ETH1, AES1, and AES2 were identified
by investigating each respective MED severity flag. We found
that in these cases, the bug was a result of the output consist-
ing of a complex datatype with many sub-fields and having
postconditions concerning only a subset of these fields. This
combination allows for a different implementation to update
the remaining unspecified fields arbitrarily.

A MED severity flag is not as strong of a hint of a spec bug
as a HIGH severity flag because the unspecified fields may or
may not be critical for safety. The HIGH severity flag raised
for TS1 was; “None of the postconditions depend on any of
the input.” This spec bug allows a buggy implementation to
completely ignore the input values when constructing the
output. The authors have remedied bugs TS1 and TS2 with a
pull request we submitted.

The two bugs, AES1 and AES2, from the AWS Dafny
Encryption SDK library (ESDK) [3] are both cases of spec
weakness. The Dafny ESDK is a verified SDK used as a ref-
erence to build ESDKs for other languages. These bugs exist
for the high-level methods of Encrypt and Decrypt. They
are caused by a combination of the postconditions under-
constraining the output and because the postconditions of
sub-methods are not exported. This underspecification al-
lows for the proof of trivially incorrect implementations for
Encrypt and Decrypt to pass, such as returning a ciphertext
or plaintext consisting of a zero byte regardless of the input.

Specs with output containing complex datatypes with many
sub-fields are a critical source of spec bugs. Judging from
the results of applying the Automatic Sanity Checker, under-
constraining complex output can easily be overlooked. To
avoid these types of spec bugs, it is vital to specify the ex-
pected values for all sub-fields of the output.

5.2 STP Methodology Evaluation

In this section we describe our experience in writing Useful-
ness, Correctness, and Provability STPs for specs following
the Hoare-Logic style; and in the cases of identifying a spec
bug, Counterexample STPs. We discuss the effectiveness of
these STPs to expose differences in what behaviors the spec
allows in contrast to a test writer’s expectations in the pres-
ence of artificially introduced bugs.

We also discuss a case study, where following the STP
methodology we discovered three spec bugs in a verified
QBFT protocol. We wrote STPs for all open source specs,
and when an STP failed to verify and the result conflicted
with our understanding of the spec, we wrote Counterexample
STPs to prove the existence of a spec bug. For brevity, the case
study in this subsection focuses on the QBFT spec, where
STPs acted as the initial flag that hinted at the existence of a
spec bug.



Figure 2: STP coverage for various buggy sort specs

5.2.1 STPs For Contrived Spec Bugs

We wrote STPs for five specs written in-house that follow the
Hoare-Logic style. These specs include methods for finding
the max of two integers (Max), sorting a sequence of integers
(Sort), searching for an integer in a sequence (Binary Search),
a cryptocurrency token creation contract (Token-with-revert-
external-wre), and an auction contract (SimpleAuction-with-
revert-external-wre). The Token and SimpleAuction specs
were modified from Cassez et al. [14].

We wrote a total of 70 STPs for all variations of the con-
trived specs. The bugs introduced into the specs vary, but
the resulting specs comprised an approximately equal split
between too-strong and too-weak specs. Only 30% of these
STPs (21) needed additional proof help and of those, each
STP needed, on average, an additional 1.7 lines of proof help.
The STP suite was successful in all cases in identifying intro-
duced spec bugs—confirming the notion that a failing STP
is a reliable flag suggesting a discrepancy between the intent
encoded in the STPs and the spec.

Not all classes of STPs are useful in identifying all spec
bugs because of the different natures of each type of STP. To
demonstrate why writing a diverse suite of STPs is useful,
consider Figure 2 that shows the coverage of 21 STPs across
10 different bugs for a Sort spec. In this experiment, the suite
of STPs consisted of Correctness and Provability STPs be-
cause the different Sort specs were all postconditions, and
Usefulness STPs are only concerned with preconditions. Each
row corresponds to a different introduced bug and each col-
umn matches to a different STP. A darkened cell indicates
that a specific STP successfully identified the bug after trans-
forming the failing STP into a passing Counterexample STP.
The bug was identified if a row contained a single darkened
cell, whereas each column gives insight into the coverage of
a single STP in identifying different bugs. The bottom row
is a heat map corresponding to the ratio of bugs identified
by each STP. The two STPs that uncovered zero spec bugs
tested trivial enough cases such that they passed with all of
the buggy specs. Depending on the spec bug, there were cases
where the Correctness STPs were insufficient to identify the
bug on their own, and there were cases where the same was
true of the Provability STPs. So, when writing STPs it is im-
portant to have good coverage of different types of STPs to
increase testing effectiveness.

Lemma 8 Simplified QBFT Provability Adversary STP
1 lemma AdversaryForwardMessageSTP(
2 a:Adversary,
3 a’:Adversary,
4 inMsgs: set<Message>,
5 outMsgs: set<Message>)
6 requires validAdversaryConfig(a,a’,inMsgs)
7 requires inMsgs == {ProposalMsg(CS1,block)}
8 requires outMsgs == {NewBlockMsg(CS1,block)}
9 ensures AdversaryNext(a, a’, inMsgs, outMsgs)

5.2.2 STPs: QBFT Case Study

Writing STPs for the QBFT spec [2], a Byzantine fault-
tolerant consensus protocol used in the Ethereum ecosys-
tem [47], led to the discovery of three spec bugs confirmed
by the authors. The spec in this system consists of a single
safety property, Blockchain Consistency, and the environment,
which includes the high-level distributed system, the network,
and the adversary which are all modeled as a state machine.
Upon manual inspection of these STPs, we found that the
adversary spec was incomplete, based on our understanding
of what the adversary spec should be. The overall proof still
passed even in the presence of these three bugs because they
essentially cancel each other out; two making the spec weaker
than it should be, and the other making the spec stronger.

The first bug identified in the adversary spec was an ex-
ample of the spec being too strong; limiting the actions of
what an adversarial node should be able to do. The initial hint
indicating the possibility of this case was provided by failing
Provability STPs. The initial reason for writing Provability
STPs was to answer if the adversary spec was too strong;
which is answered by the general form of Provability STPs.
An overly restricted adversary model would weaken and per-
haps invalidate the guarantees of the overall proof. Following
the guidelines for writing STPs in Section 4.2.2, negating the
conclusion of the failing Provability STPs led to the discovery
of a passing Counterexample STP. Lemma 8 is a simplified
example of such a failing Provability STP.

The failing simplified STP in Lemma 8 hints at the fact that
the ability of the adversary to extract signed data structures is
unnecessarily restricted. In the system model for QBFT, and
other Byzantine fault-tolerant consensus protocols, a Byzan-
tine node should be allowed to behave arbitrarily while not vi-
olating cryptographic assumptions. In this QBFT spec, adver-
saries are only able to extract and forward CommitSeals(CS)
from a subset of received message types. The STP in Lemma 8
specifies the behavior of an adversary node receiving a
Proposal message signed with a quorum of CS1, and con-
structing and sending a NewBlock message containing the
block and CS1 data structures copied from the Proposal
message. The postcondition for this STP stipulates that this
scenario constitutes a valid state transition from state a to
state a’. After observing that this STP failed to immediately



Lemma 9 Simplified QBFT Adversary Correctness STP
1 lemma AdversaryForgeMessageSTP(
2 a:Adversary,
3 a’:Adversary,
4 inMsgs: set<Message>,
5 outMsgs: set<Message>)
6 requires validAdversaryConfig(a,a’,inMsgs)
7 requires outMsgs == {ProposalMsg(CS2)}
8 // forged msg
9 ensures !AdversaryNext(a,a’,inMsgs,outMsgs)

verify, negating the conclusion to, !AdversaryNext(a, a’,
inMessages, outMessages), resulted in the proof passing
for this transformed counterexample STP.

While investigating the implications of the behavior in the
failing STP, we modified the adversary spec, weakening it to
allow an adversary to forward CS1 regardless of what message
first contained it. After making this change, the full system’s
safety proof failed. To differentiate the proof failure from a
now incomplete lemma, we constructed and proved a concrete
counterexample resulting in a violation of the system’s safety
property, confirmed by the authors.

The second bug in the adversary spec is an example of the
spec being too weak. This weakness is the reason why we
can show a concrete counterexample to safety after address-
ing the first spec bug. The spec allows an adversarial node
to send a Proposal message containing a block data struc-
ture with arbitrary values, including using the CommitSeals
of honest nodes even if the adversary had not previously re-
ceived such CommitSeals in previously received messages.
CommitSeals are only used to make a final decision of com-
mitting a block, but this weakness in the spec allows an ad-
versary to propose new blocks containing CommitSeals as
if from honest nodes. This behavior allows an adversary to
send a message that appears to be signed by an honest node,
violating the security assumptions made by the QBFT system
model. The STP in Lemma 9 is a simplified version of the
Correctness STP used to discover this spec bug.

The third bug identified is related to the previous bug and
is concerned with the underspecified spec of the function get-
NewBlock(). This function is empty-bodied and only contains
the spec. Due to the underspecification of this function, a
caller of this function, including an honest node can immedi-
ately send a message, such as a Proposal message, contain-
ing a full quorum of commit seals. If a buggy implementation
is provided for this function, it too, could lead to a violation
of the safety property.

5.2.3 STP Discussion

STPs enable fine-grain testing of specs and have been effec-
tive at helping to identify all ten spec bugs in the six open-
source verified systems. By leveraging the insight that writing
proofs for specific values is easier than a general proof, the

manual effort required to write STPs remains minimal.
In the QBFT spec the presence of three spec bugs, two

manifesting as a weakness in the spec and the other coun-
teracting the first by overly restricting the adversary, makes
manually or automatically identifying these bugs extremely
difficult. Following the STP testing methodology, we effi-
ciently, and without being experts in the system, identified
these disconnects between what was written in the spec and
our understanding of the intent of the spec.

5.3 Mutation Testing Evaluation
We applied IronSpec’s automatic mutation testing to a set
of six in-house specs, the two spec examples from Abreu et
al. [6], and the spec of six open-source verified codebases. The
evaluation attempts to answer how prevalent alive mutations
are in specs, and how useful the provided hints are in assisting
to identify spec bugs.

All mutation testing experiments were performed on a clus-
ter of 21 servers where each node was equipped with two Intel
E5-2660 v2 10-core CPUs at 2.20 GHz and with 256GB ECC
Memory. In each experiment, one root node would create all
mutations and send all subsequent verification requests in
each stage of the mutation testing process to be processed in
parallel at the other 20 nodes in the cluster using Dafny ver-
sion 3.8.1. The results from running IronSpec can be found in
Table 4 and are further explained in the following subsections.

5.3.1 In-House Specifications

In addition to the five in-house specs introduced in Sec-
tion 5.2.1, we applied mutation testing on a simple key-value
store state machine spec.

The top half of Table 4 contains the experimental results of
running mutation testing on the in-house specs. Each buggy
spec was tested with a correct implementation (C) and an
incorrect implementation (I). Mutation testing all in-house
specs with a correct spec and a correct implementation re-
sulted in no alive mutations.

Mutation testing identified relevant alive mutations, regard-
less of whether the implementation is correct. For all six incor-
rect specs, mutation testing resulted in helpful alive mutations.
The only exception is Sort (C), whose implementation con-
tained additional loop invariants that caused the proof to fail
when using weaker preconditions. In all other cases alive mu-
tations were useful hints in manually identifying a weakness
in the spec.

5.3.2 Alive Mutations in Open Source Systems

The Div and NthHarmonic specs are simple buggy specs
introduced by Abreu et al. [6], where the authors proposed
initial techniques to repair simple spec errors in Dafny. The
alive mutations IronSpec found for these specs coincide with



Table 4: Results from running IronSpec’s automatic mutation testing. In-House, buggy, specs marked with “(C)” correspond
to experiments with a buggy spec but a correct implementation, whereas “(I)” indicates a buggy spec with an incorrect
implementation. The Predicate Name is the specific mutation target within a spec. Spec LOC is the size of the mutation target,
and Proof/Impl LOC is the size of the full end-to-end implementation and proof. Mutations are the total number of mutations
generated, Alive Mutations indicate the number of alive mutations after all three passes and hierarchy classifications.

Specification Predicate Name Spec
LOC

Proof/Impl
LOC # Mutations # Alive Mutations Time

In
-H

ou
se

Sp
ec

s

Max (C) maxSpec 2 5 80 1 11.3s
Max (I) 7 4 7.5s
Sort (C) sortSpec 1 55 50 0 4.5s
Sort (I) 4 1 7.3s

Binary Search (C) searchSpec 4 31 170 1 10.4s
Binary Search (I) 18 2 24.3s

KV SM (C) Query Op 4 187 37 7 21s
KV SM (I) 7 28.8s

Token-wre (C)
GInv 1 87 13 1 7.8s

Token-wre (I) 91 1 7.8s
SimpleAuction-wre (C)

GInv 9 181 187 3 15.25s
SimpleAuction-wre (I) 3 15.5s

O
pe

n-
So

ur
ce

Sp
ec

s Div Div 3 14 50 3 3.5s
NthHarmonic NthHarmonic 1 4 11 2 3s

QBFT NetworkInit 3
15071

44 3 80 min
QBFT AdversaryNext 48 197 7 162 min
QBFT AdversaryInit 3 35 4 80 min

Distributed Validator AdversaryNext 23 24747 110 7 191 min
daisy-nfsd GETATTR 4 18 35 1 4.3 min
daisy-nfsd WRITE 7 54 119 3 4.6 min

the conclusions made by Abreu et al. in demonstrating that
these specs are buggy by being too weak.

QBFT Of the 44 generated mutants for the initial state of the
network state machine spec, NetworkInit, three mutations
remained alive as the roots of their respective components in
the mutation DAG. Upon manual inspection of the surviving
mutants, the spec differences all referenced an aspect of the
Network’s state that was never mentioned elsewhere. Thus,
any value for part of the state would be considered “safe”.
These mutations do not imply the existence of a bug, but
neither are they strictly false positives; rather they are exam-
ples of spec bloat. These alive mutations should still serve as
flags to the developer, forcing them to answer the question of
whether this state is needed, and if so why are these parts of
the state not referenced?

The alive mutations for the AdversaryNext and
AdversaryInit predicates, both parts of the adversary state
machine spec can be considered false positives. The alive
mutations were all stronger mutations, but it is always safe
to restrict the actions allowed by an adversarial node. Some
alive mutations implied that the proof would still pass with no
adversaries in the system, or only taking trivial actions. This
observation led us to question and then to test with STPs if

the adversary spec was initially more restricted than it should
be, leading to the bugs discussed in Section 5.2.2.

DVT The Distributed Validator Technology Protocol (DVT)
spec and proof [4] captures the behavior of an Ethereum Val-
idator, where a group of nodes coordinates to perform the
Ethereum validator duties. The DVT spec consists of the de-
sired non-slashable attestation property and the environment,
with the latter defined as the high-level distributed system, an
adversary, and the network. All aspects of the environment
are modeled as state machine specs. The non-slashable attes-
tation property ensures that the system avoids committing a
slash-able offense and produces valid attestations.

Applying mutation testing to the AdversaryNext predi-
cate in the adversary spec resulted in seven alive mutations.
One of the mutations was a false positive. Three of the muta-
tions hinted towards a limitation of the messages allowed to
be sent by an adversary, leading to a similar discovery as in
the first QBFT bug. The remaining three alive mutations were
concerned with the creation of attestations. This weakness
lies in the spec’s lack of specificity regarding the attestations
an adversary can create. Armed with this observation, we
show with a counterexample that this weakness could lead to
a safety violation.



daisy-nfsd Applying the mutation framework to daisy-
nfsd’s [15] top-level NFS API spec resulted in alive mutations
in two different methods’ specs, GETATTR and WRITE. These
mutations hint at the same spec weakness that both methods
contain; one that would allow for a different trivial implemen-
tation to always return an error. This bug was confirmed by
the authors as a known issue in their spec.

5.3.3 Combining STPs With Mutation Testing Hints

An alive mutation is a compelling hint that the spec may
be weaker than intended, but it is just a hint; writing STPs
(Section 4.4) is always the final step in testing. Consider the
DVT spec bug from Section 5.3.2. The original mutation tar-
get predicate is non-trivial and consists of 22 lines including
multiple quantified conjuncts. Working backwards from the
alive mutations and focusing only on the expression derived
by the difference between the original spec and an alive mu-
tation, resulted in shrinking the 22-line predicate into only
a single conjunct. Writing STPs concerning this single con-
junct is much more tractable than writing STPs for the entire
predicate. The tradeoff of the slightly increased manual effort
to calculate the simplified expression and writing STPs con-
cerning it outweighs the effort needed to consider the entire
spec.

5.3.4 Mutation Testing Discussion

Mutation testing supplied the hints that led to the discovery of
spec bugs in two verified codebases. These results exemplify
the usefulness of adding automation to search for disconnects
between the implementation and the spec. The insight of iden-
tifying tangible differences as potential areas of disconnected
intent is a beneficial hint that can be leveraged to identify
spec bugs. The results in Table 4 demonstrate that even with
a small set of mutations, we were successful in identifying
spec weaknesses.

The large increase in execution time of running mutation
testing taken between different specs can be attested to the
varying sizes of the full system proof and the time that it takes
to verify the entire proof with the mutations that survive the
first two passes. For instance, even running the full end-to-end
proof once of the unmodified QBFT system can take approxi-
mately an hour to complete. The cost of running IronSpec on
a large verified system is worth the execution time to debug a
potential spec bug.

The results of testing specs with mutation testing demon-
strate the effectiveness of this approach, but we did find that
not all alive mutations led to the discovery of spec bugs. While
the possibility of discovering false positive alive mutations
exists, all cases were quickly diagnosed. Of the 61 alive mu-
tations identified across all tested specs, we consider 13 to be
false positives, because the spec weaknesses they hint at were
deemed intended. All mutations for QBFT’s AdversaryNext

and AdversaryInit were considered false positives. A sin-
gle alive mutation in the set of alive mutations for both DVT
AdversaryNext and daisy-nfsd WRITE were also character-
ized as false positives. The one false positive mutation found
in DVT AdversaryNext was classified as such because it
would have only allowed the adversary to make attestations
already created, which would not have led to any unintended,
incorrect behavior.

Verified methods that modify ghost state are at a higher risk
of mutation testing producing false positives. Ghost state is
only maintained for the sake of the proof, and often, undercon-
strained postconditions related to ghost state would not result
in a buggy implementation. The false positive mutation in
daisy-nfsd’s WRITE method hinted towards underconstrained
ghost state that was modified in the method’s implementa-
tion. Nevertheless, the daisy-nfsd authors confirmed that a
different implementation, which modified this ghost state dif-
ferently, would not lead to a safety violation or break the proof.
However, they did acknowledge that this weakness was not
immediately apparent.

Rather than finding false positives, it is also possible, es-
pecially with larger systems, for no alive mutations to be
identified. For QBFT, DVT, and daisy-nfsd there were other
spec mutation targets we applied IronSpec to, which resulted
in no alive mutations. For example, in both QBFT and DVT,
the alive mutations identified were part of the trusted speci-
fied environment, whereas no alive mutations were found for
their respective safety properties, Blockchain Consistency and
non-slashable attestation.

The IronSpec prototype takes the first steps to bring au-
tomation and structure to testing specs. The prototype targets
Dafny specs, but the conceptual techniques are not tied to
Dafny.

5.4 Amount Of Manual Effort Required

In the same way testing traditional software systems requires
developer effort, testing specifications does too. IronSpec pro-
vides a framework and automation aid to help developers in
this endeavor. If one is willing to spend the effort to verify
their system, it is worth spending a few additional hours to
gain confidence in proving the intended property. While man-
ual effort is unavoidable, this effort can be greatly reduced
as the automation of IronSpec helps to focus the developer’s
attention on a few potentially problematic aspects of the spec.

The majority of manual effort we expended in apply-
ing IronSpec was spent on understanding each system well
enough to interpret the hints from the automation of IronSpec
and to write appropriate STPs. Even so, the amount of manual
effort expended remained relatively low despite not having
specific expertise in each system. For example, the specifica-
tion bug identified in daisy-nfsd took approximately 1-2 hours
to determine from first examining the code base and running
IronSpec to confidently identifying the spec bug. When test-



ing daisy-nfsd, it took minutes to run the mutation framework,
and the rest of the time was spent comprehending the hint
of the alive mutation, writing STPs, and understanding the
underlying system well enough to determine if the flagged
behavior was intended. In conversations with the daisy-nfsd
authors, they admitted that this spec bug was subtle. Famil-
iarity and expertise in a system and its spec will only help to
further reduce the necessary manual effort.

Writing STPs for complex systems takes more effort than
for simple examples. Yet, the limited scope of writing STPs
with concrete values drastically limits the size of any poten-
tial additional proof annotations needed for those STPs in
comparison to what would be necessary for proof of the un-
constrained behavior. The effort of writing STPs varied per
the complexity of the system. Writing a comprehensive suite
of STPs ranged from a few hours to multiple days worth of
effort for the larger QBFT and DVT specs. Writing-focused
STPs based on alive mutations ranged from tens of minutes
to hours per alive mutation.

6 Related Work

Kemmerer [33] first identified the potential benefits of test-
ing specifications. Kemmerer proposed a technique based
on symbolic execution to check if a spec satisfied the
English-based functional requirements. Since then, several
studies have proposed techniques to test informal user require-
ments [13, 18, 35, 42, 43].

The closest related previous work is the study by Fonseca
et al. [22], which manually and painstakingly identified weak-
nesses in verified codebases, including two spec bugs. Other
works have also begun to apply more structured approaches
to increase reliability in formal methods. Kupfeman [36]
discussed the possible advantages of vacuity and coverage
checks for temporal-logic model-checking tools. Inspired by
vacuity testing, and the concept of unit proofs from Chong et
al. [16], Priya et al. [52] performed a case study of some AWS
verified libraries, uncovering some hidden bugs. Bernardi et
al. [11] also identified formal specifications as a weak point in
the verification process, and proposed to reuse specifications
once correct, for smart contracts. Le Traon et al. [38] even
discussed the notion of applying a mutation analysis to Eiffel
contracts.

With verification becoming more commonplace and the
discovery of spec bugs in verified systems, a few, mostly man-
ual efforts have attempted to identify spec bugs. The 2022
Notional Finance bug found in verified code inspired Certora
to investigate ways to introduce testing into the verification
process [49]. Recently, Abreu et al. [6] proposed initial efforts
in using the dynamic invariant inference tool Daikon [20] to
aid in automatically repairing specifications. When faced with
a failing proof, their prototype assumes that the implementa-
tion is correct, and uses the implementation to generate test
cases for the spec. Any failing tests present an opportunity to

attempt to fix the spec by suggesting strengthening or weaken-
ing modifications. Of course, this approach only works if the
implementation is correct, which partially defeats the purpose
of performing verification in the first place.

Testing and formal methods share a close relationship and
a common goal. Often, rather than questioning specs, devel-
opers have relied on specs or other formal methods to assist in
testing traditional software [11, 16, 27, 39]. Works concerned
with the Oracle problem [9, 12] have often utilized specs thus.
There has even been work to test verification tools [30].

7 Conclusion

The correctness of specifications is the rock upon which the
entire edifice of formal verification is built. As formal verifi-
cation becomes increasingly popular, it is imperative that the
foundation be as solid as possible.

This work proposes IronSpec, a systematic framework of
manual and automated approaches to aid developers in find-
ing bugs in their specs. We show how IronSpec was used to
identify a number of subtle bugs in the specs of open-source
codebases, without requiring copious amounts of expertise on
the proven system. We believe IronSpec is a necessary step
forward towards writing correct software.
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