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approaches di�er in how each handles failures. With the state machine approach, the e�ectsof failures are completely masked by voting, and the resulting service is indistinguishablefrom a single non-faulty server. With the primary{backup approach, a request can be lost|additional protocols must be employed to retry such lost requests. The primary{backupapproach, however, involves less redundant processing, is less costly, and therefore is moreprevalent in practice.In this chapter, we discuss some fundamental costs that arise in connection with buildingfault-tolerant services using the primary{backup approach. Here are three key cost metricsof any primary{backup protocol:� Degree of Replication: The number of servers used to implement the service.� Blocking Time: The worst-case period between a request and its response in anyfailure{free execution.� Failover Time: The worst-case period during which requests can be lost because thereis no primary.The fundamental question, then, is:Given that no more than f components can fail, what are the smallest possible valuesof the the degree of replication, the blocking time and the failover time?An answer to this question de�nes lower bounds for the degree of replication, the blockingtime and the failover time of primary{backup protocols, where a lower bound de�nes anecessary cost that any protocol purporting to solve a problem must incur. Nobody willever design a protocol with lower cost than the lower bound. Knowing lower bounds for aproblem, therefore, gives a basis to evaluate the quality of a protocol.The existence of a lower bound does not imply the existence of a protocol having this cost,however. Every problem has a trivial lower bound (viz 0). We desire lower bounds that aretight|lower bounds that are actually achieved by some protocol. The cost of running anyprotocol de�nes an upper bound for the problem that protocol solves. If this upper boundis the same as the lower bound, then the lower bound is tight and the protocol is optimal.(The lower bound implies that a cheaper protocol cannot exist.) Thus, given a problem, westrive to identify tight lower bounds and optimal protocols.In this chapter, we present and discuss lower and upper bounds for the above three questions.However, deriving these bounds requires a precise speci�cation of the problem solved by aprimary{backup protocol. We give this in Sections 2 and 3. Section 4 contains our lowerbounds and Section 5 contains our upper bounds. Finally, in Section 6 we discuss someexisting primary{backup protocols in terms of our speci�cation, model, and bounds.2 Speci�cation of Primary{BackupInformally, a service that is implemented using the primary{backup approach consists ofa set of servers, of which no more than one is the primary at any time. A client sends a2



request to the service by sending it to the server it believes to be the primary. A clientlearns from the service when the primary changes and directs future requests accordingly.We assume that a client can send any request to the service at any time.More precisely, we require that to be a primary{backup protocol, four properties must besatis�ed. The �rst property states that no more than one server can be the primary at anytime.Pb1: There exists a local predicate Prmys on the state of each server s. At any time, thereis at most one server s whose state satis�es Prmys.For brevity, whenever we say that \s is the primary (at time t)" we mean that the state ofs satis�es Prmys (at time t). We can now formally de�ne the failover time of a primary{backup service to be the longest period of time during which Prmys is not true for any s.Property Pb2 distinguishes the primary{backup approach from the state machine approach.In the latter, each client broadcasts its request to all the servers (at considerable cost).Pb2: Each client i maintains a server identity Desti such that to make a request, client isends a message to Desti.We assume that requests sent to a server s are enqueued in a message queue at s. PropertyPb3 says that requests that arrive at a backup are ignored.Pb3: If a client request arrives at a server that is not the current primary, then that requestis not enqueued (and therefore is not processed).It may appear that Pb1 and Pb3 eliminate the need for Pb2. This is not the case. Pb1{Pb3ensure that no more than one server can enqueue each client request. Eliminating Pb2would allow protocols in which this could be violated. In such a protocol, a client wouldsend its request to multiple servers. And, if this request were sent while the identity of theprimary is changing, then the request could get enqueued at more than one server. Someof our lower bounds do not hold for such protocols.Properties Pb1{Pb3 specify a protocol for client interactions with a service but not theobligations of the service. For example, Pb1{Pb3 do not rule out a primary that ignores allrequests. We now give a fourth property that precludes such trivial implementations.For simplicity, we assume that every request requires a response to be sent. Consider aservice that is implemented by a single server. De�ne a server outage to occur at timet in this service if some correct client sends a request at time t to the service but doesnot receive a response. The above server is called a (k;�){bofo server (bounded outages,�nitely often) if all server outages can be grouped into at most k intervals of time, witheach interval having length at most �. For example, the computation shown in Figure 1shows two server outages at times t1 and t2 respectively. If the length of this outage periodis F and if this is the only such period, then the server is (1; F ){bofo. Thus, even thoughsome requests made to a (k;�){bofo server can be lost, the number of such requests isbounded. The fourth property states that a group of servers implementing a service usingthe primary{backup approach behave as a single bofo server implementing the same service:3



req req req reqresp respclientserver t1 t2FFigure 1: Service OutagesPb4: There exist �xed values k and � such that the service behaves like a single (k;�){bofoserver.Pb4 implies that primary{backup protocols can be used only to implement services thattolerate a bounded number of failures over their lifetime. In practice, we can implement aservice that tolerates an unbounded number of failures by partitioning its operation intoperiods. Only a bounded number of failures occur in each period, and repaired servers arereintegrated at period boundaries. Pb4 need only hold throughout each period. We do notdiscuss reintegration in this chapter.2.1 A Simple Primary{Backup ProtocolAs an example of a primary{backup protocol, here is one that tolerates the crash of a singleserver. Assume that all communication is over point-to-point non-faulty links and thateach link has an upper bound � on message delivery time. An execution of this protocol isshown in Figure 2. There exists a primary server p1 and a backup server p2 connected bya communications link. A client c initially sends a request to p1 (indicated by the arrowlabeled 1 in the �gure). Whenever p1 receives a request, it� Processes the request and updates its state accordingly.� Sends information about the update to p2 (message 2 in the �gure). We call such amessage a state update message.� Without waiting for an acknowledgement from p2, sends a response to the client(message 3 in the �gure).The order in which messages 2 and 3 are sent is important because it guarantees that, givenour assumption about failures, if the client receives a response, then either p2 will eventuallyreceive the state update message or p2 will crash.4



cp1p2 � � 1 3 42Figure 2: A Simple Primary{Backup ProtocolServer p2 updates its state upon receiving a state update message from p1. In addition, p1sends dummy messages to p2 every � seconds (shown by the dashed arrows in the �gure).If p2 does not receive such a message for � + � seconds, then p2 becomes the primary.Once p2 has become the primary, it informs the clients (message 4 in the �gure) and beginsprocessing subsequent requests from the clients.We now show that this protocol satis�es our characterization of a primary{backup protocol.Property Pb1 requires that there never be two primaries. This is satis�ed by the followingde�nitions of Prmy:Prmyp1 def= p1 has not crashedPrmyp2 def= p2 has not received a message from p1 for � + �Predicate Prmyp1 ^ Prmyp2 is always false in a system executing our protocol, hence Pb1is satis�ed. The failover time is the longest interval during which :Prmyp1 ^ :Prmyp2 canhold. In this protocol, this interval occurs when p1 crashes immediately after sending amessage to p2 which takes � to arrive, and so the failover time is � + 2� seconds.Property Pb2 follows trivially from the description of the protocol, and Pb3 holds becauserequests are not sent to p2 until after p1 has failed.Finally, Pb4 requires that the protocol implement a single (k;�){bofo server. To implementa single server, we require that if the primary updates its state and sends a response to aclient, then any backup that might later become the primary knows about this state update.In our protocol, this is ensured since p1 sends the state update message to the backup beforeit sends any response. To compute k, note that there is at most one switch of the primary, sothere is at most one outage period: k = 1. To compute �, it su�ces to compute the longestinterval during which a client request may not elicit a response. Assume that p1 crashes attime tc. Thus any client request sent to p1 at tc � � or later may be lost. Furthermore, p2may not learn about p1's crash until tc + � + 2�, and clients may not learn that p2 is the5



primary for another �. So, the total period during which a request may not elicit a responseis tc � � through tc + � + 3�; the protocol implements a single (1; � + 4�){bofo server.3 System ModelConsider a system consisting of n servers and a set of clients, where server clocks aresynchronized arbitrarily close to real time. We assume that clients and servers communicateby exchanging messages through a completely connected point-to-point network and thatthere is exactly one FIFO link between any two processes. Messages are enqueued in amessage queue maintained by the receiving process, and the receiver accesses this queue byexecuting a receive statement. Furthermore, we assume that there is a known constant �such that if processes pi and pj are connected by a (non-faulty) link, then a message sentfrom pi to pj at time t will be enqueued in pj 's queue at or before t + �.For computing lower bounds on protocol execution, it is best to assume that a server cancompute the response to a request in an arbitrarily short time. While not realistic for manyservers, the resulting bounds reect only the cost of the primary{backup protocols. Andthat is what we seek.Execution of a system is modeled by a run, which is a sequence of events involving clients,servers, and message queues (see Chapter 4). These events are timestamped with the realtime that each event occurs. The events include: sending a message, enqueuing a message,receiving a message, and computation at a process. Two runs �1 and �2 of the system arede�ned to be indistinguishable to a process p if the same sequence of events (with the sametimestamps) occur at p in both �1 and �2.We assume that servers are deterministic: if two runs �1 and �2 are indistinguishable to pand p has the same initial state in both runs, then at any time t the state of p at t in �1is the same as the state of p at t in �2. We make this assumption in order to simplify thediscussion|our results hold for non-deterministic servers as well.We assume that server and link failures occur independently and consider the followinghierarchy of failure models:Crash failures: A server may fail by halting prematurely. Until it halts, the server behavescorrectly; once it halts, it never recovers [9].1Crash+Link failures: A server may crash or a link may lose messages (but links do notdelay, duplicate or corrupt messages).Receive-Omission failures: A server may fail not only by crashing, but also by omitting toreceive some of the messages directed to it over a non-faulty link [11].Send-Omission failures: A server may fail not only by crashing, but also by omitting tosend some messages over a non-faulty link [8].1The lower bounds for crash failures also hold for fail-stop failures [12] except for the bound on failovertime. The lower bound on failover time depends on the maximum interval between when a server fails andwhen this failure is recognized by the other servers. 6



General-Omission failures: A server may exhibit send-omission and receive-omission fail-ures [11].A protocol tolerates f failures of a given model if it works correctly despite faulty behavior(as prescribed by that model) of up to f components.Note that crash+link failures and the various classes of omission failures are quite di�erent.All admit loss of messages, but each class is handled by a di�erent masking technique: linkfailures are tolerated by replicating links and omission failures are tolerated by replicatingservers. Receive-omission failures model problems at a server, such as the failure to receivemessages from the network due to high transfer rates or insu�cient bu�ers. When suchproblems occur, sending messages using multiple links is not a remedy. Link failures, onthe other hand, model problems in the network, such as congestion at a bridge or problemswith the physical medium itself. Sending messages over multiple independent links is ane�ective way to remedy such problems.4 Lower BoundsFor each failure model, we now give the lower bounds on the degree of replication, blockingtime, and failover time for any primary{backup protocol.4.1 Bounds on ReplicationThe following table summarizes the lower bounds on the degree of replication. Recall, nis the total number of servers and f is the maximum number of faulty components to betolerated. Failure Model Degree of Replicationcrash n > fcrash+link n > f + 1receive-omission n > b3f2 csend-omission n > fgeneral-omission n > 2fFor crash failures and send-omission failures, the lower bound is n > f . In fact, this is alower bound for all failure models, since if n � f failures could occur, then all of the serverscould crash, leaving no primary. A system that has no primary violates Pb4 since a primaryis required for the service to behave like a single (k;�){bofo server. For the other failuremodels, however, n > f is not su�cient as no protocol can achieve this lower bound. Asargued below, in the absence of further replication under these failure models, the serverscan be divided into mutual non-communicating partitions. Neither partition can tell if theservers in the other partitions have crashed or not. Thus, each partition must eventuallycontain a primary so that Pb4 is not violated. Yet, if the other partitions have not crashed,then Pb1 will be violated. 7



The lower bounds on replication for crash+link failures and receive-omission failures arebased a further (reasonable) assumption about primary{backup protocols. Let � be themaximum time that can elapse between any two successive requests from non-faulty clients.Let D bound the time it takes for a client to learn the identity of a new server, so if someserver s becomes the primary at time t0 and remains the primary through time t � t0 +Dwhen a correct client ci sends a request, then Desti = s at time t. For example, in theprotocol of Section 2.1, D = �. For deriving our lower bounds, we assume that if � isbounded then D < �, which implies that the service must be able to detect the failure of aprimary and disseminate the new primary's identity to the clients without using messagesfrom the clients. If one assumes that � is bounded and D � �, then protocols that requireless replication can be constructed.2We now informally derive the lower bounds for crash+link failures, receive-omission failuresand general-omission failures. The arguments are not rigorous; for example, the assumptionregarding D and � is apparently not needed. However, the structure of our detailed formalproofs for the lower bounds in [7] parallel the arguments below.For crash+link failures, the need for an additional server (i.e. n > f + 1) is illustrated bythe counterexample shown in Figure 3. Assume that n = f + 1 and divide the n servers1 ... Ba fFigure 3: Crash+Link Failuresinto a single server a and set B containing f servers. If, in some run, all of the servers in Bcrash, then a must eventually be the primary since otherwise there would be no primary.Similarly, if a crashes in some run, then a server in B must eventually become the primary.However, there are only f links between a and the servers in B, so all of the links can fail.If this occurs in some run, then to a this run is indistinguishable from the run in whichall the servers in B crashed, and to B this run is indistinguishable from the run in whichserver a crashed. Hence, a will eventually become the primary and some process in B willeventually become a primary, violating Pb1. Note that this counterexample is not possibleif n > f + 1, because then at least one link between a and B must remain non-faulty. I.e.with n > f + 1, two servers are always connected through some path of non-faulty links2When D � �, there is a primary{backup protocol that tolerates a single crash+link failure using onlytwo servers. In this protocol, when the backup stops receiving messages from the primary, it uses the clientrequests to distinguish between the primary having crashed and the link having failed.8



and servers, so no partition can occur.The need for still more replication (i.e. n > b3f=2c) in the face of receive-omission failuresis illustrated in Figure 4. Assume that n = b3f=2c, the servers are divided into sets A andA BC
bf2 c df2 e bf2 c

Figure 4: Receive-Omission FailuresB that each contain bf=2c servers, and a set C contains df=2e servers. If all the servers insets A and C crash in some run, then eventually a server in B will become the primary.Similarly, if in some run all the servers in B and C crash, then eventually a server in Awill be the primary. However, if in some run all of the servers in A and B commit receive-omission failures for messages sent from outside their respective partitions, then this runis indistinguishable from the �rst run to the servers in B and is indistinguishable fromthe second run to the servers in A. Hence, there will eventually be a primary in A and aprimary in B, violating Pb1. Finally, the need for replication degree n > 2f to tolerate
BA ffFigure 5: General-Omission Failures9



general-omission failures is illustrated in Figure 5. Assume that n = 2f and the servers aredivided into sets A and B, each containing f servers. If all the servers in A crash in somerun, then eventually a server in B will become the primary, and similarly if the servers inB crash in some run, then eventually a server in A will become the primary. However, ifthe servers in A commit general-omission failures for messages exchanged with servers inB (i.e. they omit to send messages or receive messages from severs in B), then this run isindistinguishable from the �rst run to the servers in B, and is also indistinguishable fromthe second run to the servers in A. Hence, there will eventually be a primary in A and aprimary in B, violating Pb1.4.2 Bounds on Blocking TimeThe following table summarizes our lower bounds on the blocking time.Failure Model Blocking Timecrash 0crash+link 0receive-omission � when f = 1 and n = 22� when f > 1 and n � 2f0 when n > 2fsend-omission � when f = 12� when f > 1general-omission � when f = 12� when f > 1Recall that blocking time is the worst-case elapsed time between the receipt of a requestreq and the sending of the associated response resp in a run that contains no failures. Ascan be seen from the table, the values of the lower bounds for blocking time are 0, �, or2� depending on the failure model, f and n. A value of 0 means that the primary canimmediately respond to the client. We call such protocols non-blocking [7]. The simpleprotocol discussed in Section 2.1 is an example of a non-blocking protocol. Non-blockingprotocols exist that tolerate crash failures and crash+link failures because in such systemsthere is always at least one non-faulty path from the primary to the other servers. Oncethe primary sends a state update message, it can reply to the client immediately becauseit knows that this message will eventually be received.In contrast, non-blocking protocols cannot be built for send-omission failures, general-omission failures, and receive-omission failures where n � 2f . For these failure models,the blocking time is at least �. For example, with send-omission failures, a primary cannotimmediately send the response to a request after sending the state update message, becausethe primary may commit a send-omission failure in sending that message. Protocols forwhich the blocking time is � can be built by making a backup send the response to theclient. The primary sends the state update message to a backup b. Once b receives thismessage, it sends the response to the client. Such � blocking protocols can, however, tolerateonly a single failure (f = 1). 10



If more than one failure can occur (f > 1), then both the responding backup and the primarymay crash after the response is sent, and because of the failure model being assumed (send-omission, general-omission or receive-omission with n � 2f ) the state update messagesmay never be received by the other servers. These protocols have a blocking time of at least2�|further communication from the backups is needed prior to sending a response to theclient. This ensures that the state update message has been received by the other backupsas well.4.3 Bounds on Failover TimeThe following table summarizes lower bounds on failover time:Failure Model Failover Timecrash f�crash+link 2f�receive-omission 2f�send-omission 2f�general-omission 2f�For crash failures, a backup can detect the failure of a primary by the absence of an expectedmessage from the primary. For example, if clocks are synchronized then the primary cansend a \I am alive: `�" message to the backups at time `� for ` = 0; 1; 2; : : :. If a backupdoes not receive this message by time `� + �, then the primary crashed at some time tx inthe range (`�1)� � tx � `� . In this case, the failover time, given a single failure, is at most�+� and it approaches � as � becomes small. Similarly, if the backup that next becomes theprimary crashes just before tx + � + �, then there may not be a primary until tx+ 2(� + �),and so on. Thus, for crash failures, the failover time can be f� (as � approaches zero).However, to show that this is also a lower bound, a �fth property about primary{backupprotocols must be assumed:Pb5: A correct server that is the primary remains so until there is a failure of some serveror link.Pb5 is not a very restrictive, and all existing primary{backup protocols satisfy it. However,if the identity of the primary changes rapidly enough|even when there are no failures|thenthere exist crash-resilient protocols with failover times that violate the f� lower bound.33By violating Pb5, it is possible to construct a protocol where the passage of time, rather than theabsencee of a message, is used to transfer the role of primary from one server to another. Having pre-agreedtimes for transfering the role of primary can, under assumptions (which are rarely satis�ed in practice) allowsmaller failover times. 11



5 Upper BoundsThere exist protocols that establish that all but two of our lower bounds are tight. In thissection, we describe these protocols informally. The material here summarizes [6].For crash failures, one can modify the simple protocol given in Section 2.1 to use \I amalive: `�" messages for failure detection (see Section 4.3). We can then extend that in astraightforward manner to tolerate f failures: whenever the primary receives a request fromthe client, it processes that request, sends the state update message to all the backups, andthen sends a response to the client. In case the primary fails, one of the backups becomesthe primary using an a priori de�ned order. This protocol uses f + 1 servers, so the lowerbound on the degree of replication is tight. Furthermore, it is non-blocking and has failovertime f(� + �) for arbitrarily small and positive �| the lower bounds on blocking time andfailover time are tight as well.According to our lower bounds for replication, in order for any primary{backup protocol totolerate crash+link failures, an additional server is required. The additional server ensuresthat even in the presence of f failures, there is at least one non-faulty path between anytwo servers, where such a path contains zero or more intermediate servers. The protocol forcrash failures outlined above can now be modi�ed to tolerate crash+link failures by ensuringthat any state update or \I am alive: `�" message that a backup receives is forwarded to theother backups. The forwarding of the messages ensures that at least one copy of a messagewill get to all the intended receivers, since there is at least one non-faulty path between thesender and the receivers. Thus the protocol masks link failures by sending messages overmultiple, independent links. This protocol uses f + 2 servers, so our lower bound on thedegree of replication is tight. Furthermore, the protocol is non-blocking and has failovertime f(2� + �) for arbitrarily small and positive � , so the lower bounds on blocking timeand failover time are also tight.Most of the protocols for the various kinds of omission failures can be obtained by ap-plying translation techniques [10] to the protocol for crash failures outlined above. Thesetechniques re-implement the message send and receive routines in such a way that a faultyserver can detect its failure to send or receive a message and halt. All of the omission{failureprotocols obtained in this fashion have failover time f(2� + �). Thus, our lower bounds onfailover times are tight. The protocol for send-omission failures uses f + 1 servers and is2� + �{blocking. Furthermore, a send-omission protocol for f = 1 that is �{blocking hasbeen constructed. Thus, the lower bounds on the degree of replication and blocking timeare also tight for send-omission failures. Finally, the protocol for general-omission failuresobtained by translation uses 2f + 1 servers and is 2�{blocking, so the lower bounds on thedegree of replication and blocking time are tight for general-omission failures as well.For receive-omission failures, it is not known whether our lower bounds are tight for degree ofreplication or for blocking time when n � 2f and f > 1. The protocol for this failure modelobtained by translation uses 2f + 1 servers, but the lower bound is n > b3f2 c. Individualprotocols for n = 2, f = 1 and n = 4, f = 2 have been constructed, but have not beengeneralized. However, the protocol for n = 2, f = 1 is �{blocking, so the lower bound onblocking time when n = f and f = 1 is tight.12



The following table summarizes the lower bounds and indicates which of these lower boundsare known to be tight.Failure Degree of Blocking FailoverModel Replication Time Timecrash n > f 0 f�crash+link n > f + 1 y 0 2f�receive-omission n > b3f2 c � y � when n � 2f and f = 1 y2� when n � 2f and f > 1 � y0 when n > 2f 2f�send-omission n > f � when f = 12� when f > 1 2f�general-omission n > 2f � when f = 12� whenf > 1 2f�� Bound not known to be tight.y D < � assumed.6 Existing Primary{Backup ProtocolsWe now discuss some existing primary{backup protocols: the Alsberg and Day protocol [1],the Tandem protocol [3], HA{NFS [4] and an experimental non-blocking protocol [5].6.1 The Alsberg and Day ProtocolWe believe this protocol to be the earliest primary{backup protocol appearing in the liter-ature. It employs two servers and tolerates a single crash failure.4In this protocol, a client sends a request to the service and then blocks waiting for either aresponse from the service or a timeout.� If the request arrives at the primary, then the primary performs the requested update,sends a state update message to the backup, and blocks. The backup, upon receivingthe state update message, updates its state, sends the response to the client, and �nallysends an acknowledgement to the primary saying that it performed the update. Onreceiving the acknowledgement, a primary can unblock and process the next pendingrequest.� If the request arrives at the backup, then the backup forwards the request to theprimary. The primary, upon receiving the forwarded request, performs the update,sends the response to the client, and �nally sends a state update message to thebackup (which then updates its state and discards the request).4The authors also claim that the protocol tolerates network partitions. However, during partitions theprimary and the erstwhile backup can diverge, violating Pb4. In the analysis that follows, we assume thatpartitions do not occur. 13



Failures are detected by lost acknowledgement messages. In addition, failures are alsodetected by sending periodic \Are you alive" messages. In case the primary fails, thebackup takes over as the new primary. And, when a primary has no backup (either becausethe backup crashed or the backup becomes the primary), the primary uses another protocolto recruit another server to become the backup.The above protocol requires two servers to tolerate a single server crash and has a blockingtime of �. Note that the protocol does not satisfy Pb3. However, for crash failures, our lowerbound results do not depend on Pb3, so the protocol is optimal for degree of replicationand not optimal for blocking time. The sub-optimal blocking time is the result of allowingthe backup to send a response. The paper is not clear why the authors chose to allow this.One can hypothesize that they were concerned with transient link failures. In particular,suppose the protocol were changed so that the primary sent the response to the client afterqueueing the state update message to be sent to the backup. Now if the primary crashesbefore the state update message is sent to the backup, then a client has received a responseto a request that was never received by the backup. This would violate Pb4. By having thebackup send the response, as done in the protocol, if a partition does not occur, then boththe primary and the backup will update their state with respect to any request.The failover time depends on the frequency that \Are you alive" message are sent. If weassume that the period between \Are you alive" messages is � , then the failover time forthis protocol is � + 2�. The protocol does not, however, use synchronized clocks. Ourupper bounds on failover times do assume synchronized clocks. Thus, our upper boundson failover time are incomparable. We do not know whether this protocol achieves optimalfailover time.6.2 The Tandem ProtocolThis protocol is designed to tolerate a single crash+link failure. Any Tandem systemconsists of multiple nodes connected by a network. Each of these nodes consists of multipleprocessor and I/O controller modules interconnected by redundant buses. Each processorin the node can support concurrent processes (system or application), and the goal of thesystem is to make these processes fault{tolerant.Processes are made fault{tolerant by using process{pairs. Process pairs are implemented byreplicating each process on two di�erent processors in the node, with one process being theprimary and the other being the backup. Requests are sent to the primary of such a pair.The primary then sends a state update message to the backup over one of the redundantbusses. Once an acknowledgement is received from the backup, the response is sent to theclient. If an acknowledgement is not received for some time (one second in the protocol),then the underlying message mechanism resends the state update message over the secondbus. Sequence numbers are used in order to prevent duplicates.The backup process becomes the primary when it detects that the processor on which theprimary resided has crashed, as follows. Every processor in the node periodically sends an\I am alive" message to all other processors, over all the redundant buses. If such a messageis not received from a processor, then that processor is declared crashed and any backup14



whose primary was on that processor becomes the primary.The above protocol uses two servers to tolerate a single crash failure, and two links totolerate a single link failure. Since there are two links between the two servers, and onlyone of these links can fail, our crash failure bounds apply to this protocol.5 The protocol,therefore, has optimal degree of replication. The blocking time for this protocol is 2�, andthis is not optimal. However, using our optimal protocol would increase message tra�c,which Tandem might not want to do. Finally, because this protocol does not assumesynchronized clocks, the optimality of its failover time remains an open question.6.3 HA-NFSThe goal of this protocol is to provide a highly available network �le server (HA-NFS) undercrash+link failures. The protocol tolerates a single crash failure by using two servers. Oneserver is the primary, the other is the backup. The servers are connected to a dual-porteddisk (in reality, there could be multiple disks). Only one server (the current primary) hasaccess to the disk at any time. Disk failures are tolerated by mirroring the disk, and linkfailures are tolerated by replicating the network between the clients and the servers. Thedual-ported disk is used as an additional communications link between the two servers.During normal operation, client requests are sent to the primary, which writes the updatesto the disk and then replies to the client. The primary does not inform the backup ofthe update, because the disk is dual-ported and the backup can access the disk when ittakes over as the primary. The only communication between the two servers during normaloperation is to exchange periodic \Are you alive" messages that must be acknowledged.In case the backup does not receive an acknowledgement after repeated \Are you alive"messages, then either the primary has crashed or the link between the primary and thebackup has failed. In order to maintain Pb1, before it becomes the primary the backuptries to communicate with the primary using the dual-ported disk hardware. If the backup�nds that it cannot communicate with the primary even over this redundant link, then itbecomes the new primary and takes over control of the dual-ported disk.As with the Tandem protocol, our lower bounds for crash failures apply because only one ofthe communication channels between the servers can fail. The HA-NFS protocol requirestwo servers to tolerate a single failure, and has a blocking time of zero. Thus the protocolhas optimal degree of replication and optimal blocking time. The failover time depends onthe interval between successive \Are you alive" messages, the number of times it is sentbefore detecting a failure, and the time needed to communicate using the disk as a channel.This time is at least 2�. The optimality of its failover time remains an open question becausethis protocol does not assume synchronized clocks (and our bounds do).5We assumed that there is exactly one link between any two processes. In Tandem's protocol, it isassumed that no more than one of the two links can be faulty. If this is the case, then any message can besimultaneously sent over both the links, thus guaranteeing that at most one copy of the message can be lostdue to link failures. All our bounds that hold in the absence of link failures can be applied to protocols, likeTandem's, that utilize multiple links. 15



6.4 Non-Blocking ProtocolNon-blocking protocols are of practical interest because they can achieve the fastest possibleresponse times. To see how the response time for these protocols compares with conventionalblocking protocols, a non-blocking protocol tolerating receive-omission failures was built [5].An argument can be made that a receive-omission failure model is the most appropriateone for many environments. A primary{backup system should have all servers on a singlelocal area network. This is because the time required between the failure of a primary andthe takeover by a backup is determined by the bandwidth between the primary and thebackups. Furthermore, using a single local area network makes partitions that separate theservers unlikely. The kinds of message losses that are expected to occur on this networkare restricted and correspond to our receive-omission failure model. According to [2], astechnology improves and newer, faster networks such as FDDI are used, the following willbe the dominant causes for message losses on a local area network:� Failure to intercept messages from the network at high transfer rates due to interruptmisses.� Bu�er overows at the receiver.This set of failures corresponds to receive-omission failure model, and one can construct anon-blocking primary{backup protocol for this model when n > 2f .We now briey describe our non-blocking protocol tolerating receive-omission failures. Theprotocol consists of 2f + 1 servers, one of which is the primary, and the rest of which arebackups. When the current primary receives a client request, it sends the state updatemessage to all the backups and then immediately responds to the client. A backup, uponreceiving this message, updates its state. However, it is possible that some backup mightexperience a receive-omission fault and not receive the state update message. The protocol,therefore, must ensure that this faulty backup does not later become the primary with anout-of-date state. This is achieved by a failure detection scheme in which a faulty serverdetects its own failure to receive a message and halts. This failure detection techniquerequires n > 2f .All the servers periodically exchange \I am alive: `�" messages to detect server crashes. Thebackups are ranked, and if the primary crashes then the backup with the lowest rank takesover as the new primary.This protocol has failover time f(2� + �), which is optimal as � approaches zero, andoptimal blocking time of zero. Furthermore, it also has the optimal degree of replicationfor non{blocking protocols.When we implemented this protocol on a local area network, we were surprised to �nd thatblocking time is not the dominant factor in determining response time as seen by clients.In particular, our non-blocking protocol generated O(n2) messages to implement the failuredetection. When client requests are made with high frequency, this message tra�c led tohigh contention on our local area network. This bandwidth saturation was the key factorin determining the response time seen by clients.16
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