Chapter 8:
The Primary—Backup Approach

Navin Budhiraja *
Keith Marzullo 1
Fred B. Schneider ¥
Sam Toueg ®
Department of Computer Science
Cornell University

Ithaca, New York 14853, USA

1 Introduction

One way to implement a fault-tolerant service is by using multiple servers that fail inde-
pendently. The state of the service is replicated and distributed among these servers, and
updates are coordinated so that even when a subset of servers fail, the service remains
available.

Such fault-tolerant services are generally structured in one of two ways. One approach is to
replicate the service state at all servers and to present the client requests, in the same order,
to all non-faulty servers. This service architecture is commonly called active replication or
the state machine approach and is discussed in Chapter 7. The other approach is to designate
one server as the primary and all the others as backups. Clients make requests by sending
messages only to the primary. If the primary fails, then a failover occurs and one of the
backups takes over. This service architecture is commonly called the primary—backup or the
primary—copy approach [1] and has been widely used in commercial fault-tolerant systems.

With both the state machine approach and the primary—backup approach, the goal is to
provide clients with the illusion of a service that is implemented by a single server. The

*Supported in part by an IBM Graduate Fellowship.

TSupported in part by the Defense Advanced Research Projects Agency (DoD) under NASA Ames grant
number NAG 2-593, and by grants from IBM T. J. Watson Research Center, IBM Endicott Programming
Laboratory, Xerox Webster Research Center and Siemens. The views, opinions, and findings contained
in this report are those of the authors and should not be construed as an official Department of Defense
position, policy, or decision.

{Supported in part by the Office of Naval Research under contract N00014-91-J-1219, NSF grant CCR-
8701103, DARPA/NSF grant CCR-9014363, and by a grant from IBM Endicott Programming Laboratory.

$Supported in part by NSF grants CCR-8901780 and CCR-9102231 and by a grant from IBM Endicott
Programming Laboratory.

approaches differ in how each handles failures. With the state machine approach, the effects
of failures are completely masked by voting, and the resulting service is indistinguishable
from a single non-faulty server. With the primary—backup approach, a request can be lost—
additional protocols must be employed to retry such lost requests. The primary—backup
approach, however, involves less redundant processing, is less costly, and therefore is more
prevalent in practice.

In this chapter, we discuss some fundamental costs that arise in connection with building
fault-tolerant services using the primary—backup approach. Here are three key cost metrics
of any primary—backup protocol:

o Degree of Replication: The number of servers used to implement the service.

e Blocking Time: The worst-case period between a request and its response in any
failure—free execution.

o Failover Time: The worst-case period during which requests can be lost because there
is no primary.

The fundamental question, then, is:

Given that no more than f components can fail, what are the smallest possible values
of the the degree of replication, the blocking time and the failover time?

An answer to this question defines lower bounds for the degree of replication, the blocking
time and the failover time of primary—backup protocols, where a lower bound defines a
necessary cost that any protocol purporting to solve a problem must incur. Nobody will
ever design a protocol with lower cost than the lower bound. Knowing lower bounds for a
problem, therefore, gives a basis to evaluate the quality of a protocol.

The existence of a lower bound does not imply the existence of a protocol having this cost,
however. Every problem has a trivial lower bound (viz 0). We desire lower bounds that are
tight—lower bounds that are actually achieved by some protocol. The cost of running any
protocol defines an upper bound for the problem that protocol solves. If this upper bound
is the same as the lower bound, then the lower bound is tight and the protocol is optimal.
(The lower bound implies that a cheaper protocol cannot exist.) Thus, given a problem, we
strive to identify tight lower bounds and optimal protocols.

In this chapter, we present and discuss lower and upper bounds for the above three questions.
However, deriving these bounds requires a precise specification of the problem solved by a
primary—backup protocol. We give this in Sections 2 and 3. Section 4 contains our lower
bounds and Section 5 contains our upper bounds. Finally, in Section 6 we discuss some
existing primary—backup protocols in terms of our specification, model, and bounds.

2 Specification of Primary—Backup

Informally, a service that is implemented using the primary—backup approach consists of
a set of servers, of which no more than one is the primary at any time. A client sends a

request to the service by sending it to the server it believes to be the primary. A client
learns from the service when the primary changes and directs future requests accordingly.
We assume that a client can send any request to the service at any time.

More precisely, we require that to be a primary—backup protocol, four properties must be
satisfied. The first property states that no more than one server can be the primary at any
time.

Pbl: There exists a local predicate Prmy, on the state of each server s. At any time, there
is at most one server s whose state satisfies Prmys.

For brevity, whenever we say that “s is the primary (at time ¢)” we mean that the state of
s satisfies Prmys (at time ¢). We can now formally define the failover time of a primary—
backup service to be the longest period of time during which Prmy; is not true for any s.

Property Pb2 distinguishes the primary—backup approach from the state machine approach.
In the latter, each client broadcasts its request to all the servers (at considerable cost).

Pb2: Each client ¢ maintains a server identity Dest; such that to make a request, client ¢
sends a message to Dest;.

We assume that requests sent to a server s are enqueued in a message queue at s. Property
Pb3 says that requests that arrive at a backup are ignored.

Pb3: If a client request arrives at a server that is not the current primary, then that request
is not enqueued (and therefore is not processed).

It may appear that Pbl and Pb3 eliminate the need for Pb2. This is not the case. Pb1-Pb3
ensure that no more than one server can enqueue each client request. Eliminating Pb2
would allow protocols in which this could be violated. In such a protocol, a client would
send its request to multiple servers. And, if this request were sent while the identity of the
primary is changing, then the request could get enqueued at more than one server. Some
of our lower bounds do not hold for such protocols.

Properties Pb1-Pb3 specify a protocol for client interactions with a service but not the
obligations of the service. For example, Pb1-Pb3 do not rule out a primary that ignores all
requests. We now give a fourth property that precludes such trivial implementations.

For simplicity, we assume that every request requires a response to be sent. Consider a
service that is implemented by a single server. Define a server outage to occur at time
t in this service if some correct client sends a request at time t to the service but does
not receive a response. The above server is called a (k, A)-bofo server (bounded outages,
finitely often) if all server outages can be grouped into at most k intervals of time, with
each interval having length at most A. For example, the computation shown in Figure 1
shows two server outages at times ¢; and 5 respectively. If the length of this outage period
is I and if this is the only such period, then the server is (1, F')-bofo. Thus, even though
some requests made to a (k, A)-bofo server can be lost, the number of such requests is
bounded. The fourth property states that a group of servers implementing a service using
the primary—backup approach behave as a single bofo server implementing the same service:

t ty
|
|

|
|
| 1
req resp réq ieq req \ resp
| |
| |
| |

— F—]

client

server

Figure 1: Service Qutages

Pb4: There exist fixed values k and A such that the service behaves like a single (k, A)-bofo
server.

Pb4 implies that primary—backup protocols can be used only to implement services that
tolerate a bounded number of failures over their lifetime. In practice, we can implement a
service that tolerates an unbounded number of failures by partitioning its operation into
periods. Only a bounded number of failures occur in each period, and repaired servers are
reintegrated at period boundaries. Pb4 need only hold throughout each period. We do not
discuss reintegration in this chapter.

2.1 A Simple Primary—Backup Protocol

As an example of a primary—backup protocol, here is one that tolerates the crash of a single
server. Assume that all communication is over point-to-point non-faulty links and that
each link has an upper bound é on message delivery time. An execution of this protocol is
shown in Figure 2. There exists a primary server p; and a backup server p; connected by
a communications link. A client ¢ initially sends a request to p; (indicated by the arrow
labeled 1 in the figure). Whenever p; receives a request, it

o Processes the request and updates its state accordingly.

¢ Sends information about the update to p, (message 2 in the figure). We call such a
message a state update message.

¢ Without waiting for an acknowledgement from p;, sends a response to the client
(message 3 in the figure).

The order in which messages 2 and 3 are sent is important because it guarantees that, given
our assumption about failures, if the client receives a response, then either ps will eventually
receive the state update message or py will crash.

c

1 3

— T —

yal 4
\ \ \

\ \ \
N N N
\

P2
&

Figure 2: A Simple Primary—Backup Protocol

Server pp updates its state upon receiving a state update message from p;. In addition, p;
sends dummy messages to py every T seconds (shown by the dashed arrows in the figure).
If py does not receive such a message for 7 + 6 seconds, then p, becomes the primary.
Once py has become the primary, it informs the clients (message 4 in the figure) and begins
processing subsequent requests from the clients.

We now show that this protocol satisfies our characterization of a primary—backup protocol.
Property Pbl requires that there never be two primaries. This is satisfied by the following
definitions of Prmy:

Prmy,, def p1 has not crashed

Prmy,, def po has not received a message from p; for 7 4+ 6

Predicate Prmy,, A Prmy,, is always false in a system executing our protocol, hence Pbl
is satisfied. The failover time is the longest interval during which - Prmy,, A ~Prmy,, can
hold. In this protocol, this interval occurs when p; crashes immediately after sending a
message to py which takes é to arrive, and so the failover time is 7 + 26 seconds.

Property Pb2 follows trivially from the description of the protocol, and Pb3 holds because
requests are not sent to py until after p; has failed.

Finally, Pb4 requires that the protocol implement a single (k, A)-bofo server. To implement
a single server, we require that if the primary updates its state and sends a response to a
client, then any backup that might later become the primary knows about this state update.
In our protocol, this is ensured since p; sends the state update message to the backup before
it sends any response. To compute k, note that there is at most one switch of the primary, so
there is at most one outage period: k£ = 1. To compute A, it suffices to compute the longest
interval during which a client request may not elicit a response. Assume that p; crashes at
time t.. Thus any client request sent to p; at t. — ¢ or later may be lost. Furthermore, py
may not learn about py’s crash until ¢t. + 7 + 26, and clients may not learn that py is the

primary for another 4. So, the total period during which a request may not elicit a response
is t. — 6 through ¢. + 7 4 36; the protocol implements a single (1,7 + 46)-bofo server.

3 System Model

Consider a system consisting of n servers and a set of clients, where server clocks are
synchronized arbitrarily close to real time. We assume that clients and servers communicate
by exchanging messages through a completely connected point-to-point network and that
there is exactly one FIFO link between any two processes. Messages are enqueued in a
message queue maintained by the receiving process, and the receiver accesses this queue by
executing a receive statement. Furthermore, we assume that there is a known constant ¢
such that if processes p; and p; are connected by a (non-faulty) link, then a message sent
from p; to p; at time ¢ will be enqueued in p;’s queue at or before ¢ + 4.

For computing lower bounds on protocol execution, it is best to assume that a server can
compute the response to a request in an arbitrarily short time. While not realistic for many
servers, the resulting bounds reflect only the cost of the primary—backup protocols. And
that is what we seek.

Execution of a system is modeled by a run, which is a sequence of events involving clients,
servers, and message queues (see Chapter 4). These events are timestamped with the real
time that each event occurs. The events include: sending a message, enqueuing a message,
receiving a message, and computation at a process. Two runs o1 and gy of the system are
defined to be indistinguishable to a process p if the same sequence of events (with the same
timestamps) occur at p in both oy and o5.

We assume that servers are deterministic: if two runs oy and o, are indistinguishable to p
and p has the same initial state in both runs, then at any time ¢ the state of p at ¢ in oy
is the same as the state of p at t in o3. We make this assumption in order to simplify the
discussion—our results hold for non-deterministic servers as well.

We assume that server and link failures occur independently and consider the following
hierarchy of failure models:

Crash failures: A server may fail by halting prematurely. Until it halts, the server behaves

correctly; once it halts, it never recovers [9].}

Crash+Link failures: A server may crash or a link may lose messages (but links do not
delay, duplicate or corrupt messages).

Receive-Omission failures: A server may fail not only by crashing, but also by omitting to
receive some of the messages directed to it over a non-faulty link [11].

Send-Omission failures: A server may fail not only by crashing, but also by omitting to
send some messages over a non-faulty link [8].

!The lower bounds for crash failures also hold for fail-stop failures [12] except for the bound on failover
time. The lower bound on failover time depends on the maximum interval between when a server fails and
when this failure is recognized by the other servers.

General-Omission failures: A server may exhibit send-omission and receive-omission fail-
ures [11].

A protocol tolerates f failures of a given model if it works correctly despite faulty behavior
(as prescribed by that model) of up to f components.

Note that crash+link failures and the various classes of omission failures are quite different.
All admit loss of messages, but each class is handled by a different masking technique: link
failures are tolerated by replicating links and omission failures are tolerated by replicating
servers. Receive-omission failures model problems at a server, such as the failure to receive
messages from the network due to high transfer rates or insufficient buffers. When such
problems occur, sending messages using multiple links is not a remedy. Link failures, on
the other hand, model problems in the network, such as congestion at a bridge or problems
with the physical medium itself. Sending messages over multiple independent links is an
effective way to remedy such problems.

4 Lower Bounds

For each failure model, we now give the lower bounds on the degree of replication, blocking
time, and failover time for any primary—backup protocol.

4.1 Bounds on Replication

The following table summarizes the lower bounds on the degree of replication. Recall, n
is the total number of servers and f is the maximum number of faulty components to be
tolerated.

Failure Model ‘ Degree of Replication ‘

crash n>f
crash+link n>f+1
receive-omission n > L%J

send-omission n>f
general-omission n>2f

For crash failures and send-omission failures, the lower bound is n > f. In fact, this is a
lower bound for all failure models, since if n < f failures could occur, then all of the servers
could crash, leaving no primary. A system that has no primary violates Pb4 since a primary
is required for the service to behave like a single (k, A)-bofo server. For the other failure
models, however, n > f is not sufficient as no protocol can achieve this lower bound. As
argued below, in the absence of further replication under these failure models, the servers
can be divided into mutual non-communicating partitions. Neither partition can tell if the
servers in the other partitions have crashed or not. Thus, each partition must eventually
contain a primary so that Pb4 is not violated. Yet, if the other partitions have not crashed,
then Pb1 will be violated.

The lower bounds on replication for crash+link failures and receive-omission failures are
based a further (reasonable) assumption about primary-backup protocols. Let ? be the
maximum time that can elapse between any two successive requests from non-faulty clients.
Let D bound the time it takes for a client to learn the identity of a new server, so if some
server s becomes the primary at time {5 and remains the primary through time ¢t > ¢, + D
when a correct client ¢; sends a request, then Dest; = s at time {. For example, in the
protocol of Section 2.1, D = é. For deriving our lower bounds, we assume that if 7 is
bounded then D < 7, which implies that the service must be able to detect the failure of a
primary and disseminate the new primary’s identity to the clients without using messages
from the clients. If one assumes that 7 is bounded and D > 7, then protocols that require
less replication can be constructed.?

We now informally derive the lower bounds for crash+4link failures, receive-omission failures
and general-omission failures. The arguments are not rigorous; for example, the assumption
regarding D and 7 is apparently not needed. However, the structure of our detailed formal
proofs for the lower bounds in [7] parallel the arguments below.

For crash+link failures, the need for an additional server (i.e. n > f+ 1) is illustrated by
the counterexample shown in Figure 3. Assume that n = f + 1 and divide the n servers

_—
g f

a B

Figure 3: Crash+Link Failures

into a single server ¢ and set B containing f servers. If, in some run, all of the servers in B
crash, then a must eventually be the primary since otherwise there would be no primary.
Similarly, if @ crashes in some run, then a server in B must eventually become the primary.
However, there are only f links between a and the servers in B, so all of the links can fail.
If this occurs in some run, then to a this run is indistinguishable from the run in which
all the servers in B crashed, and to B this run is indistinguishable from the run in which
server a crashed. Hence, a will eventually become the primary and some process in B will
eventually become a primary, violating Pb1. Note that this counterexample is not possible
if n > f 4 1, because then at least one link between a and B must remain non-faulty. Le.
with n > f + 1, two servers are always connected through some path of non-faulty links

2When D > T, there is a primary—backup protocol that tolerates a single crash+link failure using only
two servers. In this protocol, when the backup stops receiving messages from the primary, it uses the client
requests to distinguish between the primary having crashed and the link having failed.

and servers, so no partition can occur.

The need for still more replication (i.e. n > [3f/2]) in the face of receive-omission failures
is illustrated in Figure 4. Assume that n = |3f/2], the servers are divided into sets A and

Figure 4: Receive-Omission Failures

B that each contain | f/2] servers, and a set C' contains [f/2] servers. If all the servers in
sets A and C crash in some run, then eventually a server in B will become the primary.
Similarly, if in some run all the servers in B and C' crash, then eventually a server in A
will be the primary. However, if in some run all of the servers in A and B commit receive-
omission failures for messages sent from outside their respective partitions, then this run
is indistinguishable from the first run to the servers in B and is indistinguishable from
the second run to the servers in A. Hence, there will eventually be a primary in A and a
primary in B, violating Pb1l. Finally, the need for replication degree n > 2f to tolerate

Figure 5: General-Omission Failures

general-omission failures is illustrated in Figure 5. Assume that n = 2f and the servers are
divided into sets A and B, each containing f servers. If all the servers in A crash in some
run, then eventually a server in B will become the primary, and similarly if the servers in
B crash in some run, then eventually a server in A will become the primary. However, if
the servers in A commit general-omission failures for messages exchanged with servers in
B (i.e. they omit to send messages or receive messages from severs in B), then this run is
indistinguishable from the first run to the servers in B, and is also indistinguishable from
the second run to the servers in A. Hence, there will eventually be a primary in A and a
primary in B, violating Pbl.

4.2 Bounds on Blocking Time

The following table summarizes our lower bounds on the blocking time.

‘ Failure Model ‘ Blocking Time ‘
crash 0
crash+link 0

6 when f=1and n =2
receive-omission | 26 when f > 1 and n < 2f

0 when n > 2f

send-omission 6 when f =1
26 when f > 1

general-omission 6 when f =1
26 when f > 1

Recall that blocking time is the worst-case elapsed time between the receipt of a request
req and the sending of the associated response resp in a run that contains no failures. As
can be seen from the table, the values of the lower bounds for blocking time are 0, §, or
26 depending on the failure model, f and n. A value of 0 means that the primary can
immediately respond to the client. We call such protocols non-blocking [7]. The simple
protocol discussed in Section 2.1 is an example of a non-blocking protocol. Non-blocking
protocols exist that tolerate crash failures and crash+link failures because in such systems
there is always at least one non-faulty path from the primary to the other servers. Once
the primary sends a state update message, it can reply to the client immediately because
it knows that this message will eventually be received.

In contrast, non-blocking protocols cannot be built for send-omission failures, general-
omission failures, and receive-omission failures where n < 2f. For these failure models,
the blocking time is at least §. For example, with send-omission failures, a primary cannot
immediately send the response to a request after sending the state update message, because
the primary may commit a send-omission failure in sending that message. Protocols for
which the blocking time is 6 can be built by making a backup send the response to the
client. The primary sends the state update message to a backup b. Once b receives this
message, it sends the response to the client. Such é blocking protocols can, however, tolerate
only a single failure (f = 1).

10

If more than one failure can occur (f > 1), then both the responding backup and the primary
may crash after the response is sent, and because of the failure model being assumed (send-
omission, general-omission or receive-omission with n < 2f) the state update messages
may never be received by the other servers. These protocols have a blocking time of at least
26—further communication from the backups is needed prior to sending a response to the
client. This ensures that the state update message has been received by the other backups
as well.

4.3 Bounds on Failover Time

The following table summarizes lower bounds on failover time:

‘ Failure Model ‘ Failover Time ‘

crash fo
crash+link 2f6
receive-omission 2f6
send-omission 2f6
general-omission 2fo

For crash failures, a backup can detect the failure of a primary by the absence of an expected
message from the primary. For example, if clocks are synchronized then the primary can
send a “I am alive: £7” message to the backups at time £7 for £ = 0,1,2,.... If a backup
does not receive this message by time {7 4+ ¢, then the primary crashed at some time ¢, in
the range ({ — 1)1 < ¢, < {r. In this case, the failover time, given a single failure, is at most
T+ 6 and it approaches é as 7 becomes small. Similarly, if the backup that next becomes the
primary crashes just before ¢, + 7+ 6, then there may not be a primary until ¢, + 2(7 4+ ¢),
and so on. Thus, for crash failures, the failover time can be fé (as 7 approaches zero).
However, to show that this is also a lower bound, a fifth property about primary—backup
protocols must be assumed:

Pb5: A correct server that is the primary remains so until there is a failure of some server
or link.

Pb5 is not a very restrictive, and all existing primary—backup protocols satisfy it. However,
if the identity of the primary changes rapidly enough—even when there are no failures—then
there exist crash-resilient protocols with failover times that violate the f¢ lower bound.?

By violating Pb5, it is possible to construct a protocol where the passage of time, rather than the
absencee of a message, is used to transfer the role of primary from one server to another. Having pre-agreed
times for transfering the role of primary can, under assumptions (which are rarely satisfied in practice) allow
smaller failover times.

11

5 Upper Bounds

There exist protocols that establish that all but two of our lower bounds are tight. In this
section, we describe these protocols informally. The material here summarizes [6].

For crash failures, one can modify the simple protocol given in Section 2.1 to use “I am
alive: {77 messages for failure detection (see Section 4.3). We can then extend that in a
straightforward manner to tolerate f failures: whenever the primary receives a request from
the client, it processes that request, sends the state update message to all the backups, and
then sends a response to the client. In case the primary fails, one of the backups becomes
the primary using an a priori defined order. This protocol uses f + 1 servers, so the lower
bound on the degree of replication is tight. Furthermore, it is non-blocking and has failover
time f(6 + 7) for arbitrarily small and positive 7— the lower bounds on blocking time and
failover time are tight as well.

According to our lower bounds for replication, in order for any primary—backup protocol to
tolerate crash+link failures, an additional server is required. The additional server ensures
that even in the presence of f failures, there is at least one non-faulty path between any
two servers, where such a path contains zero or more intermediate servers. The protocol for
crash failures outlined above can now be modified to tolerate crash+link failures by ensuring
that any state update or “I am alive: {77 message that a backup receives is forwarded to the
other backups. The forwarding of the messages ensures that at least one copy of a message
will get to all the intended receivers, since there is at least one non-faulty path between the
sender and the receivers. Thus the protocol masks link failures by sending messages over
multiple, independent links. This protocol uses f 4 2 servers, so our lower bound on the
degree of replication is tight. Furthermore, the protocol is non-blocking and has failover
time f(26 + 7) for arbitrarily small and positive 7, so the lower bounds on blocking time
and failover time are also tight.

Most of the protocols for the various kinds of omission failures can be obtained by ap-
plying translation techniques [10] to the protocol for crash failures outlined above. These
techniques re-implement the message send and receive routines in such a way that a faulty
server can detect its failure to send or receive a message and halt. All of the omission—failure
protocols obtained in this fashion have failover time f(26 + 7). Thus, our lower bounds on
failover times are tight. The protocol for send-omission failures uses f + 1 servers and is
26 + 7-blocking. Furthermore, a send-omission protocol for f = 1 that is é—blocking has
been constructed. Thus, the lower bounds on the degree of replication and blocking time
are also tight for send-omission failures. Finally, the protocol for general-omission failures
obtained by translation uses 2f + 1 servers and is 26—blocking, so the lower bounds on the
degree of replication and blocking time are tight for general-omission failures as well.

For receive-omission failures, it is not known whether our lower bounds are tight for degree of
replication or for blocking time when n < 2f and f > 1. The protocol for this failure model
obtained by translation uses 2f + 1 servers, but the lower bound is n > L%J Individual
protocols for n = 2, f = 1 and n = 4, f = 2 have been constructed, but have not been
generalized. However, the protocol for n = 2, f = 1 is é—blocking, so the lower bound on

blocking time when n = f and f = 1 is tight.

12

The following table summarizes the lower bounds and indicates which of these lower bounds
are known to be tight.

Failure Degree of Blocking Failover
Model Replication Time Time
crash n>f 0 fé
crash+link n>f+1 i 0 2f6
6 when n<2fand f=1"1
receive-omission | n > L%J *T 1 26 whenn<2fand f>1*" 216
0 when n > 2f
.. 6 when f=1
send-omission n>f 26 when f > 1 2fo
.. 6 when f=1
general-omission n>2f 96 whenf > 1 2f6

* Bound not known to be tight.
T D <7 assumed.

6 Existing Primary—Backup Protocols

We now discuss some existing primary—backup protocols: the Alsberg and Day protocol [1],
the Tandem protocol [3], HA-NFS [4] and an experimental non-blocking protocol [5].

6.1 The Alsberg and Day Protocol

We believe this protocol to be the earliest primary—backup protocol appearing in the liter-
ature. It employs two servers and tolerates a single crash failure.*

In this protocol, a client sends a request to the service and then blocks waiting for either a
response from the service or a timeout.

e If the request arrives at the primary, then the primary performs the requested update,
sends a state update message to the backup, and blocks. The backup, upon receiving
the state update message, updates its state, sends the response to the client, and finally
sends an acknowledgement to the primary saying that it performed the update. On
receiving the acknowledgement, a primary can unblock and process the next pending
request.

o If the request arrives at the backup, then the backup forwards the request to the
primary. The primary, upon receiving the forwarded request, performs the update,
sends the response to the client, and finally sends a state update message to the
backup (which then updates its state and discards the request).

*The authors also claim that the protocol tolerates network partitions. However, during partitions the
primary and the erstwhile backup can diverge, violating Pb4. In the analysis that follows, we assume that
partitions do not occur.

13

Failures are detected by lost acknowledgement messages. In addition, failures are also
detected by sending periodic “Are you alive” messages. In case the primary fails, the
backup takes over as the new primary. And, when a primary has no backup (either because
the backup crashed or the backup becomes the primary), the primary uses another protocol
to recruit another server to become the backup.

The above protocol requires two servers to tolerate a single server crash and has a blocking
time of §. Note that the protocol does not satisfy Pb3. However, for crash failures, our lower
bound results do not depend on Pb3, so the protocol is optimal for degree of replication
and not optimal for blocking time. The sub-optimal blocking time is the result of allowing
the backup to send a response. The paper is not clear why the authors chose to allow this.
One can hypothesize that they were concerned with transient link failures. In particular,
suppose the protocol were changed so that the primary sent the response to the client after
queueing the state update message to be sent to the backup. Now if the primary crashes
before the state update message is sent to the backup, then a client has received a response
to a request that was never received by the backup. This would violate Pb4. By having the
backup send the response, as done in the protocol, if a partition does not occur, then both
the primary and the backup will update their state with respect to any request.

The failover time depends on the frequency that “Are you alive” message are sent. If we
assume that the period between “Are you alive” messages is 7, then the failover time for
this protocol is 7 + 26. The protocol does not, however, use synchronized clocks. Our
upper bounds on failover times do assume synchronized clocks. Thus, our upper bounds
on failover time are incomparable. We do not know whether this protocol achieves optimal
failover time.

6.2 The Tandem Protocol

This protocol is designed to tolerate a single crash+link failure. Any Tandem system
consists of multiple nodes connected by a network. Each of these nodes consists of multiple
processor and I/O controller modules interconnected by redundant buses. Each processor
in the node can support concurrent processes (system or application), and the goal of the
system is to make these processes fault—tolerant.

Processes are made fault—tolerant by using process—pairs. Process pairs are implemented by
replicating each process on two different processors in the node, with one process being the
primary and the other being the backup. Requests are sent to the primary of such a pair.
The primary then sends a state update message to the backup over one of the redundant
busses. Once an acknowledgement is received from the backup, the response is sent to the
client. If an acknowledgement is not received for some time (one second in the protocol),
then the underlying message mechanism resends the state update message over the second
bus. Sequence numbers are used in order to prevent duplicates.

The backup process becomes the primary when it detects that the processor on which the
primary resided has crashed, as follows. Every processor in the node periodically sends an
“I am alive” message to all other processors, over all the redundant buses. If such a message
is not received from a processor, then that processor is declared crashed and any backup

14

whose primary was on that processor becomes the primary.

The above protocol uses two servers to tolerate a single crash failure, and two links to
tolerate a single link failure. Since there are two links between the two servers, and only
one of these links can fail, our crash failure bounds apply to this protocol.®> The protocol,
therefore, has optimal degree of replication. The blocking time for this protocol is 26, and
this is not optimal. However, using our optimal protocol would increase message traflic,
which Tandem might not want to do. Finally, because this protocol does not assume
synchronized clocks, the optimality of its failover time remains an open question.

6.3 HA-NFS

The goal of this protocol is to provide a highly available network file server (HA-NF'S) under
crash+link failures. The protocol tolerates a single crash failure by using two servers. One
server is the primary, the other is the backup. The servers are connected to a dual-ported
disk (in reality, there could be multiple disks). Only one server (the current primary) has
access to the disk at any time. Disk failures are tolerated by mirroring the disk, and link
failures are tolerated by replicating the network between the clients and the servers. The
dual-ported disk is used as an additional communications link between the two servers.

During normal operation, client requests are sent to the primary, which writes the updates
to the disk and then replies to the client. The primary does not inform the backup of
the update, because the disk is dual-ported and the backup can access the disk when it
takes over as the primary. The only communication between the two servers during normal
operation is to exchange periodic “Are you alive” messages that must be acknowledged.

In case the backup does not receive an acknowledgement after repeated “Are you alive”
messages, then either the primary has crashed or the link between the primary and the
backup has failed. In order to maintain Pbl, before it becomes the primary the backup
tries to communicate with the primary using the dual-ported disk hardware. If the backup
finds that it cannot communicate with the primary even over this redundant link, then it
becomes the new primary and takes over control of the dual-ported disk.

As with the Tandem protocol, our lower bounds for crash failures apply because only one of
the communication channels between the servers can fail. The HA-NFS protocol requires
two servers to tolerate a single failure, and has a blocking time of zero. Thus the protocol
has optimal degree of replication and optimal blocking time. The failover time depends on
the interval between successive “Are you alive” messages, the number of times it is sent
before detecting a failure, and the time needed to communicate using the disk as a channel.
This time is at least 26. The optimality of its failover time remains an open question because
this protocol does not assume synchronized clocks (and our bounds do).

®We assumed that there is exactly one link between any two processes. In Tandem’s protocol, it is
assumed that no more than one of the two links can be faulty. If this is the case, then any message can be
simultaneously sent over both the links, thus guaranteeing that at most one copy of the message can be lost
due to link failures. All our bounds that hold in the absence of link failures can be applied to protocols, like
Tandem’s, that utilize multiple links.

15

6.4 Non-Blocking Protocol

Non-blocking protocols are of practical interest because they can achieve the fastest possible
response times. To see how the response time for these protocols compares with conventional
blocking protocols, a non-blocking protocol tolerating receive-omission failures was built [5].

An argument can be made that a receive-omission failure model is the most appropriate
one for many environments. A primary—backup system should have all servers on a single
local area network. This is because the time required between the failure of a primary and
the takeover by a backup is determined by the bandwidth between the primary and the
backups. Furthermore, using a single local area network makes partitions that separate the
servers unlikely. The kinds of message losses that are expected to occur on this network
are restricted and correspond to our receive-omission failure model. According to [2], as
technology improves and newer, faster networks such as FDDI are used, the following will
be the dominant causes for message losses on a local area network:

o Failure to intercept messages from the network at high transfer rates due to interrupt
misses.

o Buffer overflows at the receiver.

This set of failures corresponds to receive-omission failure model, and one can construct a
non-blocking primary—backup protocol for this model when n > 2f.

We now briefly describe our non-blocking protocol tolerating receive-omission failures. The
protocol consists of 2f + 1 servers, one of which is the primary, and the rest of which are
backups. When the current primary receives a client request, it sends the state update
message to all the backups and then immediately responds to the client. A backup, upon
receiving this message, updates its state. However, it is possible that some backup might
experience a receive-omission fault and not receive the state update message. The protocol,
therefore, must ensure that this faulty backup does not later become the primary with an
out-of-date state. This is achieved by a failure detection scheme in which a faulty server
detects its own failure to receive a message and halts. This failure detection technique
requires n > 2f.

All the servers periodically exchange “I am alive: {77 messages to detect server crashes. The
backups are ranked, and if the primary crashes then the backup with the lowest rank takes
over as the new primary.

This protocol has failover time f(26 + 7), which is optimal as 7 approaches zero, and
optimal blocking time of zero. Furthermore, it also has the optimal degree of replication
for non—blocking protocols.

When we implemented this protocol on a local area network, we were surprised to find that
blocking time is not the dominant factor in determining response time as seen by clients.
In particular, our non-blocking protocol generated O(n?) messages to implement the failure
detection. When client requests are made with high frequency, this message traffic led to
high contention on our local area network. This bandwidth saturation was the key factor
in determining the response time seen by clients.

16

7 Conclusions

In this chapter, we have given a precise characterization for primary—backup protocols in
a system with synchronized clocks and bounded message delays. We then presented lower
bounds on the degree of replication, the blocking time, and the failover time under various
kinds of server and link failures. We also outlined a set of primary—backup protocols that
show which of our lower bounds are tight.

We have attempted to give a characterization of primary—backup that is broad enough to
include most synchronous protocols that are considered to be instances of the approach.
As we have seen, there are protocols that are incomparable to the class of protocols we
analyzed. Some protocols do not assume synchronized clocks; some protocols do not even
assume a synchronous system. Possible characterizations for a primary—backup protocol in
an asynchronous system is an area under active investigation.

References

[1] P.A. Alsberg and J.D. Day. A principle for resilient sharing of distributed resources.
In Proceedings of the Second International Conference on Software Engineering, pages
627-644, October 1976.

[2] Yair Amir, Danny Dolev, Shlomo Kramer, and Dalia Malki. Transis: A communication
sub-system for high availability. In FTCS-22 The Twenty-Second International Sym-
posium on Fault-Tolerant Computing, pages 76-84. IEEFE, Computer Society Technical
Committee on Fault-Tolerant Computing, July 1992.

[3] J.F. Barlett. A nonstop kernel. In Proceedings of the Fighth ACM Symposium on
Operating System Principles, SIGOPS Operating System Review, volume 15, pages
22-29, December 1981.

[4] Anupam Bhide, E.N. Elnozahy, and Stephen P. Morgan. A highly available network
file server. In USENIX, pages 199-205, 1991.

[5] Navin Budhiraja and Keith Marzullo. Tradeoffs in implementing primary—backup pro-
tocols. Technical Report TR 92-1307, Department of Computer Science, Cornell Uni-
versity, 1992.

[6] Navin Budhiraja, Keith Marzullo, Fred Schneider, and Sam Toueg. Optimal primary—
backup protocols. In Proceedings of the Sixzth International Workshop on Distributed
Algorithms, pages 362-378, Haifa, Israel, November 1992.

[7] Navin Budhiraja, Keith Marzullo, Fred B. Schneider, and Sam Toueg. Primary—backup
protocols: Lower bounds and optimal implementations. In Proceedings of the Third
IFIP Working Conference on Dependable Computing for Critical Applications, pages
187-198, Mondello, Italy, September 1992.

17

[8] Vassos Hadzilacos. Issues of Fault Tolerance in Concurrent Computations. PhD thesis,
Harvard University, June 1984. Department of Computer Science Technical Report 11-
84.

[9] Leslie Lamport and Michael Fischer. Byzantine generals and transaction commit pro-
tocols. Op. 62, SRI International, April 1982.

[10] Gil Neiger and Sam Toueg. Automatically increasing the fault-tolerance of distributed
algorithms. Journal of Algorithms, 11(3):374-419, September 1990.

[11] Kenneth J. Perry and Sam Toueg. Distributed agreement in the presence of processor
and communication faults. IEEFE Transactions on Software Engineering, 12(3):477—
482, March 1986.

[12] Richard D. Schlichting and Fred B. Schneider. Fail-stop processors: an approach to

designing fault-tolerant computing systems. ACM Transactions on Computer Systems,
1(3):222-238, August 1983.

18

