
NONBLOCKING COMMIT PROTOCOLS*

Dale Skeen

Computer Science Division
EFCS DeQartment

University of California
Berkeley, California

"From a certain point onward there is no longer any turning
back. That is the point that must be reached."

- Kafka

ABSTRACT --

Protocols that allow operational sites to continue transac-
tion processing even though site failures have occurred are
called nonblocking. Many applications require nonblocking
Qrotocols. This paper investigates the properties of non-
blocking protocols. Necessary and sufficient conditions for
a protocol to be nonblocking are presented and from these
conditions a method for designing them is derived. Both a
central site nonblocking protocol and a decentralized non-
blocking protocol are presented.

1 -- Introduction

Recently, considerable research
interest has been focused on distributed
data 'base systems [LORI77,- ROTH77, SCHA78,
SVOB791. Several systems have been oro-
posed and are in various stages of imple-
mentation, including SDD-1 [HAMM79],
SYSTEM-R [LIND79], and Ingres [STON791. It.
is widely recognized that distributed
crash recovery is vital to the usefulness
of these systems. However, resilient Qro-
tocols are hard to design and they are
expensive. Crash recovery algorithms are
based on the notion that certain basic
operations on the data are logically indi-
visible. These operations are called
transactions.

*
This research was sponsored by the

U.S. Air Force Office of Scientific
Research Grant 78-3596, the U.S. Army
Research Office Grant DAAG29-76-G-0245,
and the Naval Electronics Systems Command
Contract N00039-78-G-0013.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

01981 ACM 0-89791-040-O /80/0400/0133 $00.75

Transaction Manaoement
By definition, a transaction on a

distributed data base system is an atomic
operation: either it executes to comple-.
tion or it appears never to have executed
at all. However, a transaction is rarely a
physically atomic operation, rather, dur-
ing execution it must be decomposed into a
seguence of physical operations. This
discrepancy between logical atomicity (as
seen by the application) and physical
atomicity poses a significant problem in
the implementation of distributed systems.
This problem is amplified when transaction
atomicity must be preserved across multi-
ple failures. Nonetheless, most applica-
tions require that a notion of transaction
atomicity (above the level of physical
atomicity) be supported and made resilient
to failures.

Preserving transaction atomicity in
the single site case is a well understood
problem [LIND79, GRAY791. The Qrocessing
of a single transaction is viewed as fol-
lows. At some time during its execution,
a commit point is reached-where the site
decidesto commit or to abort the transac-
tion. A commit is an unconditional
guarantee to execute the transaction to
completion, even in the event of multiple
failures. Similarly, an abort is an
unconditional guarantee to "back out" the
transaction so that none of its results
persist. If a failure occurs before the
commit Qoint is reached, then immediately
upon recovering the site will abort the
transaction. Commit and abort are

133

irreversible. See [LIND79] ,for a discus- There are several
sion on implementing this abstraction of

possible execution
states of the transaction; two are of

transaction management. interest.
The problem of guaranteeing transac-

tion atomicity is compounded when more
than one site is involved. Given that each
site has a local recovery strategy that
provides atomicity at the local level, the
problem becomes one of insuring that the
sites, either unanimously abort or unani-
mously commit. A mixed decision results
in an inconsistent data base.

Protocols for preserving transaction
atomicity are called commit protocols.
Several commit protocols have been pro-
posed [ALSB76, HAMM79, LAMP76, LIND79,
STON79] The simplest commit protocol that
allows unilateral abort is the two phase
commit protocol illustrated in figure 1
[GRAY79, LAMP761. This protocol uses a
designated site (site 1 in the figure) to
coordinate the execution of the transac-
tion at the other. sites. In the first
phase of the protocol the coordinator dis-
tributes the transaction to all sites, and
then each site individually votes on
whether to commit (yes) or abort (no) it.
In the second phase, the coordinator col-
lects all the votes and informs each site
of the outcome. In the absence of
failures, this protocol preserves atomi-
city.

First, either of the failed sites may
have aborted the transaction. Secondly,
all sites may have decided to commit the
protocol. In the latter situation, if the
coordinator failed between sending commit
messages and if the second site failed
after receiving a commit message, then the
transaction has been committed at the
second site. Since site three has no way
of determining the status of the transac-
tion at the second site, it can not safely
proceed. Instead, execution of the tran-
saction must be blocked at site three
until one of the failed sites has
recovered.

The two phase commit protocol is an
example of a blocking protocol: opera-
tional sites sometimes. wait on the
recovery of a failed sites. Locks must be
held on the database while the transaction
is blocked.

A protocol that never requires opera-
tional sites to block until a failed site
has recovered is called a nonblocking pro-
toco1.

Termination and Recovery Protocols

Nonblocking Commit Protocols
Consider what happens in the two

phase protocol if both the, coordinator and
the second site crash after the third site
has voted on the transaction, but before
the third has received a commit message.

When the occurrence of site failures
render the continued execution of the com-
mit protocol impossible, then a termina-
tion protocol is invoked. The purpose of
a termination protocol is to terminate
transaction execution as quickly as possi-
ble at the operational sites. The proto-
co1 , of course, must guarantee transaction
atomicity. Clearly, a termination

SITE 1 --- - SITE 2 ---

(1) Transaction is received.
"Start Xact" is sent.

*'Start Xact" is received.
Site 2 votes:

"yes" to commit,
"no" to abort.

The vote is sent to site 1.

(2) The vote is received.
If vote="yes" and site 1 agrees,

then "commit" is sent;
else, "abort" is sent. :b

Either q*commit" or "abort" is
received and processed.

Figure 2. The two-phase commit protocol (2 sites).

134

protocol can accomplish its task only if a
nonblocking commit protocol is used. In
section 6, we derive a centralized termi-
nation protocol.

The final class of protocols required
to handle site failures are called

tion processing. Recovery protocols are
not discussed in this paper, interested
readers are referred to [LIND79, HAMM79,
SKEE8lal.

In the next section we present the
I 1 formalisms reauired in the remainder of
I

the paper. Commit protocols are modelled
by finite state automata. The local state
and the global state of a transaction are
defined.

In the third section two prevalent
commit paradigms are presented: the cen-

i tral site model and the decentralized
model. It is shown that protocols in both
models have synchronization points. This
property will be used in designing non-
blocking protocols.

In section fourth the major results
of the paper are presented. First, neces-
sary and sufficient conditions for a pro-
tocol to be nonblocking are derived.
Next, we demonstrate that "buffer states"
can be added to a protocol to make it non-
blocking. For most practical protocols, a
single buffer state is sufficient.

In the fifth section we present a
protocol invoked to terminate the transac-

1 tion at the operational sites after the
occurrence of (multiple) site failures.

Throughout the paper two assumptions
about the underlying communications net-
work are made:

I (1) point-to-point communication is pos-
sible between two operational sites
(i.e. the network never fails),

(2) the network can detect the failure of
a site (e.g. by a "timeout") and can
reliably report this to an opera-
tional site.

2 Formal Model Summarized _* - -
In this section, we use a generaliza-

tion of the formal model introduced in
[SKEE8la] to describe commit protocols.
Transaction execution at each site is
modelled as a finite state automaton
(FSA) , with the network serving as a com-

mon input/output tape to all sites. The
states of the FSA for site i are called
the local states of site i. --

A state transition involves the site
reading a (nonempty) string of messages
addressed to it, writing a string of mes-
sages, and moving to the next local state.
The change of local state is an instan-
taneous event, marking the end of the
transition (and all associated activity).
In the absence of a site failure, a state

transition is an atomic event. State
transitions at one site are asynchronous
with respect to transitions at other
sites.

In figure 2, this model is illus-
trated for the two phase commit protocol
of figure 1. One FSA describes the proto-
col executed by the coordinator, while the
other describes the protocol executed by
each slave. Each FSA has four (local)
states: an initial state (gi), a wait
state (wi), an abort state (ai), and a
commit state (ci). Abort and commit are
final states, indicating that the transac-
tion has been either aborted or committed,

Site I

(co - ordinotor 1

Q

ql

I request
xoct 2 ... xact, wl

ho,)lno2 I.-.. I non (yes,),yes,... yes,

abort
2 A abort, commit2 . . e commit,

0 0 al \3 0 5

Site i (i =2,3,-n)

(Slave)

commiti I -
0 ci

Figure 2. The FSA's for the two phase
commit (n sites).

respectively.
Figure 2 also illustrates the conven-

tions used in the remainder of the paper.
Local states for site i are subscripted
with i. Messages sent or received by a
slave are subscripted with that slave's
site number.

The finite state automata describing
a commit protocol exhibit the following
four properties:
(1)

(2)

(3)

(4)

the
the

The FSA's are nondeterministic. The
behavior of each FSA is not known
apriori because of the possibility of
deadlocks, failures, and user aborts.
Moreover, when multiple messages are
addressed to a site, the order of
receiving the messages is arbitrary.
The finai states of the FSA's are
partitioned into two sets: the abort
states, and the commit states.
Once a site has made a transition to
an abort state, then transitions to
nonabort states are not allowed. A
similar constraint holds for commit
states. Consequently, the act of
committing or aborting is irreversi-
ble.
The state diagram describing a FSA is
acyclic. This guarantees that the
protocol executing at every site will
eventually terminate.
Protocols are often characterized by

number of phases required to commit
transaction. Intuitively, a phase

occurs when all sites executing the proto-
col make a state transition. The number
of phases in a protocol is a rough measure
of its complexity and cost (in messages).
Distributed protocols generally reguire at
least two phases.

Global Transaction State
The global state of a distributed

transactionisdem to consist of:
(1) a global state vector containing the

local states of the participating
FSA's and

(2) the outstanding messages in the net-
work.

The global state defines the complete pro-
cessing state of a transaction.

The graph of all global states reach-
able from the initial global state .is
instrumental in specifying and analyzing
protocols. For example, a global state is
said to be inconsistent if it contains
both a local commit state and a local
abort state. Protocols which maintain
transaction atomicity can have no incon-
sistent global states. Figure 3 gives the
reachable state graph for the two phase
protocol discussed earlier.

A global state is said to .be a final
state if all local states contained in the
state vector are final states. A global

(initial state 1

q, q2

8

request

Figure 3. Reachable state graph for the
two phase commit protocol.

state is a terminal state if from it there
are no immediately reachable successors.
A terminal state that is not a final state
is a deadlocked state: the transaction
will never be successfully completed.

Given that the state of site i is
known to be si, then it is possible to
derive from the global state graph the
local states that may be concurrently
occupied by other sites. This set of
states if called the concurrency set for
state si .

Although the reachable global state
graph grows exponentially with the number
of sites, in practice we seldom need to
actually construct the graph. In subse-
quent sections, we will be able to infer
most properties of the graph by examining
properties of the local states.

Committable States
A local state is called committable

if occu$ancy of that state by any site

'Formally, the concurrency set of state
s. is the set of all local states sn,
wiiere i#j, such that S. and s. are ion-
tained in the same '(reachable) global
state.

136

implies that all sites have voted yes on
committing the transaction. A site that
is n;t committable is called Encommitt-
able . Intuitively, a site in a noncom-
mittable state does not know whether all
the other sites have voted to commit.

In the two phase protocol of figure
2, the only committable state is the com-
mit state (ci); all other states are non-
committable. Recall, that this protocol
is a blocking protocol, and it is common
for blocking protocols to have only one
committable state. will
(without proof) that nonWbelocking pro~~~~:~
always have more than one committable
state.

Site Failures
Since the sending of more than one

message is not a physically atomic opera-
tion, it can not be assumed that local
state transitions are atomic under site
failures. A site may,only partially com-
plete a transition before failing. In
particular, only part of the messages that
were to be sent during a transition may,
in fact, be transmitted.

Failures cause an exponential growth
in the number of reachable global states.
Fortunately, it will never be necessary to
construct the (reachable) global state
graph with failures. In the subsequent
sections, any reference to global state
graphs will be to graphs in the absence of
failures.

3.
Cols

The Two Paradigms for Commit Proto- -- ---
7

AlmOSt every commit protocol can be
classified into either one of two generic
classes of commit protocols: the central
site class or the (completely) decentral-
ized class. These classes represent two
very distinct philosophies in commit pro-
toco1s. In this section, we characterize
and give an example of each class. The
examples were chosen because they are the
simplest and most renowned protocols in
these classes. However, neither example
is a nonblocking protocol. In the next
section we will show how to extend both of
them to become nonblocking protocols.

The Central Site Model --
This model uses one site, the coordi-

nator to direct transaction processing at
all the participating sites, which we will
denote as slaves.

2
TO call “noncommittable” states

“abortable” would be misleading, since a
transaction that is not in a final commit
state at any site can still be aborted.
In fact, sometimes transactions in com-
mittable (but not commit) states will be
aborted because of failures.

The properties of prOtOCOls in this
class are:
(1) There is a single coordinator, exe-

cuting the coordinator protocol.
(2) All other participants (slaves) exe-

cute the slave protocol.
(3) A slave can communicate only with the

coordinator.
(4) During each phase of the protocol

the coordinator sends the same mes-
sage to each slave and waits for a
response from each one;
The two phase protocol presented in

figures 1 and 2 is the simplest example of
a central site protocol. Other examples
can be found in [LAMP76, HAHM79, SKEEBla].
Central site protocols are popular in
literature because they are
cheap,

relatively
conceptually simple, and robust to

most single site failures. Their major
weakness is their vulnerability to a coor-
dinator failure.

Property (4) assures that the sites
progress through. the protocol at approxi-
mately the same rate. Let us define this
property as follows :

Definition. A protocol is said to
be synchronous within one state
transition if onesitenevenads
another site by more than one
state transition during the execu-
tion of the protocol.

The central site protocol (including both
the coordinator protocol and the slave
protocol) is “synchronous within one state
transition". This property will be used
in constructing nonblocking central site
commit protocols.

The Decentralized Model
In a fully decentralized approach,

each site participates as an equal ,in the
protocol and executes the same protocol.
Every site communicates with every other
site.

Decentralized protocols are charac-
terized by successive rounds of message
interchanges. We are interested in a
rather stylized approach to decentralized
protocols: during a round of message
interchange, each site will send the
identical message to every other site. A
site then waits until it has received mes-
sages from all its cohorts before begin-
ning the next round of message inter-
change. To simplify the subsequent dis-
cussion, during a message interchange we
will speak as if sites send messages to
themselves.

The simplest decentralized commit
protocol is the decentralized two phase
commit illustrated in figure 4FAll par-
Zicipating sites run this protocol.

137

(Messages are doubly subscripted: the
first subscript refers to the sending
site, the second refers to the receiving
site.)

the
In the first phase 3ach site receives

"start xact" message , decides whether
to unilaterally abort, and sends that
decision to each of its cohorts. In the
second phase, each site accumulates all
the abort decisions and moves to a final
state.

Like the central site two phase pro-
toco1, the decentralized two phase proto-
col is synchronous within one state tran-
sition.

Sites progress through the proto-

col at approximately the same rate.

4 -* Nonblocking Commit Protocols
In this section we present the major

result of this paper: necessary and suffi-
cient conditions for a protocol to be non-
blocking. We then augment the protocol
presented in the last section to construct
nonblocking protocols.

The Fundamental Nonblockinq Theorem
When a site failure occurs, the

operational sites must reach a consensus
on committing the transaction by examining
their local states.

Site i (i= 1,2,

I
yes,, - yesni

0 0 ‘i

n)

Figure 4. The decentralized two phase
commit protocol (n sites).

3 We do not model the mechanism by which
the transaction is distributed to the
sites. This is most likely performed by
the site receiving the transaction request
from the application.

Let US consider the simplest case,
where only a single site remains opera-
tional. This site must be able to infer
the progress of the other sites solely
from its local state. Clearly, the site
will be able to safely abort the transac-
tion if and only if the concurrency set
for its local state does not contain a
commit state. On the other hand, for the
site to be able to safely commit, its
local state must be "committable" and the
concurrency set for its state must not
contain an abort state.

A blocking situation arises whenever
the concurrency set for the local state
contains both a commit and an abort state.
A blocking situation also arises whenever
the site is in a "noncommittable" state
and the concurrency set for that state
contains a commit state -- the site can
not commit because it can not infer that
all sites have voted yes on committing,
and it can not abort because another site
may have committed the transaction before
crashing. Notice that both two phase com-
mit protocols can block for either reason.

These observations imply the follow-
ing simple but powerful result.

Theorem 1 (the fundamental non-
blocking theorem). A protocol is
nonblockinq if and only if it sa-
tisfies both of the following con-
ditions (for every participating
site):

(1) there exists no local state such
that its concurrency set contains
both an abort bnd a commit state,

(2) there exist no noncommittable
state whose concurrency set con-
tains a commit state.

Again, the single operational site case
demonstrated the necessity of the condi-
tions stated in the theorem. To prove
sufficiency, we must shown that it is
always possible to terminate the protocol,
in a consistent state, at all operational
sites In section 5 we present a termina-
tion protocol that will successfully ter-
minate the transaction executed by any
commit protocol obeying both conditions of
the fundamental nonblocking theorem.

A useful implication of this theorem
is the following corollary.

Corollary. A commit protocol is
iionblocking with respect to k-l
si+e failures (2 < k <= the number
of. participating sites) if and
only if there is a subset of k
sites that obeys both conditions
of the fundamental nonblocking
theorem.

It is obvious that a protocol with k sites
obeying the fundamental theorem will be

138

nonblocking as long as one of those k
sites remains operational. (The case
where k=2 is a special case that has been
examined in [SKEE8lbl .)

The fundamental nonblocking theorem
provides a way to check whether a protocol
is nonblocking; however, it does not pro-
vide a methodology for constructing non-
blocking protocols. In the next section
we develop a set of design rules that
yield nonblocking protocols. These rules
take the form of structural constraints.

Buffer States -- s.
The two phase central site (slave)

protocol and the two phase decentralized
protocol are very similar: they are struc-
turally equivalent, and they are both syn-
chronous within one state transition.
These similar ities, especially the latter,
suggests that a common solution to the
blocking problem may exist. Their common
structure, which is illustrated in figure
5 for reference, constitutes the canonical
two phase commit protocol.

Consider a protocol that is synchro-
nous within one state transition. The
concurrency set for a given state in the
protocol can contain only the states that
are adjacent to the given state and the
given state, because the states of the
participating sites never differ by more
than a single state transition. In the
canonical two phase commit protocol, the
concurrency set of state q contains q, w
and a. The concurrency set for state w
contains all of the local states of the
protocol.

This observation together with the
fundamental nonblocking theorem yields:

it 5. Figure The canonical two phase comm
protocol.

(1

(2

Lemma. A orotocol that is syn-
chronous within one state transi-
tion is nonblocking if and only
if:

1 it contains no local state adja-
cent to both a commit and an abort
state, ahd

1 it contains no noncommittable
state that is adjacent to a commit
state.

State w violates both constraints of
the lemma. To satisfy the lemma we can
introduce a buffer state between the wait
state (w) andc?ZiiZ state (c). This
new protocol is illustrated in figure 6.
Since the new state is a committable
state, both conditions of the lemma are
satisfied. The buffer state can be
thought of a “prepare to commit” state,
and therefore, is labelled p in the illus-
tr ation.

We will refer to this protocol as the
canonical nonblocking protocol. It is a
three phase protocol.

The above lemma is a very strong
result. Since all proposed commit proto-
col s are synchronous - within one state
transition, the lemma can be-appm
directly. In ISKEE8lbl the lemma is wren-
eralized to apply to less “synchronous”
protocols.

The lemma imposes constraints on the
local structure of a protocol. This is
convenient since it is much easier to
design protocols using local constraints
than using global constraints. As an
example, the canonical three phase proto-
col was designed using .the constraints

0 C

Figure 6. The canonical nonblocking cov
mit protocol.

139

given in the lemma.
The significance of the canonical

three phase commit protocol is that it can
be specialized to yield practical non-
blocking protocols. In the next sections,
two nonblocking protocols are presented --
a central site protocol and a decentral-
ized pKOtOCO1. Both protocols were
derived directly from the canonical three
phase protocol.

5 Nonblocking Central Site Protocol
A nonblocking central site protocol

is illustrated in figure 7. The slave pro-
tocol is the canonical three phase proto-
col (with appropriate messages added).
The coordinator protocol is also a three
phase protocol that is a straightforward
extension of the two phase coordinator
pKOtOCO1. The "prepare" (p) state in the
coordinator directs the slaves into their
corresponding "prepare" state.

fi Nonblocking Decentralized Protocol

A nonblocking decentralized protocol
is illustrated in figure 8. Again, the
pKOtOCO1 is the canonical nonblocking pro-
tocol. The addition of the "prepare"
state translates to another round of mes-
sages in the decentralized class.

5 -* Termination Protocols

Termination protocols are invoked
when the occurrence of site failures
render the continued execution of the com-
mit protocol impossible. This occurs when
the coordinator fails in a central site
pKOtOCO1, OK when any site fails during a
decentralized protocol. The purpose of
the termination protocol is to terminate
the transaction at all operational sites
in a consistent manner.

Site I

(co- ordinator 1

request
xoctg... xact,

commi$... commit,

Site i (i = 2,3--n)

(slove 1

Clearly, a termination protocol can
accomplish its task only if the current
state of at least one operational site
obeys the conditions given in the funda-
mental theorem. nonblocking However,
since subseguent site failures may occur
during the termination protocol, in the
worst case it will be able to terminate
correctly only if all of the operational
sites obey the fundamental nonblocking
theorem.

We now present a central site termi-
nation protocol. It will successfully
terminate the transaction as long as one
site,executing a nonblocking commit proto-
col remains operational.

preparei
OCki

A decentralized termination protocol
is presented in [SKEE8lbl. :c

Central Site Termination Protocol ‘TSA ci
The basic idea of this scheme is to

choose a coordinator. which'we will call a
backup cooKdinatoK, from the set of opera-
tional sites. The backup coordinator will Figure 7. A (three phase) nonblocking
complete the transaction by directing all central site commit protocol.
the remaining sites toward a commit OK an

140

Site i (i =I,& - n)

I

yes,i .-- yesni
preparei, -. . preparei,

0 pi

1 prepare,, -. . prepareni

1

0 Ci
Figure 8. A (three phase) nonblocking de-
centralized commit protocol.

abort. Since the backup can fail before
terminating the transaction, the protocol
must be reentrant.

Backup coordinators were introduced
in SDD-1 [HAMM791. The scheme presented
is a modification of that scheme.

When the termination protocol is
invoked, a backup must be chosen. The
method used is not important. The sites
could vote, or alternatively, the choice
could be based on a preassigned ranking.

Once the backup has been chosen, it
will base the commit decision only on its
local state. The rule for deciding is:

Decision Rule For Backup Coordina-
tors. --- If the concurrency set for
thecurrent state of the backup
contains a commit state, then the
transaction is committed. Other-
wise, it is aborted.

The backup executes the following two
phase protocol:
Phase 1: The backup issues a message to

all sites to make a transition
to its local state. The backup
then waits for an acknowledgment
from each site.

Phase 2: The backup issues a commit or
abort message to each site. (BY
applying the decision rule given
above.)

If the backup is initially in a commit or
an abort state, then the first phase can
be omitted.

Phase 1 of the backup protocol is
necessary because the backup may fail. By
insuring that all sites are in the same
state before committing, (aborting), the
bat kup insures that subsequent backup
coordinators will make the same commit
decision. A proof of correctness for this
protocol can be found in [SKEEBlb].

Let us consider an invocation of the'
protocol by the canonical three phase com-
mit protocol. The backup will chose to
abort on states g, w, and a, and to commit
on states p and C~ If the chosen backup
was in state p initially, then the mes-
sages sent to all sites are:
(1) "move to state p", and
(2) "commit".

a- -- Conclusion
In this Qaoer we formallv introduced

the nonblocking-problem and the associated
terminoloav. Althoush this problem is
widely recognized by practitioners in dis-
tributed crash recovery, it is the
author's belief that this is the first
time that the problem has been treated
formally in the literature.

Also, the two most popular commit
classes -- central site and decentralized
-- were characterized. Every published
commit protocol is a member of one of the
classes. These classes are likely to pre-
vail in the future.

We illustrated each commit class with
a two phase protocol. Two phase protocols
are popular because they are the simplest
and the cheapest (in the number of mes-
sages) protocols that allow unilateral
abort by an arbitrary site. Unfor-
tunately, two phase protocols can block on
site failures.

The major contributions of this paper
are the fundamental nonblockinq theorem
and. from it. necessarv and sufficient
conditions for designing both central site
and distributed nonblocking protocols.

We' presented two such nonblocking
protocols: the three phase central site
and the three phase distributed commit
protocols. The three phase protocols were
derived from the two phase protocols by
adding a "prepare to commit" state. This
addition is the least modification that
can be made to a two phase protocol in
order for it to satisfy the fundamental
nonblocking theorem. Therefore, such
three phase protocols are the simplest ,,
(and cheapest) nonblocking protocols.

141

Nonetheless, an additional phase
imposes a substantial overhead (in the
number of messages). This overhead can be
reduced by having only a few sites execute
the three phase protocol: the remaining
can execute the cheaper two phase proto-
co1 . The transaction will not block as
long as one of the sites executing the
three phase protocol remains operational.
Since two site failures are always neces-
sary to block a transaction ([SKEEBlb]),
the number of sites executing the three
phase protocol should be greater than two.

Lastly, we presented a termination
protocol to be invoked when a coordinator
fails in a central site commit protocol or
when any site fails in a decentralized
commit protocol.

It is not necessary that the commit
protocol and the termination protocol
belong to the same class. In some
environments, it maybe reasonable to run a
central site commit protocol and a distri-
buted termination protocol.

[ALSB76 1

[GRAY791

[HAMM79]

[LAMP761

[LIND79

[LORI77]

REFERENCES

Alsberg, P. and Day, J., "A
Principle for Resilient Sharing
of Distributed Resources,*' Proc.
2nd International Conference on
Software Engineeri=, San Fran-
clsco, Ca., October 1976.

Gray, J. N., "Notes on Database
Operating Systems," in Operating
Systems: An Advanced
Springer-VeTlag, 1979.

Course,

[ROTH771 Rothnie, J. B., Jr. and Goodman,
N "A Survey of Research and
DiGelopment in Distributed Data-
base Management," Proc. Third
Int. Conf.

--
--
bases,

on Very Large Data-
IEEE, 1977.

[SKEE8lal Skeen, D., "A Formal Model of
Crash Recovery in a Distributed
System", IEEE Transactions on
Software

--
Engineering, (to-

appear).

[SKEEElb] Skeen, D., "Crash Recovery in a
Distributed Database System,"
Ph. D. Thesis, EECS Dept.,
University of California, Berke-
ley (in preparation).

[STON79] Stonebraker, M., "Concurrency
Control and Consistency of Mul-
tiple Copies in Distributed
INGRES," - IEEE Transactions on 7- Software Engineering, May 1979,

Hammer, M. and Shipman, D.,
"Reliability Mechanisms for
SDD-1: A System for Distributed
Databases," Computer Corporation
of America, Cambridge, Mass.,
July 1979.

Lampson, B. and Sturgis, H.,
"Crash Recovery in a Distributed
Storage System," Tech. Report,
Computer Science Laboratory,
Xerox Part, Palo Alto, Califor-
nia, 1976.

Lindsay, B.G.. et al., "Notes on
Distributed Databases", IBM
Research Report, no. RJ2571
(July 1979).

Lorie, R., "Physical Integrity
in a Large Segmented Data Base,"
ACM Transactions on Data Base ---
zems, Vol. 2, No. 1, March

[SCHA78] Schapiro, R. and Millstein, R.,
"Failure Recovery in a Distri-
buted .Database System," Proc.
1978 COMPCON Conference, Sep-
tember 1978.

[SVOB79] Svobodova, L., "Reliability
Issues in Distributed Informa-
tion Processing Systems," Proc.
9th IEEE Fault Tolerant'Comput-
ing COnference, Madison, Wise.,
June 1979.

.42

