
Distrib. Comput. (2006) 19:79–103
DOI 10.1007/s00446-006-0005-x

ORIGINAL ARTICLE

Fast Paxos

Leslie Lamport

Received: 20 August 2005 / Accepted: 5 April 2006 / Published online: 8 July 2006
© Springer-Verlag 2006

Abstract As used in practice, traditional consensus
algorithms require three message delays before any pro-
cess can learn the chosen value. Fast Paxos is an exten-
sion of the classic Paxos algorithm that allows the value
to be learned in two message delays. How and why the
algorithm works are explained informally, and a TLA+
specification of the algorithm appears as an appendix.

Keywords Consensus · Fault tolerance · Distributed
algorithms · Paxos

1 Introduction

The consensus problem requires a set of processes to
choose a single value. This paper considers the consen-
sus problem in an asynchronous message-passing system
subject to non-Byzantine faults. A solution to this prob-
lem must never allow two different values to be chosen
despite any number of failures, and it must eventually
choose a value if enough processes are nonfaulty and
can communicate with one another.

In the traditional statement of the consensus problem,
each process proposes a value and the chosen value must
be one of those proposed values. It is not hard to see that
any solution requires at least two message delays before
any process learns what value has been chosen [3]. A
number of algorithms achieve this delay in the best case.
The classic Paxos algorithm [7,9] is popular because it

L. Lamport (B)
Microsoft Research,
1065 La Avenida,
Mountain View, CA 94043, USA

achieves the optimal delay in the normal case when used
in practical systems [12].

The apparently optimal number of message delays
required by traditional consensus algorithms is illusory –
an artifact of the traditional problem statement in which
values are chosen by the same processes that propose
them. In many applications, values are not proposed by
the same processes that choose the value. For exam-
ple, in a client/server system, the clients propose the
next command to be executed and the servers choose
one proposed command. When a traditional consensus
algorithm is used in such a system, three message delays
are required between when a client proposes a com-
mand and when some process learns which command
has been chosen.

A fast consensus algorithm is one in which a process
can learn the chosen value within two message delays of
when it is proposed, even if values are proposed and cho-
sen by different sets of processes. It has been shown that
no general consensus algorithm can guarantee learn-
ing within two message delays if competing proposals
collide – that is, if two different values are proposed
concurrently [11]. A fast consensus algorithm therefore
cannot always be fast in the event of collision.

Fast Paxos is a fast consensus algorithm that is a var-
iant of classic Paxos. In the normal case, learning oc-
curs in two message delays when there is no collision
and can be guaranteed to occur in three message de-
lays even with a collision. Moreover, it can achieve any
desired degree of fault tolerance using the smallest pos-
sible number of processes.

The basic idea behind Fast Paxos also underlies an
earlier algorithm of Brasileiro et al. [1]. However, they
considered only the traditional consensus problem, so
they failed to realize that their algorithm could be easily



80 L. Lamport

modified to obtain fast consensus. Pedone and Schiper’s
R-Consensus Algorithm [15] can also be modified to
yield a fast consensus algorithm. However, the resulting
algorithm requires at least four message delays in the
presence of collision. (They also solve a more general
problem with a similar algorithm that, in the special case
of consensus, also requires at least four message delays
when a collision occurs [14].) Zielinski [16] recently pre-
sented a fast consensus algorithm that can be viewd as a
variant of Fast Paxos.

Fast Paxos is at heart a simple extension of classic Pa-
xos. It is easy to understand why Fast Paxos works if one
understands why classic Paxos works. I therefore begin
in Sect. 2 by explaining classic Paxos. Section 3 then ex-
plains how to modify classic Paxos to obtain Fast Paxos.
The exposition in these sections is somewhat informal.
Their goal is to explain why the algorithms work; they
do not provide the customary concise descriptions of the
algorithms in pseudocode or any other language. Precise
statements of the classic Paxos algorithm can be found
elsewhere [4,7], and a formal TLA+ [10] specification
of Fast Paxos is given in the appendix. The TLA+ speci-
fication is general enough to encompass all the variants
discussed here. However, no single statement of Fast Pa-
xos adequately describes the details involved in imple-
menting all these variants. A thorough understanding
of the principles underlying Fast Paxos is better prepa-
ration for implementing it than any description of the
algorithm, be it in pseudocode or a formal language.

A concluding section discusses the optimality of Fast
Paxos, explains the relation between the algorithm of
Brasileiro et al. and Fast Paxos, and briefly mentions
the generalization of classic and Fast Paxos to handle
Byzantine failures.

2 The classic Paxos algorithm

2.1 The problem

The consensus problem is most usefully expressed in
terms of three sets of agents: proposers that can propose
values, acceptors that choose a single value, and learners
that learn what value has been chosen. An agent rep-
resents a role played by some process; a single process
can play multiple roles. For example, in a client/server
system, a client might play the roles of proposer and
learner, and a server might play the roles of acceptor
and learner.

I assume the customary asynchronous, distributed,
non-Byzantine model of computation in which:

– Agents operate at arbitrary speed, may fail by
stopping, and may restart. However, an agent may
not perform an incorrect action.

– Agents communicate by sending messages that can
take arbitrarily long to be delivered, can be delivered
out of order, can be duplicated, and can be lost. How-
ever, messages are never (undetectably) corrupted.

The safety requirements for consensus are as follows,
where a value can be proposed only by a proposer.

Nontriviality Only proposed values can be learned.
Consistency
At most one value can be learned.

Most consensus algorithms, including Fast Paxos, trivi-
ally satisfy the nontriviality requirement. I will therefore
largely ignore nontriviality. Consistency is satisfied by
ensuring that only a single value is chosen by the accep-
tors, and that only a value they choose can be learned.
Ensuring that only one value can be chosen is the hard
part; it will be obvious how a chosen value should be
learned. So, I will concentrate on how the acceptors
choose a value.

The safety requirements must be maintained in the
face of any number of (non-Byzantine) failures. A con-
sensus algorithm should also satisfy a progress require-
ment stating approximately that a value is eventually
chosen if enough agents are nonfaulty. We do not want
to rely on proposers or learners for progress, because
they could be unreliable. For example, we don’t want
a client/server system to halt just because a client fails
to respond; and a client might play the role of proposer
and/or learner. Progress should require only that enough
acceptors are nonfaulty, as long as there is a nonfaulty
proposer to propose a value and a nonfaulty learner
to learn one. However, such a requirement is problem-
atic because the classic Fischer et al. result [5] implies
that it cannot be satisfied by any fault-tolerant asyn-
chronous algorithm that satisfies the safety properties
of consensus. Therefore, some additional hypothesis is
required. Different consensus algorithms use different
hypotheses. I will defer a precise statement of the Paxos
algorithm’s progress property, which involves defining
what “nonfaulty” means, until I have described how it
satisfies the safety properties. This is possible because
the safety requirements must hold without any nonfaul-
tiness assumptions.

Progress must be possible if all the agents are nonfa-
ulty, even if they have all failed and been restarted. Since
a value could have been learned before the agents failed,
agents must have some stable storage that survives fail-
ure and restart. I assume that an agent restores its state



Fast Paxos 81

from stable storage when it restarts, so the failure of an
agent is indistinguishable from its simply pausing. There
is thus no need to model failures explicitly.

2.2 Safety

2.2.1 The basic algorithm

I begin by describing a simple version of the Paxos con-
sensus algorithm that satisfies the safety requirements
of consensus. It is extended in Sect. 2.3 to the complete
algorithm that also satisfies a progress property.

The algorithm executes multiple rounds, where each
round is numbered by a positive integer. Rounds are
not necessarily executed in numerical order, individual
rounds need not be completed and may be skipped alto-
gether, and different rounds may be executed concur-
rently. A round may choose a value. A value is defined to
be chosen iff it is chosen in some round. In each round,
an acceptor may vote to accept some single value or it
may decide not to vote. A value v is defined to be cho-
sen in a round iff a majority of the acceptors vote in that
round to accept v. For simplicity, I describe an algorithm
that never terminates but continues to execute rounds
even after a value has been chosen. Termination and
other optimizations are discussed in Sect. 2.4 below.

Achieving consistency requires that two different val-
ues not be chosen. Since an acceptor votes to accept at
most one value in any round and any two majorities
contain an acceptor in common, it is impossible for two
different values to be chosen in the same round. How-
ever, an acceptor can vote to accept different values in
different rounds. The hard part of achieving consistency
is ensuring that different values are not chosen in differ-
ent rounds.

Although we reason about the algorithm in terms of
all the votes that an acceptor has ever cast, the acceptor
does not have to remember those votes. An acceptor a
maintains only the following data:

rnd[a] The highest-numbered round in which a has
participated, initially 0. (Since 0 is not a round
number, rnd[a] = 0 means that a has not par-
ticipated in any round.)

vrnd[a] The highest-numbered round in which a has
cast a vote, initially 0. (Hence, vrnd[a] ≤ rnd[a]
is always true.)

vval[a] The value a voted to accept in round vrnd[a];
its initial value (when vrnd[a] = 0) is irrele-
vant.

Paxos assumes a set of coordinator agents. The roles
of coordinator and acceptor are usually played by the

same processes. For each round i, some coordinator is
pre-assigned to be the coordinator of round i. Moreover,
each coordinator is assigned to be the coordinator for
infinitely many rounds. Proposers send their proposals
to the coordinators. As explained below, the coordinator
for round i picks a value that it tries to get chosen in that
round. Each coordinator c maintains the following data:

crnd[c] The highest-numbered round that c has begun,
initially 0.

cval[c] The value that c has picked for round crnd[c],
or the special value none if c has not yet picked
a value for that round. Its initial value is
irrelevant.

Round i progresses in the following phases, where c is
the round’s coordinator.

1. (a) If crnd[c] < i, then c starts round i by setting
crnd[c] to i, setting cval[c] to none, and sending
a message to each acceptor a requesting that a
participate in round i.

(b) If an acceptor a receives a request to partic-
ipate in round i and i > rnd[a], then a sets
rnd[a] to i and sends coordinator c a message
containing the round number i and the current
values of vrnd[a] and vval[a].
If i ≤ rnd[a] (so a has begun round i or a higher-
numbered round), then a ignores the request.

2. (a) If crnd[c] = i (so c has not begun a higher-
numbered round), cval[c] = none (so c has not
yet performed phase 2a for this round), and
c has received phase 1b messages for round i
from a majority of the acceptors; then by a rule
described below, c uses the contents of those
messages to pick a value v, sets cval[c] to v,
and sends a message to the acceptors request-
ing that they vote in round i to accept v.

(b) If an acceptor a receives a request to vote in
round i to accept a value v, and i ≥ rnd[a] and
vrnd[a] �= i; then a votes in round i to accept
v, sets vrnd[a] and rnd[a] to i, sets vval[a] to v,
and sends a message to all learners announcing
its round i vote.
If i < rnd[a] or vrnd[a] = i (so a has begun
a higher-numbered round or already voted in
this round), then a ignores the request.

A learner learns a value v if, for some round i, it re-
ceives phase 2b messages from a majority of acceptors
announcing that they have all voted for v in round i.

A coordinator can execute a phase 1a action for a new
round number at any time. However, the enabling condi-



82 L. Lamport

tion for that action prevents a coordinator from starting
a round with a lower number than one it has already
started. Different rounds can be executed concurrently,
but an acceptor will stop participating in a round if
it receives (and acts on) a message for a higher-num-
bered round. Phase 2a messages requesting acceptance
of different values can be sent in different rounds. How-
ever, the enabling condition for the phase 2a action and
the unique assignment of rounds to coordinators ensure
that phase 2a messages with different values cannot be
sent for the same round.

2.2.2 Picking a value in phase 2a

I have not yet described the heart of the algorithm
– namely, how the coordinator picks the value v in
phase 2a. How it does this is derived from the require-
ment that the algorithm maintain the following funda-
mental property:

CP. For any rounds i and j with j < i, if a value v has
been chosen or might yet be chosen in round j,
then no acceptor can vote for any value except
v in round i.

Of course, an equivalent statement of CP is:

For any rounds i and j with j < i, if an acceptor has
voted for v in round i, then no value other than v
has been or might yet be chosen in round j.

A value can be chosen in round i only if some acceptor
votes for it. Therefore, CP implies that if j < i, then no
value other than v can ever be chosen in round i if v is
chosen in round j. CP thus implies that two different val-
ues cannot be chosen in two different rounds. We have
already seen that two different values cannot be chosen
in the same round, so CP implies consistency.

Since CP implies the consistency requirement, we
can guarantee that the algorithm satisfies consistency
by ensuring that it maintains CP. The only value v that
an acceptor can vote for in round i is the one picked by
the coordinator in phase 2a. So, we just need to ensure
that v satisfies the following property:

CP(v, i): For any round j < i, no value other than
v has been or might yet be chosen in round j.

Let a majority set be a set consisting of a majority of
the acceptors. A value v has been or might be chosen
in round j iff there is some majority set Q such that
every acceptor in Q has either voted in round j for v or
might yet do so. An acceptor a never decreases rnd[a],

and it ignores requests to vote in round j if j < rnd[a].
Therefore, we have:

Observation 1 A value v has been or might be chosen
in round j only if there is a majority set Q such that
each acceptor a in Q has rnd[a] ≤ j or has voted for v in
round j.

Observation 1 is false if “only if” is replaced with “iff”
because rnd[a] = j could be true if acceptor a has voted
for some value other than v in round j. We can replace
“only if” with “iff” if we also replace rnd[a] ≤ j with

(rnd[a] ≤ j) /\ (vrnd[a] < j) (1)

but we would not need this more complicated condition.
Since any two majority sets have an acceptor in com-

mon, Observation 1 easily implies the following two
observations:

Observation 2 If there is a majority set Q such that every
acceptor a in Q has rnd[a] > j and has not voted in
round j, then no value has been or ever might be chosen
in round j.

Observation 3 If there is a majority set Q and a value v
such that every acceptor a in Q has rnd[a] > j and has
either voted for v in round j or has not voted in round
j, then no value other than v has been or ever might be
chosen in round j.

The hypotheses of Observation 3 do not imply that v
has been or could be chosen in round j. In fact, those
hypotheses could be satisfied by two different values v,
in which case Observation 3 implies that no value has
been or ever might be chosen in round j.

Suppose the coordinator has received round i phase 1b
messages from a majority Q of acceptors. Since an accep-
tor a sets rnd[a] to i upon sending a round i phase 1b
message and it never decreases rnd[a], the current value
of rnd[a] satisfies rnd[a] ≥ i for all a in Q. Let vr(a) and
vv(a) be the values of vrnd[a] and vval[a], respectively,
reported by acceptor a′s round i phase 1b message, for a
in Q. Let k be the largest value of vr(a) for all acceptors
a in Q. We now consider separately the two possible
cases:

K1. k = 0
K2. k > 0

In case K1, every acceptor a in Q reported vrnd[a] = 0,
so no acceptor in Q has voted in any round j < i. Since
rnd[a] ≥ i for all a in Q, Observation 2 implies that no
value has been or ever might be chosen in any round
j < i. Hence, in this case CP(v, i) is satisfied regard-
less of what value v the coordinator picks. However, to



Fast Paxos 83

preserve nontriviality, the coordinator must pick a value
v that has been proposed.

In case K2, one or more acceptors reported having
voted in round k and no acceptor reported having voted
in any round j > k. Let a0 be some acceptor in Q with
vr(a0) = k. In phase 2a, the coordinator picks v to equal
vv(a0). To show that this v satisfies CP(v, i), we must
show that for any round j with j < i, no value other than
v has been or might yet be chosen in round j. Because
vrnd[a] ≤ rnd[a] and acceptor a responds to a round i
message only if i > rnd[a], we must have k < i. The proof
can therefore be split into the following three cases:

– k < j < i. Let a be any acceptor in Q. Because vr(a)

is the largest round number in which a had cast a
vote when it sent that message and vr(a) ≤ k < j,
acceptor a had at that time not voted in round j. Since
it set rnd[a] to i upon sending the message, a could
not subsequently have cast a vote in any round num-
bered less than i. Hence, a has not voted in round j.
Therefore, no acceptor in Q has voted in round j.
Since rnd[a] ≥ i > j for all a in Q, Observation 2
implies that no value has been or might yet be cho-
sen in round j.

– j = k. Acceptor a0 set vrnd[a0] to k > 0 and vval[a0]
to v when it voted for v in round k. Since an accep-
tor can vote in a round only for the value sent it
by the coordinator of that round, every acceptor has
either voted for v or not voted in round k. Since
rnd[a] ≥ i > k for all a in Q, Observation 3 implies
that no value other than v has been or might yet be
chosen in round j.

– j < k. We can assume by induction that property CP
held when acceptor a0 voted for v in round k. This
implies that no value other than v has been or might
yet be chosen in round j.

This completes the informal proof that CP(v, i) is satis-
fied with v = vv(a0). A more rigorous proof, based on
invariance, can be found in [7].

The rule for picking the value v in phase 2a is restated
in Fig. 1 in a somewhat different form that is more useful
for developing Fast Paxos. Observe that the rule allows
the coordinator to pick a v if it has received phase 1b
messages from a majority set and it has received a pro-
posal message from a proposer.

2.3 Progress

The simple algorithm of Sect. 2.2 satisfies property CP,
and hence satisfies the consistency requirement. It obvi-
ously satisfies the nontriviality requirement. I now extend
it to the complete algorithm that also satisfies progress.

2.3.1 The progress property

Paxos gets around the Fischer et al. impossibility result
by assuming an algorithm for selecting a single coor-
dinator to be the leader. Of course, selecting a single
leader is a form of consensus. However, Paxos requires
a single leader only for achieving progress. Safety is pre-
served even if the leader-selection algorithm fails and
the agents differ on what coordinator they believe to be
the leader. In practice, it is usually not hard to imple-
ment a leader-selection algorithm that succeeds most of
the time, which is good enough since nothing bad hap-
pens if the algorithm fails. I will not discuss how a leader
is selected.

An agent is defined to be nonfaulty iff it eventually
performs the actions that it should, such as responding
to messages. Define a set G of agents to be good iff all
the agents in G are nonfaulty and, if any one agent in G
repeatedly sends a message to any other agent in G, then
that message is eventually received – more precisely, the
message is eventually delivered or G is eventually not
considered to be good. Being nonfaulty and being good
are temporal properties that depend on future behavior.

By definition, any subset of a good set is also a good
set. The union of two good sets need not be good if the
communication network is partitioned, or if network
connectivity is not transitively closed, so agents p and
q may be unable to communicate with each other even
though another agent r can communicate with both of
them. If the network crashes completely, there will be
no good sets containing more than a single agent.

For any proposer p, learner l, coordinator c, and set
Q of acceptors, define LA(p, l, c, Q) to be the condition
that asserts:

LA1. {p, l, c} ∪ Q is a good set.
LA2. p has proposed a value.
LA3. c is the one and only coordinator that believes

itself to be the leader.

The Paxos consensus algorithm satisfies the following
property.

Progress For any learner l, if there ever exists
proposer p, coordinator c, and majority
set Q such that LA(p, l, c, Q) holds from
that time on, then eventually l learns a
value.

This property asserts that l eventually learns a value
if LA(p, l, c, Q) holds forever, for suitable p, c, and Q.
More useful would be a real-time property asserting that
l learns a value within some specific length of time if



84 L. Lamport

LA(p, l, c, Q) holds for that length of time. By assuming
a time bound on how long it takes a message sent by
any agent in a good set to be received and processed by
another agent in that good set, it is straightforward to
convert a proof of the progress property to a proof of
such a real-time property.

Faulty agents may perform actions (though the assump-
tion of non-Byzantine faults implies that they cannot
perform incorrect actions). Therefore, progress requires
that LA3 hold even for faulty agents. The state of a
failed agent that never performs any further actions is
obviously immaterial.

2.3.2 The complete algorithm

I now extend the algorithm described above so it satisfies
the progress property. First, the actions of the coordina-
tor and the acceptors are modified as follows:

CA1. If an acceptor a receives a phase 1a or 2a message
for a round i with i < rnd[a] and the coordinator
of round rnd[a] is not the coordinator of round i,
then a sends the coordinator of round i a special
message indicating that round rnd[a] was begun.
[If i < rnd[a] and rounds i and rnd[a] have the
same coordinator, then the round i message is
obsolete and is ignored.]

CA2. A coordinator c performs an action only if it
believes itself to be the current leader. It begins
a new round i only if either crnd[c] = 0 or it has
learned that a round j has been started, for some
j with crnd[c] < j < i.

Since any message can be lost, agents may have to re-
transmit messages to ensure they are eventually deliv-
ered. I modify the algorithm with:

CA3. Each acceptor keeps resending the last phase
1b or 2b message it sent; any coordinator that
believes itself to be the leader keeps resending
to each acceptor the last phase 1a or 2a message
that it sent; and each proposer that has proposed
a value keeps resending that proposal to each
coordinator.

CA3 requires agents to send an infinite sequence of mes-
sages. Section 2.4 explains how this unending retrans-
mission of messages can be halted.

The actions described thus far state what actions an
agent should try to perform. We cannot expect a failed
agent to succeed in doing anything. All we can expect is:

CA4. A nonfaulty agent eventually performs any ac-
tion that it should.

For example, CA3 and CA4 imply that while an acceptor
a is nonfaulty, it must eventually resend the last phase 1b
or 2b message it sent. CA4 does not forbid faulty agents
from performing actions.

2.3.3 Proof of progress

I now sketch the proof that the complete Paxos algo-
rithm satisfies the progress property of Sect. 2.3.1. I as-
sume that LA(p, l, c, Q) holds from some time T0 on,
for proposer p, learner l, coordinator c, and majority
set Q, and I show that l eventually learns a value. Let
LA1–LA3 be the three conditions of LA(p, l, c, Q).

1. From time T0 on, no coordinator other than c
executes any more actions.

Proof By LA3 and CA2.

2. By some time T1 ≥ T0, there is a round number i
such that from T1 on, crnd[c] = i.

Proof By LA1, LA3, and CA4, c eventually starts
executing a round. By step 1, no other coordinator
starts a new round after T0. Since only a finite num-
ber of rounds have been started by time T0, even-
tually c will no longer learn of rounds with numbers
greater than crnd[c] and by CA2 will start no new
round.

3. From T1 on, rnd[a] ≤ i for all acceptors a in Q.

Proof I assume rnd[a] > i after T1, for some a in
Q, and obtain a contradiction. By step 2, LA1, LA3,
and CA3, c sends an infinite sequence of round i
messages to a. By LA1, CA1, and CA4, a sends
an infinite number of messages to c informing it of
round numbers greater than i. By LA1, LA3, and
CA4, one of these messages is eventually received
by c and causes it to start a round numbered greater
than i, contradicting step 2.

4. By some time T2≥T1, coordinator c will have started
phase 2 of round i.

Proof Step 2 implies c has begun round i by time T1.
I assume it never starts phase 2 of round i and obtain
a contradiction. By this assumption, step 2, LA1,
LA3, and CA3, c must keep resending phase 1a mes-
sages. By LA1 and CA4, every acceptor in Q even-
tually receives this phase 1a message and, by step 3,
responds (or has already responded) with a phase 1b
message. By LA1, CA3, and step 1, the acceptors in



Fast Paxos 85

Q keep resending those phase 1b messages and c
eventually receives them. By LA1, LA2, and CA3,
proposer p keeps sending a proposal message to c
and c eventually receives it. When c has received
the proposal and the phase 1b messages from the
majority set Q, LA3 implies that its phase 2a action
is enabled, so LA1 and CA4 imply that c performs
this action, beginning phase 2 of round i. This is the
required contradiction.

5. Eventually l learns a value.

Proof By step 4, LA1, LA3, and CA3, c keeps send-
ing phase 2a messages for round i with some single
value v to the acceptors. By LA1, each acceptor in Q
receives those messages and, by CA4 and step 1, it
sends a round i phase 2b message with value v to l if
it has not already done so. By CA3 and step 3, the ac-
ceptors in Q keep sending those phase 2b messages
to l, so LA1 and CA4 imply l eventually learns v.

2.4 Implementation considerations

We expect process failure and message loss to be rare
events. (If physical messages are often lost, then an
acknowledgement and retransmission protocol will be
used to make logical message loss rare.) Almost always,
no failure or message loss occurs between when a value
is proposed and when it is chosen. I therefore consider
implementation costs only in this normal case. However,
it might be common for one or more agents to have al-
ready failed when a proposal is issued.

2.4.1 Reducing the number of messages

The algorithm described here never terminates and can
keep sending unnecessary messages. I now describe some
simple implementation techniques that can make it quite
efficient.

First of all, there is no need to continue executing
the algorithm once a value has been chosen. Any pro-
cess that learns the chosen value can stop executing the
algorithm and simply broadcast that value to all other
processes.

CA3 requires that agents keep retransmitting mes-
sages that may already have been received. In some
cases, the sender can tell that it is not necessary to keep
sending the message. For example, a coordinator that
has received a phase 1b message from an acceptor need
no longer send it phase 1a messages for the same round
– even though it has not yet sent a phase 2a message.
In real systems, acknowledgements are often sent to tell
the sender that a message has been received. However,
if the receiver does not record the receipt of the message

in stable storage, then the acknowledgement can serve
only as a hint that the sender need not resend for a
while. In practice, the appropriate use of acknowledge-
ments and timeouts will avoid most retransmission if no
message loss has occurred.

There are several ways of reducing the number of
messages used by the algorithm. (These save messages
in the normal case, but not necessarily in exceptional
cases.)

– A coordinator can send a phase 1a or 2a message only
to a majority of acceptors that it believes are nonfa-
ulty. It can later send the message to other acceptors
if one of the original acceptors does not respond.

– A proposer can send its proposal only to the leader
rather than to all coordinators. However, this re-
quires that the result of the leader-selection algo-
rithm be broadcast to the proposers, which might be
expensive. So, it might be better to let the proposer
send its proposal to all coordinators. (In that case,
only the coordinators themselves need to know who
the leader is.)

– Instead of each acceptor sending phase 2b messages
to each learner, acceptors can send their phase 2b
messages to the leader and the leader can inform the
learners when a value has been chosen. However,
this adds an extra message delay.

Finally, observe that phase 1 is unnecessary for round 1,
because a phase 1b message sent by an acceptor a in that
round can report only vrnd[a] = 0. (Acceptor a will not
send the phase 1b message for round 1 if rnd[a] ≥ 1.)
The coordinator of round 1 can begin the round by send-
ing a phase 2a message with any proposed value.

2.4.2 The cost of classic paxos

The efficiency of a consensus algorithm would not mat-
ter if a system were to execute it only once. In most
applications, the system executes a sequence of instances
of the algorithm with the same agents, using the same
leader for each instance [7, Sect. 3], [9, Sect. 3].

Key to the efficiency of the Paxos consensus algo-
rithm is the observation that phase 1 can be performed
simultaneously for all instances. When a new leader c is
selected, either initially or because the previous leader
failed, c chooses a round number i for which it is coor-
dinator that it believes is larger than that of any pre-
viously started round. It then sends round i phase 1a
messages for all instances whose outcome it does not
already know. An acceptor responds with phase 1b mes-
sages for all those instances. As explained elsewhere
[7,9,12], those messages contain only a small amount of



86 L. Lamport

information, and the messages sent by each agent for all
those instances are easily combined into a single physi-
cal message. The amortized cost of phase 1 is therefore
negligible, and only the cost of phase 2 matters.

In almost all instances, every acceptor a reports
vrnd[a] = 0. The coordinator then waits for a proposal
message and sends its proposed value in its phase 2a
message. In the normal case, the Paxos algorithm then
works as follows, when we use the techniques for elimi-
nating messages described in Sect. 2.4.1 above.

– The proposer sends a message either to the leader or
to all coordinators.

– The leader sends phase 2a messages to a majority set
of acceptors.

– The majority set sends phase 2b messages to the
learners.

There are three potentially significant costs to executing
the Paxos consensus algorithm. The two obvious ones
are the latency, measured in message delays, and the
communication bandwidth, measured in number of mes-
sages. The latency is three message delays. The number
of messages depends on implementation details such as
the number of coordinators to which a proposal is sent.
Let N be the number of acceptors, and suppose phase
1a and 2a messages are sent only to a majority set. With
multicast, so a single message can have multiple recip-
ients, a total of �N/2� + 3 messages are required. Sup-
pose proposals are sent only to the leader, which is an
acceptor, and the acceptors are the learners (a common
situation for client/server systems). With unicast (point-
to-point messages), N(�N/2� + 1) messages are sent.

The less obvious cost is the latency caused by writing
information to stable storage. As observed in Sect. 2.1,
allowing a failed agent to be restarted requires that its
state be recorded in stable storage. For many systems,
writing to stable storage can be much more expensive
than sending a message. Thus, in executing phase 2, the
leader must perform a write to stable storage before
sending its phase 2a messages, and acceptors must write
to stable storage before sending their phase 2b mes-
sages. Since the latter writes are concurrent, this yields
a latency of two stable-storage writes.

Whether proposers and learners must write to sta-
ble storage depends on the application. A learner can
always ask the current leader what value, if any, has been
chosen for a particular instance of the consensus algo-
rithm. If the leader does not know, perhaps because it
was just selected to be leader, it can start a new round to
find out. It will either discover in phase 1 that no value
has been chosen or else will execute phase 2a for a value
that might already have been chosen.

3 Making Paxos Fast

As explained in Sect. 2.4.2 above, the normal-case
communication pattern in the Paxos consensus algo-
rithm is:

proposer −→ leader −→ acceptors −→ learners

In Fast Paxos, the proposer sends its proposal directly
to the acceptors, bypassing the leader. This can save one
message delay (and one message). I now explain how it
works. But first, I need to generalize the Paxos algorithm
in a small but important way.

The Paxos algorithm is stated above in terms of major-
ity sets, where a majority set comprises a majority of the
acceptors. A value v is chosen in round i iff a majority set
of acceptors vote to accept v in round i. The only prop-
erty required of majority sets is that any two majority
sets have non-empty intersection. The algorithm trivi-
ally generalizes by assuming an arbitrary collection of
sets called quorums such that any two quorums have
non-empty intersection, and simply replacing “majority
set” by “quorum” throughout Sect. 2.

We can further generalize the algorithm by allowing
the set of quorums to depend on the round number.
That is, we assume, for each round number i, a set of
sets of acceptors called i-quorums. A value v is chosen
in round i iff all acceptors in some i-quorum vote to
accept v in round i. Again, the only requirement needed
to preserve consistency is that any two quorums have
non-empty intersection. This means that for any round
numbers i and j, any i-quorum and any j-quorum have
non-empty intersection. The necessary changes to the
algorithm are obvious. For example, in Fig. 1, instead of
being a majority set, Q should be an i-quorum. I will not
bother explicitly rewriting the algorithm.

It is not obvious what “majority set” should be re-
placed with in the progress property of Sect. 2.3. This is
discussed in Sect. 3.3 below.

3.1 The basic algorithm

I now describe the generalization to Fast Paxos of the
basic Paxos algorithm of Sect. 2.2. It guarantees only
safety. Progress and cost are considered later.

In Fast Paxos, round numbers are partitioned into
fast and classic round numbers. A round is said to be
either fast or classic, depending on its number. Rounds
proceed in two phases, just as before, except with two
differences:

– The rule by which the coordinator picks a value in
phase 2a is modified as explained below.



Fast Paxos 87

let Q be any majority set of acceptors that have sent round i phase 1b
messages.

vr(a) and vv(a) be the values of vrnd [a] and vval [a], respectively,
reported by acceptor a’s phase 1b message, for a in Q .

k be the largest value of vr(a) for all a in Q .

V be the set of values vv(a) for all a in Q with vr(a) = k .

if k = 0 then choose v to be any proposed value.
else V contains a single element; choose v to be that element.

Fig. 1 The coordinator’s rule for picking value v in phase 2a of
round i

– In a fast round i, if the coordinator can pick any
proposed value in phase 2a, then instead of picking
a single value, it may instead send a special phase 2a
message called an any message to the acceptors.
When an acceptor receives a phase 2a any message, it
may treat any proposer’s message proposing a value
as if it were an ordinary round i phase 2a message
with that value. (However, it may execute its round
i phase 2b action only once, for a single value.)

Recall that, in the normal case, all phase 1b messages
received by the coordinator c indicate that no acceptors
have voted in that round, so c may pick any proposed
value in phase 2a. Therefore, the normal case for a fast
round is for c to send a phase 2a any message. This is
normally done when c is selected to be leader, before
any values are proposed for that instance of the algo-
rithm. An acceptor then waits for a proposal message
from a proposer, and it treats the first one it receives as
if it were an ordinary phase 2a message from c.

A classic round works the same as in classic Paxos.
The coordinator picks the value that the acceptors can
vote for, so different acceptors cannot vote to accept
different values in the same round. This is not the case
in a fast round. If the coordinator sends a phase 2a any
message in a fast round, each acceptor independently de-
cides what proposal message to take as a phase 2a mes-
sage. Different acceptors can therefore vote to accept
different values in a fast round.

The coordinator’s rule for picking a value in phase 2a
no longer guarantees consistency, even for a classic round.
In fact, that rule no longer works at all. The rule’s state-
ment in Fig. 1 asserts that, if k �= 0, then V contains a
single element. This is no longer true if k is a fast round
number. The rule for picking a value v in phase 2a must
be revised.

To discover how to revise the rule, we must review its
derivation in Sect. 2.2.2. We want to maintain property
CP, which means that CP(v, i) must hold for the value v
picked in round i. Observations 1–3 remain valid, with
majority set replaced by j-quorum.

The reasoning is the same as before for case K1, in
which k = 0. In this case, CP(v, i) holds for all values v.
The coordinator therefore can send a phase 2a message
with any proposed value, or a phase 2a any message for
a fast round.

We now consider case K2, k > 0. Let V and Q be
defined as in Fig. 1. We must find a value v in V that sat-
isfies CP(v, i). This means showing that no value other
than v has been or might yet be chosen in round j, for all
j < i. In the reasoning for classic Paxos in Sect. 2.2.2, we
consider the three possible cases k < j < i, j = k, and
j < k. We used the fact that V contains at most one value
only in the j = k case . Therefore, the same reasoning as
before for these cases shows:

– k < j < i. No value has been or might yet be chosen
in round j.

– j = k. If V contains the single value v, then no value
other than v has been or might yet be chosen in
round j.

– j < k. For any v in V, no value other than v has been
or might yet be chosen in round j.

This takes care of everything, except the case in which
j = k and V contains more than one value – a case
that is possible only if k is a fast round number. In this
case, no value has been or might be chosen in any round
numbered less than i except possibly in round k. (For
j < k, this follows because if no value other than v can
be chosen in round j for two different values v, then no
value can be chosen in round j.) To handle the case of
j = k and V having more than one value, we must reason
more carefully.

By Observation 1, a value v might have been or might
yet be chosen in round k only if there is a k-quorum R
such that every acceptor a in R has rnd[a] ≤ k or has
voted for v in round k. Since every acceptor a in Q has
rnd[a] ≥ i > k (because a has sent a round i phase 1b
message), this implies:

Observation 4 With Q, vr, vv, and k as in Fig. 1, a value v
has been or might yet be chosen in round k only if there
exists a k-quorum R such that vr(a) = k and vv(a) = v
for every acceptor a in R ∩ Q.

Define O4(v) to be true iff there exists a k-quorum R
such that vr(a) = k and vv(a) = v for all acceptors a in
R∩Q. Observation 4 asserts that v has been or might be
chosen in round k only if O4(v) is true. There are three
cases to consider:

1. There is no v in V satisfying O4(v). In this case,
Observation 4 implies that no value has been or



88 L. Lamport

might yet be chosen in round k. Hence, the coordi-
nator can pick any value v ∈ V in phase 2a.

2. There is a single v in V satisfying O4(v). In this case,
Observation 4 implies that v is the only value that
has been or might yet be chosen in round k. Hence,
the coordinator can pick v in phase 2a.

3. There is more than one v in V satisfying O4(v). In
this case we are stuck.

The solution to the dilemma of case 3 is to make that
case impossible. Case 3 asserts that O4(v) and O4(w)

are true for distinct values v and w. This implies that
there are k-quorums Rv and Rw such that vv(a) = v for
all a in Rv ∩ Q and vv(a) = w for all a in Rw ∩ Q. This
is impossible if Rv ∩ Rw ∩ Q is nonempty. We already
require that any two quorums have non-empty intersec-
tion. We make case 3 impossible by strengthening this to:

Quorum Requirement For any round numbers i
and j:

(a) Any i-quorum and any j-quorum have non-empty
intersection.

(b) If j is a fast round number, then any i-quorum and
any two j-quorums have non-empty intersection.

Section 3.3 below discusses how this requirement is
satisfied.

This completes the derivation of the rule for choosing
the value that the coordinator sends in its phase 2a mes-
sages for round i. The derivation shows that, with this
rule, Fast Paxos satisfies the consistency requirement for
consensus. The rule is summarized in Fig. 2.

If i is a fast round number, then in the first then case
or the final else case of Fig. 2, the coordinator could
send a phase 2a any message. However, it is better for
it to send a proposed value if it knows one, since that
avoids the possibility of collision discussed below. In the
final else case, the coordinator knows that every value
in V has been proposed, so it should send a proposed
value.

3.2 Collision recovery

In classic Paxos, a round i succeeds in choosing a value
if an i-quorum of acceptors receive that round’s phase 2a
message before receiving a message for a
higher-numbered round. This is not true for Fast Pa-
xos if i is a fast round in which the coordinator sends
a phase 2a any message. In that case, different accep-
tors can vote to accept different values in that round,
resulting in no value being chosen. In the normal case,
an acceptor first receives the phase 2a any message and

then votes to accept the first proposed value it receives.
The round can fail if two or more different proposers
send proposals at about the same time, and those pro-
posals are received by the acceptors in different orders.
I now consider what the algorithm does to recover from
such a collision of competing proposals.

The obvious way to recover from a collision is for c
to begin a new round, sending phase 1a messages to all
acceptors, if it learns that round i may not have chosen a
value. Suppose the coordinator c of round i is also coor-
dinator of round i + 1, and that round i + 1 is the new
one it starts. The phase 1b message that an acceptor a
sends in response to c’s round i + 1 phase 1a message
does two things: it reports the current values of vrnd[a]
and vval[a], and it transmits a’s promise not to cast any
further vote in any round numbered less than i+1. (This
promise is implicit in a’s setting rnd[a] to i+1.) Suppose
a voted in round i. In that case, a’s phase 1b message
reports that vrnd[a] = i and that vval[a] equals the value
a sent in its round i phase 2b message. Moreover, that
phase 2b message also implies that a can cast no further
vote in any round numbered less than i + 1. In other
words, a′s round i phase 2b message carries exactly the
same information as its round i + 1 phase 1b message.
If coordinator c has received the phase 2b message, it
has no need of the phase 1b message. This observation
leads to the following two methods for recovery from
collision.

The first method is coordinated recovery. Suppose i
is a fast round number and c is coordinator of rounds i
and i + 1. In coordinated recovery, acceptors send their
round i phase 2b messages to the coordinator c (as well
as to the learners). If c receives those messages from an
(i+1)-quorum of acceptors and sees that a collision may
have occurred, then it treats those phase 2b messages as
if they were the corresponding round i + 1 phase 1b
messages and executes phase 2a of round i+1, using the
rule of Fig. 2 to choose the value v in its phase 2a mes-
sages. (Note that an acceptor can perform its phase 2b
action even if it never received a phase 1a message for
the round.) Since V is non-empty in this case, c does not
send a phase 2a any message. Hence, round i + 1 will
succeed if the acceptors in a nonfaulty (i + 1)-quorum
receive those phase 2a messages before receiving any
message from a higher-numbered round. Coordinated
recovery is forbidden by modification CA2 (Sect. 2.3.2),
which was added to guarantee progress. CA2 is amended
below to correct this problem.

The second method is uncoordinated recovery. Sup-
pose i and i + 1 are both fast round numbers. In uncoor-
dinated recovery, acceptors send their round i phase 2b
messages to all other acceptors. Each acceptor uses the
same procedure as in coordinated recovery to pick a



Fast Paxos 89

value v that the coordinator could send in a round i + 1
phase 2a message. It then executes phase 2b for round
i + 1 as if it had received such a phase 2a message.
Because of nondeterminism in the rule for picking v,
different acceptors could vote to accept different values
in round i + 1, preventing the round from succeeding.
However, since i+1 is a fast round number, consistency is
preserved and a higher-numbered round can still choose
a value. Section 3.4 discusses ways of trying to get all the
acceptors to pick the same v.

Coordinated and uncoordinated recovery add new
allowed actions to the algorithm. These actions maintain
safety because they are equivalent to actions allowed by
the original algorithm. A coordinator that learns of a
collision in round i can still start a complete new round
with a number greater than i + 1. (Like coordinated
recovery, this will be allowed by the amended version of
CA2.)

3.3 Progress

To specify the progress property that Fast Paxos must
solve, we have to find the appropriate replacement for
majority set in the classic Paxos progress property of
Sect. 2.3. The obvious replacement is i-quorum, but for
what i? Answering that question requires considering
how quorums are selected.

The Quorum Requirement of Sect. 3.1 states require-
ments for i-quorums that differ depending on whether
i is a classic or fast round number. There seems to be
no other reason why one would want the set of i-quo-
rums to depend on i. I therefore assume two types of
quorums – classic and fast. An i-quorum is a classic or
fast quorum depending on whether i is a classic or fast
round number. The Quorum Requirement then asserts
that (a) any two quorums have non-empty intersection
and (b) any two fast quorums and any classic or fast
quorum have a non-empty intersection.

To obtain the progress property for Fast Paxos, we are
led to replace majority set in the classic Paxos progress
property with either classic quorum or fast quorum. But
which should we choose? Since the requirements for
fast quorums are stronger than for classic quorums, fast
quorums will be at least as large as classic ones. So,
requiring only a classic quorum to be nonfaulty for pro-
gress gives a stronger progress property than requiring a
fast quorum to be nonfaulty. I will now enhance the Fast
Paxos algorithm to make it satisfy the stronger property,
obtained by substituting classic quorum for majority set
in the classic Paxos progress property.

If i is a classic round number, then round i works
exactly the same in Fast Paxos as in classic Paxos. If we
ensure that a leader eventually starts a round with a

Fig. 2 The coordinator’s rule for picking a v that it can send in its
phase 2a message for round i

large enough classic round number, then the same argu-
ment as in Sect. 2.3.3 above shows that Fast Paxos satis-
fies its progress property. (Since uncoordinated recovery
allows acceptors executing round i to start a new round
i + 1, the proof of the progress property requires the
additional observation that this can happen only if i is a
fast round number.) To ensure that the leader can start
a classic round with a large enough number, we make
the assumption that each coordinator is the coordina-
tor for infinitely many classic round numbers. (This is a
condition on the pre-assigned mapping from rounds to
coordinators.) We also modify CA2 to:

CA2′. A coordinator c may perform an action only
if it believes itself to be the current leader. It
may begin a new round i only if (a) crnd[c] =
0, (b) crnd[c] equals a fast round number and i
is a classic round number, or (c) it has learned
that a round j has been started, for some j with
crnd[c] < j < i.

Case (b) allows coordinated recovery from a collision in
a fast round i if i + 1 is a classic round number, as well
as starting a completely new classic round. Since the
leader never sends a phase 2a any message in coordi-
nated recovery, and classic quorums are at least as small
as fast ones, there is no reason to perform coordinated
recovery with i + 1 a fast round. CA4 must be inter-
preted to mean that if coordinator c believes itself to
be the leader and crnd[c] remains a fast round number,
then c must eventually begin a new classic round. As I
have observed, this ensures that Fast Paxos satisfies its
liveness property.



90 L. Lamport

3.4 Implementation considerations

3.4.1 Choosing quorums

In most applications, whether a set of acceptors forms
a quorum depends only on its cardinality. Let N be the
number of acceptors, and let us choose F and E such that
any set of at least N − F acceptors is a classic quorum
and any set of at least N − E acceptors is a fast quorum.
This means that a classic round can succeed if up to F
acceptors have failed, and a fast round can succeed if up
to E acceptors have failed. We would like E and F to be
as large as possible, though increasing one may require
decreasing the other.

Recall that the Quorum Requirement asserts that
(a) any two quorums have non-empty intersection and
(b) any two fast quorums and any classic or fast quorum
have a non-empty intersection. Since the requirements
for fast quorums are more stringent than for classic quo-
rums, we can always assume E ≤ F. (If F < E, we could
replace F by E and still satisfy the requirements.) It is
not hard to show that E ≤ F implies that (a) and (b) are
equivalent to:

(a) N > 2F
(b) N > 2E + F

For a fixed N, the two natural ways to choose E and F are
to maximize one or the other. Maximizing E under the
constraints (a) and (b) yields E = F = �N/3� − 1; max-
imizing F under those constraints yields F = �N/2� − 1
and E = �N/4�.

With E < F, the leader can decide whether to employ
a fast or slow round number based on the number of
acceptors that are nonfaulty. If there are at least N − E
nonfaulty acceptors, it can use a fast round. If more than
E acceptors have failed, then the leader can switch to
classic Paxos by beginning a new round with a classic
round number, executing phase 1 for all instances. (See
Sect. 2.4.2.)

3.4.2 Avoiding collisions in uncoordinated recovery

In uncoordinated recovery, an acceptor picks a value to
vote for in round i+1 based on the round i phase 2b mes-
sages it receives. It uses the rule of Fig. 2, treating those
phase 2b messages as round i+1 phase 1b messages. The
nondeterminism in that rule could lead different accep-
tors to pick different values, which could prevent round
i + 1 from choosing a value. I now show how to prevent
that possibility.

For a fixed (i + 1)-quorum Q, the nondeterminism is
easily removed by using a fixed procedure for picking a

value from V in the final else clause of Fig. 2. However,
different acceptors could use different (i+1)-quorums Q
if they do not all receive the same set of round i phase 2b
messages. This can be prevented by having the round’s
coordinator indicate in its round i phase 2a any message
what (i+1)-quorum Q should be used for uncoordinated
recovery in case of collision. (It can select as Q any quo-
rum it believes to be nonfaulty.) The coordinator could
also indicate Q implicitly, by first sending its phase 2a
message only to a minimal fast quorum Q of nonfaulty
acceptors, as described in Sect. 2.4. In the normal case
when none of the acceptors in Q fail, then the set of
round i phase 2b messages received by the acceptors in
Q will be exactly the ones sent by the acceptors in Q,
so all the acceptors in Q will use Q as the (i + 1)-quo-
rum when picking a value for their round i + 1 phase 2b
messages. Round i + 1 will then succeed.

3.4.3 The cost of Fast Paxos

As explained in Sect. 2.4.2, a newly selected leader
selects a new round number and executes phase 1 con-
currently for multiple instances of the consensus algo-
rithm. If E < F, so fast quorums are larger than classic
quorums, the leader will probably choose a fast round
number iff it believes that a fast quorum of acceptors is
nonfaulty. If E = F, in most applications it will always
select a fast round number. If the leader chooses a clas-
sic round number, then everything works as in classic
Paxos. The only difference in cost is that a quorum may
consist of more than a majority of acceptors, so more
messages are sent. Suppose now that it chooses a fast
round number.

For almost all instances, the leader finds in phase 1
that it can use any proposed value. It therefore sends a
phase 2a any message to all acceptors in some quorum.
Since this message is sent for almost all instances, only a
single physical message is needed for all those instances
and the amortized cost is negligible. The significant cost
of Fast Paxos begins with the proposer’s proposal mes-
sage.

In classic Paxos, proposers can be informed of who
the leader is, and they can send their proposals to just
the leader. However, it might be easier to have them
send proposals to all coordinators rather than informing
them who the current leader is. Similarly, in Fast Paxos,
proposers can learn that fast rounds are being executed
and that the leader has chosen some specific nonfaulty
quorum of acceptors to whom they should send their
proposals. However, it might be easier to have them
send their proposals to all coordinators and acceptors.

In the absence of collision, the round proceeds ex-
actly as in classic Paxos, except with one fewer message



Fast Paxos 91

delay and with somewhat more messages, since a fast
quorum generally contains more than a majority of ac-
ceptors. Moreover, the use of coordinated or uncoor-
dinated recovery from collision requires that phase 2b
messages be sent to the leader (coordinated recovery) or
to a fast quorum of acceptors (uncoordinated recovery).
This may require additional unicast (but not multicast)
messages, depending on whether the leader or the accep-
tors are also learners. For comparison with classic Paxos,
let us again assume that the leader is an acceptor, the
acceptors are the learners, and phase 2a messages are
sent only to a quorum. Let us also assume that E = F
and proposals are sent only to a quorum. Under these
assumptions, �2N/3� + 2 multicast or N(�2N/3� + 1)

unicast messages are required.
If there is a collision in a fast round, then the algo-

rithm incurs the additional cost of recovery. That cost
depends on how recovery is performed – with a com-
pletely new round, with coordinated recovery, or with
uncoordinated recovery. The coordinator will decide in
advance which type of recovery should be used. Its deci-
sion can be either implied by the round number or an-
nounced in the phase 2a any messages.

Starting a new round incurs the cost of phases 1 and
2 of the new round. The cost of coordinated recovery
from a collision in round i is the cost of phase 2 of round
i + 1, which includes the latency of two message delays
and of two writes to stable storage. With the assump-
tions above, this means an additional �2N/3� + 2 multi-
cast or N(�2N/3�+ 1) unicast messages. Uncoordinated
recovery adds only the cost of phase 2b of round i + 1,
including the latency of one message delay and of one
write to stable storage. With the same assumptions, this
gives �2N/3� + 1 multicast or (N − 1)(�2N/3� + 1) uni-
cast messages. This makes uncoordinated recovery seem
better than coordinated recover, which in turn seems
better than starting a complete new round. However,
these numbers assume that acceptors are learners. If not,
uncoordinated recovery may add more phase 2b mes-
sages to round i than does coordinated recovery (even
in the absence of collision); and recovery by starting a
complete new round adds no extra messages to round i.

The best method of recovering from a collision de-
pends on the cost of sending those extra round i mes-
sages and on how often collisions occur. With multicast,
there is probably no cost to those extra messages, in
which case uncoordinated recovery is best. If collisions
are very rare, then starting a new round might be best.
If collisions are too frequent, then classic Paxos might
be better than Fast Paxos.

Remember that a collision does not occur just because
two proposals are sent at the same time; it requires those
proposals to be received in different order by differ-

ent acceptors. How often that happens depends on how
often proposals are generated and on the nature of the
communication medium. For example, if all the accep-
tors are on the same Ethernet, then it is very unlikely for
messages to be received in different order by different
acceptors, so collisions will be extremely rare.

4 Conclusion

The consensus problem is best expressed in terms of
proposers that propose values, acceptors that choose a
value, and learners that learn the chosen value. Tradi-
tional asynchronous consensus algorithms require three
message delays between proposal and learning. In nor-
mal operation, Fast Paxos requires only two message
delays in the absence of collision: a proposer sends its
proposal to acceptors and the acceptors send phase 2b
messages to the learners. If a collision does occur, unco-
ordinated recovery normally adds only one message
delay: the acceptors send another round of phase 2b
messages to the learners. These are the minimum mes-
sage delays required by a general consensus algorithm
– that is, one that works for arbitrary sets of proposers,
acceptors, and learners [11].

The number of nonfaulty acceptors required to en-
sure progress is determined by the Quorum Require-
ment. The Fast-Accepting Lemma in Sect. 2.3 of [11]
shows that this requirement must be satisfied by any
general fast consensus algorithm. Quorums can be cho-
sen so progress with fast learning is ensured if more
than 2/3 of the acceptors are nonfaulty. Alternatively,
they can be chosen so progress is ensured if a majority
of the acceptors are nonfaulty and fast learning occurs
if at least 3/4 of the acceptors are nonfaulty.

The algorithm of Brasileiro et al. [1] can be converted
to a fast consensus algorithm by having each of their pro-
cesses use as its private value the first proposed value it
receives. Their N processes are then the acceptors and
learners. (It is easy to add other learners.) The algorithm
starts with what is essentially a fast round 1 of a version
of Fast Paxos in which fast and classic quorums both con-
tain N − F acceptors, where N > 3F. If that round does
not succeed, the algorithm switches to an ordinary con-
sensus algorithm where each process takes as its private
value a value that it could send in a phase 2b message
for round 2 with uncoordinated recovery. This works
because Fast Paxos satisfies property CP (Sect. 2.2.2), so
if a value v has been or might yet be chosen by round 1,
then no process can use any value other than v as its
private value. The R-Consensus Algorithm of Pedone
and Schiper [15] is similar to a version of Fast Paxos in
which all rounds are fast.



92 L. Lamport

The One–Two Consensus Algorithm of Zielinski [16]
concurrently executes a fast and classic protocol for each
round. If a collision prevents the fast protocol from
choosing a value in two message delays, then the clas-
sic protocol can choose the value in one more message
delay. Consistency is maintained by allowing the fast
protocol to choose only a value that is proposed by the
leader in the classic protocol. Failure of a single pro-
cess (the leader) makes fast learning impossible, so this
is formally an E = 0 protocol. However, it allows fast
learning despite the failure of E > 0 acceptors different
from the leader.

Both classic and Fast Paxos can be generalized to han-
dle Byzantine (malicious) failures. The Castro–Liskov
algorithm [2] is one version of classic Byzantine Paxos.
In the normal case, this algorithm requires one more
message delay than ordinary classic Paxos, for a total
of four message delays between proposal and learning.
The extra message delay is needed to prevent a malicious
coordinator from sending phase 2a messages with differ-
ent values. Since Fast Paxos allows phase 2a messages
with different values in fast rounds, it can be generalized
to a faster Byzantine Paxos algorithm that eliminates
the extra message delay. The Fast Byzantine Consensus
algorithm developed independently by Martin and Al-
visi [13] is one version of the resulting algorithm. Fast
Paxos can also be generalized to a Fast Byzantine Pa-
xos algorithm that requires only two message delays
between proposal and learning in the absence of colli-
sions. (However, a single malicious proposer can by itself
create a collision.) Descriptions of these generalizations
of classic and Fast Paxos will appear elsewhere.

Acknowledgements I wish to thank Fernando Pedone for his
comments on an earlier version.

Appendix: The formal specification

I now present a formal TLA+ [10] specification of Fast
Paxos. What such a specification means is explained
briefly in [6]. The TLA+ notation is summarized in the
first four pages of [8].

For simplicity, the specification does not describe pro-
posers and learners. Instead, it contains a variable
proposed whose value represents the set of proposed
values and a variable learned whose value represents
the set of learned values. An action that in an imple-
mentation would be enabled by the receipt of a message
proposing a value v is instead enabled by v being an ele-
ment of proposed. A value is added to the set learned
when sentMsg contains a set of messages that would
enable a learner to learn that value.

The leader-selection algorithm is represented by a
variable amLeader, where amLeader[c] is a Boolean

that is true iff coordinator c believes itself to be the
current leader.

The specification contains a variable goodSet whose
value is a set of acceptors and coordinators that is as-
sumed to be a good set. (The specification does not
rule out the possibility that there are other good sets as
well.) Condition CA4, which requires nonfaulty agents
to perform their actions, is formalized by weak fairness
requirements on actions of agents in goodSet. The spec-
ification’s requirement is actually weaker than CA4,
since it applies only to nonfaulty agents that are in
goodSet.

The specification describes message passing in terms
of a variable set of all messages present in the
communication medium. Sending a message is repre-
sented by adding it to sentMsg, losing the message is
represented by removing it from sentMsg. An operation
that in an implementation would occur upon receiving
some set of messages is represented by an action that
is enabled when that set of messages is in sentMsg. The
action does not remove those messages from sentMsg,
so the specification allows the same message to be “re-
ceived” multiple times.

The algorithm requires an agent to keep retransmit-
ting its most recent message. We let the set sentMsg
include that message. We can think of the buffer in which
the agent keeps that message as part of the communi-
cation medium represented by sentMsg, so the message
can be lost (removed from sentMsg) only if the agent
fails. The specification therefore does not allow the last
message sent by an agent in goodSet to be lost. Since the
presence of a message in sentMsg allows the message to
be “received”, there is no need for an explicit action to
keep retransmitting it. (However, the specification does
include explicit retransmission actions in case an agent
has failed and been repaired after its last message has
been lost.)

Because messages are not removed from sentMsg
when they are received, the specification can be simplified
by allowing a single element of sentMsg to represent
messages sent to multiple agents. A message therefore
does not specify its recipient. A coordinator sends a
single phase 1a or 2a message (by adding it to the set
sentMsg) that can be received by any acceptors. Moreover,
a round j message sent by an acceptor to the coordina-
tor of that round can be received by other coordina-
tors as well. The specification is further simplified by
eliminating the messages that CA1 (Sect. 2.3.2) requires
an acceptor a to send when it receives a round i mes-
sage when i < rnd[a]. The message sent by a for round
rnd[a] to the coordinator of that round serves to notify
the coordinator of round i that round rnd[a] has been
started.



Fast Paxos 93



94 L. Lamport



Fast Paxos 95



96 L. Lamport



Fast Paxos 97



98 L. Lamport



Fast Paxos 99



100 L. Lamport



Fast Paxos 101



102 L. Lamport

References

1. Brasileiro, F., Greve, F., Mostefaoui, A., Raynal, M.: Consen-
sus in one communication step. In: Malyshkin, V. (ed.) Par-
allel Computing Technologies (6th International Conference,
PaCT 2001), Lecture Notes in Computer Science, vol. 2127,
pp. 42–50. Springer, Berlin Heidelberg New York (2001)

2. Castro, M., Liskov, B.: Practical byzantine fault tolerance. In:
Proceedings of the Third Symposium on Operating Systems

Design and Implementation, pp. 173–186. ACM, New York
(1999)

3. Charron-Bost, B., Schiper, A.: Uniform consensus
is harder than consensus (extended abstract). Tech.
Rep. DSC/2000/028, École Polytechnique Fédérale de
Lausanne, Switzerland (2000). http://lsewww.epfl.ch/Publica-
tions/ById/263.html

4. De Prisco, R., Lampson, B., Lynch, N.: Revisiting the paxos
algorithm. Theor. Comput. Sci. 243, 35–91 (2000)



Fast Paxos 103

5. Fischer, M.J., Lynch, N., Paterson, M.S.: Impossibility of dis-
tributed consensus with one faulty process. J. ACM 32(2),
374–382 (1985)

6. Lamport, L.: Introduction to TLA. SRC Technical Note
1994-001, Digital Systems Research Center (1994). Currently
available from http://www.hpl.hp.com/techreports/Compaq-
DEC/SRC-TN-1994-001.html

7. Lamport, L.: The part-time parliament. ACM Trans. Comput.
Syst. 16(2), 133–169 (1998)

8. Lamport, L.: A summary of TLA+ (2000). Currently available
from http://research.microsoft.com/users/lamport/tla/tla.html
or by searching the Web for the 21-letter string obtained by
removing the – characters from uid-lamport-tla-homepage

9. Lamport, L.: Paxos made simple. ACM SIGACT News (Dis-
tributed Computing Column) 32(4), 18–25 (2001)

10. Lamport, L.: Specifying Systems. Addison-Wesley, Boston
(2003). Also available on the Web via a link at http://lam-
port.org.

11. Lamport, L.: Lower bounds for asynchronous consen-
sus. Tech. Rep. MSR-TR-2004-71, Microsoft Research
(2004). Currently available from http://research.micro-
soft.com/users/lamport/pubs/pubs.html, or by searching the
Web for the 23-letter string obtained by removing the – char-
acters from all-lamports-pubs-onthe-web

12. Lampson, B.W.: How to build a highly available system using
consensus. In: Babaoglu, O. Marzullo, K. (eds.) Distributed
Algorithms. Lecture Notes in Computer Science, vol. 1151,
pp. 1–17. Springer Berlin, Heidelberg New York (1996)

13. Martin, J.P., Alvisi, L.: Fast byzantine consensus. In: Proceed-
ings of the International Conference on Dependable Systems
and Networks (DSN 2005). IEEE Computer Society, Yoko-
hama (2005) (in press)

14. Pedone, F., Schiper, A.: Handling message semantics with
generic broadcast. Distributed Computing 15(2), 97–107
(2002)

15. Pedone, F., Schiper, A., Urbán, P., Cavin, D.: Solving agree-
ment problems with weak ordering oracles. In: Proceedings
of the 4th European Dependable Computing Conference
(EDCC-4). Lecture Notes in Computer Science, vol. 2485,
pp. 44–61. Springer, Berlin Heidelberg New York (2002)

16. Zielinski, P.: Optimistic generic broadcast. In: Fraigniaud, P.
(ed.) DISC ’05: Proceedings of the 19th International Confer-
ence on Distributed Computing, Lecture Notes in Computer
Science, vol. 3724, pp. 369–383. Springer, Berlin Heidelberg
New York (2005)


