
Distributed Computing (1989) 3 : 146-158

�9 Springer-Verlag 1989

Probabilistic clock synchronization
Flaviu Cristian
IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USA

Flaviu Cristian is a com-
puter scientist at the IBM Al-
maden Research Center in San
Jose, California. He received his
PhD from the University of
Grenoble, France, in 1979.
After carrying out research in
operating systems and pro-
gramming methodology in
France, and working on the
specification, design, and verifi-
cation of fault-tolerant pro-
grams in England, he joined
IBM in 1982. Since then he has
worked in the area of fault-tol-
erant distributed protocols and

systems. He has participated in the design and implementation
of a highly available system prototype at the Almaden Research
Center and has reviewed and consulted for several fault-tolerant
distributed system designs, both in Europe and in the American
divisions of IBM. He is now a technical leader in the design
of a new U.S. Air Traffic Control System which must satisfy
very stringent availability requirements.

Abstract. A probabilistic method is proposed for
reading remote clocks in distributed systems sub-
ject to unbounded random communication delays.
The method can achieve clock synchronization
precisions superior to those attainable by previous-
ly published clock synchronization algorithms. Its
use is illustrated by presenting a time service which
maintains externally (and hence, internally) syn-
chronized clocks in the presence of process, com-
munication and clock failures.

Key words: Communication - Distributed system
- Fault-tolerance Time service - Clock synchro-
nization

Introduction

In a distributed system, external clock synchroniza-
tion consists of maintaining processor clocks with-

in some given maximum derivation from a time
reference external to the system. Internal clock syn-
chronization keeps processor clocks within some
maximum relative deviation of each other. Exter-
nally synchronized clocks are also internally syn-
chronized. The converse is not true: as time passes
internally synchronized clocks can drift arbitrarily
far from external time.

Clock synchronization is needed in many dis-
tributed systems. Internal clock synchronization
enables one to measure the duration of distributed
activities that start on one processor and terminate
on another processor and to totally order distrib-
uted events in a manner that closely approximates
their real time precedence. To allow exchange of
information about the timing of events with other
systems and users, many systems require external
clock synchronization. For example external time
can be used to record the occurrence of events for
later analysis by humans, to instruct a system to
take certain actions when certain specified (exter-
nal) time deadlines occur, and to order the occur-
rence of related events observed by distinct sys-
tems.

This paper proposes a new approach for read-
ing remote clocks in networks subject to un-
bounded random message delays. The method can
be used to improve the precision of both internal
and external synchronization algorithms. Our ap-
proach is probabilistic because it does not guaran-
tee that a processor can always read a remote clock
with an a priori specified precision (such a guaran-
tee cannot be provided when there is no bound
on message delays). However, by retrying a suffi-
cient number of times, a process can read the clock
of another process with a given precision with a
probability as close to one a desired. An important
characteristic of our method is that when a process
succeeds in reading a remote clock, it knows the
actual reading precision achieved.

F. Cristian: Probabilistic clock synchronization 147

The use of the remote clock reading method
is illustrated by describing a distributed time ser-
vice which maintains externally synchronized
clocks despite process, communication and clock
failures. The service is implemented by a group
of time servers which execute a simple probabilistic
clock synchronization protocol. After presenting
the protocol and its performance, we conclude by
comparing it with other published clock synchroni-
zation protocols.

Message delays
To synchronize the clocks of their host processors,
time server processes communicate among them-
selves by sending messages via a communication
network. Since there is a one to one correspon-
dence between time server processes and proces-
sors, we do not distinguish between processes and
processors. For example, when we say "the clock
of process P" we mean "the clock of the processor
on which P runs".

In distributed systems the task of synchronizing
clocks is made difficult (among other things) by
the existence of unpredictable communication de-
lays. Between the moment a process P sends a mes-
sage to a process Q and the moment Q receives
the message, there is an arbitrary, random real time
delay. A minimum rain for this delay exists. It can
be computed by counting the time needed to pre-
pare, transmit, and receive an empty message in
the absence of transmission errors and any other
system load. In general, one does not know an
upper bound on message transmission delays.
These depend on the amount of communication
and computation going on in parallel in the system,
on the possibility that transmission errors will
cause messages to be retransmitted several times,
and on other random events, such as page faults,
process switches, the establishment of new commu-
nication routes, or a freeze of the activity of a pro-
cess caused by a human operator who pushes the
'halt ' button on the panel of the processor hosting
that process.

% of
msgs

rain detay

Fig. 1

Measurements of process to process message
delays in existing systems indicate that typically
their distribution has a shape resembling that illus-
trated in Fig. 1. This distribution has a maximum
density at a mode point between the minimum de-
lay min and the median delay, usually close to min,
with a long thin tail to the right. For instance,
a sample measurement of 5000 message round trip
delays between two light-weight MVS processes
(running on two IBM 4381 processors connected
via a channel-to-channel local area network) per-
formed at the Almaden Research Center (Dong,
private communication, June 1988), indicates a me-
dian round trip delay of 4.48 ms situated between
a minimum delay of 4.22 ms and an average ob-
served delay of 4.91 ms. While the maximum ob-
served delay in this experiment (during which no
route changes or 'halt ' button pushes occurred)
was very far at the right: 93.17 ms, 95% of all ob-
served delays were shorter than 5.2 ms.

Previous work
Most published clock synchronization algorithms
(e.g., Cristian et al. 1985; Dolev et al. 1984; Lam-
port 1987; Lamport and Melliar-Smith 1985; Lun-
delius-Welch and Lynch 1988; Schneider 1987;
Srikanth and Toneg 1987) assume the existence of
an upper bound max on real time message trans-
mission delays. If the delays experienced by deliv-
ered messages are smaller than max with probabili-
ty 1, these algorithms keep clocks within a maxi-
mum relative deviation greater than max-min with
probability one. It is known (Lundelius and Lynch
1984) that the closeness with which clocks can be
synchronized with certainty (i.e., with probabil-
ity one) is limited: n clocks cannot be synchron-
ized with certainty closer than (max-min)(1- 1/n),
even when no failures occur and clocks do not
drift.

Other authors (e.g., Gusella and Zatti 1987;
Marzullo 1984) adopt the premise that message de-
lays are unbounded, and use as upper bounds on
synchronization message delays the timeout delays
employed for detecting communication failures be-
tween processes. Such timeouts are introduced by
system designers to prevent situations in which
some process P waits forever for a message from
another process Q that will never arrive (for exam-
ple because of a failure of Q). Since message delays
are unbounded, it is understood that a small per-
centage of messages may need more than a given
timeout delay to travel between processes, i.e., there
is a chance that "false" communication failures are
detected. This is the price paid for letting systems

148 F. Cristian: Probabilistic clock synchronization

subject to unbounded message transmission delays
continue to work despite process failures and mes-
sage losses. To reduce the likelihood of "false"
alarms, a timeout delay is conservatively estimated
from network delay statistics to ensure that mes-
sage delays are smaller than the chosen timeout
with a very high probability p (typically p > 0.99).
If such a timeout delay is denoted by "maxp", the
best synchronization precision achievable by the
algorithms proposed in Gusella and Zatti (1987)
and Marzullo (1984) can be characterized as being
4 (maxp-min).

Assumptions on clocks, processes,
and communication

Each time server process has access to the hard-
ware clock H of its host processor. To simplify
our presentation, we assume these clocks have a
much higher resolution than the time intervals (e.g.,
process to process communication delays) which
must be measured. For example, if the delays ob-
servable are of the order of milliseconds, we assume
the hardware clocks have a microsecond resolu-
tion. A clock H is correct if it measures the length
t - t ' of any real time interval [t', t] with an error
of at most p(t - t ') , where p is the maximum clock
drift rate from external (or real) time specified by
the clock manufacturer:

(1 --p)(t--t')<_H(t)--H(t')<_(1 +p)(t--t'). (C)

In the above formula, it is implicit that the de-
lay t - t' is long enough so that the worst case error
in measuring its length caused by the discrete clock
granularity is negligible compared to that due to
drift. For most types of quartz clocks, the constant
p is of the order of 10-6. For example the worst
actual drift rate measured for the microsecond res-
olution clocks existing on the IBM 4381 processors
in our laboratory is 6 ,10 _6 (Dong, private com-
munication, June 1988). Since p is such a small
quantity, we ignore in this paper terms of the order
of p2 or smaller (e.g., we equate (l + p) -1 with (1
- p) and (1 _ p) - i with (1 +p)). A clock failure oc-
curs if the clock correctness condition (C) is violat-
ed. Examples of clock failure types are: crash fail-
ures (i.e., the clock stops), timing failures (e.g., a
change in the frequency of the quartz oscillator
driving the clock counter causes the clock value
to be incremented too fast or too slowly), and arbi-
trary, or Byzantine, failures (e.g., the clock counter
displays a nonmonotonic time because some of its
bits are stuck at 0 or at 1). To simplify our presenta-

tion, we assume initially that processor clocks are
correct. We relax this assumption later, by showing
how one can detect and handle arbitrary clock fail-
ures.

We assume that message delays between pro-
cesses are unbounded. As we will see later, the closer
the distribution of such delays resembles that illus-
trated in Fig. 1 (i.e., the closer the median delay
is to rain), the better our probabilistic clock syn-
chronization algorithms perform. What is remark-
able, however, is that their correctness does not de-
pend on any assumption about the particular
shape of the message delay density function. We
also assume that, to let processes continue to work
despite process failures or message losses, a timeout
delay maxp is chosen. The adoption of such a time-
out delay divides observable network behaviors
into two classes. A communication path (P, Q) be-
tween processes P and Q is said to function correct-
ly if any message sent by P is delivered uncorrupted
to Q within maxp time units. If a message accepted
at one path end is never delivered at the other
end or is delivered after more than maxp time units,
the path suffers a late timing or performance failure
(Cristian et al. 1985). We assume that communica-
tion channels between processes can only be af-
fected by performance failures.

Processes undergo state transitions in response
to message arrivals and timeout events generated
by timers. To simplify our presentation we assume
that between the occurrence of a timeout and the
invocation of the associated timeout handler there
is a null (process scheduling) delay and that process
timers advance at the same rate as the clocks of
the underlying processors. Thus, a correct process
which at real time t sets a timer to measure W
time units, is awakened in the real time interval
[t+(1-p)W,, t+(1 +p)W]. We say that a process
behaves correctly if in response to trigger events
(such as message arrivals or timeout occurrences)
it behaves in the manner specified. The specifica-
tion prescribes the state transitions which should
occur as well as the time intervals within which
these transitions should occur. If, in response to
some trigger event, a process never performs its
specified state transition or undergoes it too early
or too late (i.e., outside the time interval specified),
the process is said to suffer a timing failure (Cristian
et al. 1985). Processes which crash, omit to send
certain messages, respond too slowly to trigger
events (because of excessive load or slow timers),
or time out too early (because of timers running
at speeds greater than 1 + p) are examples of timing
failures. We assume that processes can suffer only
timing failures.

F. Cristian: Probabilistic clock synchronization 149

A t t e m p t i n g to read a r e m o t e c l o c k

To read the clock of a process Q, a process P sends
a message ("time = ? ') to Q. When Q receives the
message it replies with a message (" t i m e = " , T)
where T is the time on Q's clock. If P does not
receive a reply because of a failure, its a t tempt at
reading Q's clock fails. Assume that P receives a
reply and let D be half of the round trip delay
measured on P' clock between the sending of the
(" t i m e = ? ") message and the reception of the
("time = ", T) message.

Theorem. I f the clocks of processes P and Q are
correct, the value displayed by Q's clock when P
receives the ("time = ", T) message is in the interval
[T + m i n (1 - p) , T+2D(1 + 2 p) - m i n (1 +p)] .

Proof Let t be the real-time when P receives the
(" t i m e = " , T) message from Q and CQ(t) be the
value displayed by Q's clock at that time. Let
min + e, min + fi, e > 0, fl > 0, be the real time delays
experienced by the ("time = ?") and ("time = ", 7)
messages, respectively, and let 2d be the real time
round trip delay:

2 d = 2 rain + c~+fi. (1)

Since e and fl are positive, (1) implies:

0 < f l < 2 d - 2 min. (2)

F r o m the definition of fi, and the fact that Q's clock
can run at any speed in the interval [1 - p , 1 + p] ,
we can infer that, at real time t, Q's clock satisfies
the condition:

C e (t) { [T + (min + fl)(1 - p), T + (min + fi)(1 + p)].
(3)

By combining (2) and (3) we obtain:

Cq(t)~[T+min(1 --p), T + (2 d - m i n) (1 +p)] . (4)

Since the clock that P uses to measure the round
trip delay can drift at a rate of at most p from
real time, it follows that

d<D(l+p) . (5)

By substituting (5) into (4) we get (after some sim-
plifications):

C o (t) e [T+ min (1 -- p),
T + 2 D (l + 2 p) - m i n (l + p)] . [] (6)

The above theorem indicates that P can deter-
mine an interval which contains Q's clock value
if it measures the round trip delay 2D. Since possi-
ble scenarios such as e = 2 (d - rain), fl = 0 and e = 0,
f i = 2 (d - m i n) are indistinguishable to P, and we

assume that P does not know the drift rate of Q's
clock or its own clock, the value CQ(t) can be any
point in this interval. In other words:
[T + m i n (1 --p), T + 2 D (1 + 2 p) - - m i n (1 +p)] is the
smallest interval which P can determine in terms
of T and D that covers Q's clock value.

Since P has no means of knowing exactly where
Q's clock is in the interval (6), the best it can do
is to estimate CQ(t) by a function C~(T, D) of what
it knows, that is, T a n d D. In doing so, the actual
error that P makes is:

I C~(T, D) = Co(t) I.

P minimizes the maximum error it can make in
estimating CQ(t) by choosing C~(T, D) to be the
midpoint of the interval (6):

C~(T, D) = T+D(1 + 2 p) - min p. (7)

For this choice of C~(T, D), the maximum error
e that P can make when reading Q's clock is half
the length of the interval (6):

e = D (l + 2p)--min. (8)

Any other estimate choice leads to a bigger maxi-
m u m error. We refer to the expression (7) as "P ' s
reading of Q's clock" and to (8) as "P ' s reading
error" or "P ' s reading precision".

R e a d i n g a r e m o t e c lock with
a spec i f ied prec is ion

Formula (8) can be interpreted as follows: the
shorter the round trip delay is, the smaller P's error
in reading Q's clock is. Thus, if P wants to achieve
a reading error smaller than a certain specified
maximum error (or precision) e, it must discard
any reading at tempt for which it measures an actu-
al round trip delay greater than 2 U, where

U = (1 - 2p)(~ + min). (9)

Indeed, by (8), such clock readings can lead to actu-
al reading errors greater than ~. For this reason,
we call a round trip delay smaller than 2 U success-
ful, and refer to 2 U as the timeout delay necessary
for achieving the reading precision e. When the
process P observes a successful round trip, we say
that it reaches rapport with Q.

The closer U is to rain, the better P's reading
precision is. However, since in the worst case P's
timer can run at a rate as fast as 1 +p , P must
chose a t imeout delay greater than

Umin = rain(1 + p), (10)

to ensure that between the sending of a message
and its reception there is a real time delay of at

150 F. Cristian: Probabilistic clock synchronization

least min. To achieve the best possible precision
for which there exists a positive probability of rap-
port, P must chose a timeout delay as close to
Umi, as possible. For such a limit timeout delay,
formula (8) implies that the best reading precision
achievable by a clock reading experiment is

emi n = 3p min. (11)

The first two p s correspond to the relative drift
between Q's clock and P's clock while the
("time = ", T) message travels between Q and P,
and the third p corresponds to P's error in setting
its timeout delay so that it measures at least min
real time units.

Let p be the probability that P observes a round
trip delay greater than 2 U. The larger U is, the
smaller p will be. Conversely, the smaller U is, the
larger p will be. Thus, there exists a fundamental
trade-off between the precision achievable when at-
tempting to read a remote clock and the probabili-
ty 1 - p of success. The better the desired precision
is, the smaller is the probability of success. Conver-
sely, the worse the precision is, the greater is the
probability of success. In the limiting case, if a max-
imum real time message delay max is known, by
settling for a remote clock reading precision of
max(1 + 3 p) - m i n (corresponding to a timeout de-
lay of max(1 +p)), one obtains a deterministic re-
mote clock reading algorithm (similar to the ones
used by the synchronization algorithms presented
in Cristian et al. (1986), Dolev et al. (1984), Lam-
port (1987), Lamport and Melliar-Smith (1985),
Lundelius-Welch and Lynch (1988), and Srikanth
and Toueg (1987)) which always achieves rapport.
The price for such a choice is poor precision.

Consider now a certain specified precision e and
the associated probability p that a reading attempt
fails. For this precision, the probability that process
P reaches rapport with process Q can be increased
if several clock reading attempts are allowed before
P gives up. To achieve a certain degree of indepen-
dence between successive attempts, these should be
separated by a minimum waiting delay W. This
delay must be chosen so as to ensure that if P
and Q stay connected and correct, then any tran-
sient network traffic bursts that may effect their
communication disappear within Wclock time un-
its with high probability. (A solution to the prob-
lem of how to adapt to slower, nonbursty, network
load changes is sketched later.) To avoid P at-
tempting, ad infinitum, to read Q's clock when Q
is permanently partitioned from P or has crashed,

o n e must decide on a maximum value k for the
number of successive attempts that P is allowed

to make. For a given choice of k, allowing for up
to k reading attempts increases the probability of
success to 1 _pk. Since p < 1, this probability can
be made arbitrarily close to 1 by choosing a suffi-
ciently large k.

For large values of k and a choice of W that
ensures independence between successive reading
attempts, Bernoulli's law yields that the average
number of reading attempts needed for achieving
rapport is (1 - p) - 1 . Since each attempt costs two
messages, it follows that the average number of
messages ti for achieving rapport is

2
ti = (1 - p)" (12)

Formulae (8) and (12) indicate the existence of a
continuum of different clock reading algorithms in-
dexed by different timeout delays U: from aggres-
sive but risky algorithms indexed by U's close to
min which are capable of achieving high precisions
by possibly using a very large number of messages,
to low risk "deterministic" algorithms indexed by
U's close to max which achieve poor precisions
by using a small number of messages.

A distributed time service

The probabilistic clock reading method described
above can be used to improve the precision achiev-
able by most of the internal clock synchronization
algorithms surveyed in Schneider (1987) by letting
time servers read probabilistically the remote clock
values used as inputs to the convergence functions
mentioned there. Instead of exploring this avenue,
we devote the rest of the paper to describing a
simple distributed time service which provides ex-
ternal clock synchronization.

The goal is to keep clocks synchronized to an
official source of external time signals, such as the
Universal Time Coordinated (UTC) signals broad-
cast by the WWV radio station of the National
Bureau of Standards. Commercially available re-
ceivers (e.g., Kinemetrics/Truetime 1987) can re-
ceive such signals. The receivers can be attached
to processors via dedicated busses. To guard
against a physical receiver failure, it is possible to
pair physically independent receivers into a self-
checking receiver unit, by continuously comparing
their results, and interpreting any disagreement
among them as a failure of the pair (Kinemetrics/
Truetime 1987). If no multiple failures occur, a self-
checking receiver either displays correctly the ex-
ternal time or signals an error. We assume that
all radio receivers used by the time service are self-

F. Cristian: Probabilistic clock synchronization 151

checking. We also assume that, for reasons of econ-
omy, only certain processors, called masters, have
time receivers attached to them. The other proces-
sors are referred to as slaves. To simplify our pre-
sentation we initially assume the existence of a un-
ique, continuously available, master time source.
Issues related to the implementation of this master
time source by a group of redundant physical mas-
ters are discussed later. To further simplify the pre-
sentation, we do not distinguish between real (or
atomic) time and astronomical UTC time, that is,
we ignore problems related to the existence of year-
ly UTC time discontinuities known as "leap sec-
onds". (For a discussion of the differences between
these two time references, see Kopetz and Ochsen-
reiter (1987)). We furthermore assume that the offi-
cial source of external time is reliable and that its
signals are always available for reception by the
radio receivers attached to master processors. The
investigation of the issues related to maintaining
synchronization in the presence of erroneous exter-
nal time signals or in the absence of such signals
constitutes a research topic in its own right.

Continuously adjustable clocks

Some processor architectures enable the speed of
a hardware clock to be changed by software while
others do not. Since the former make clock man-
agement dependent on the particular commands
available for changing clock speeds, in this paper
we chose to discuss the latter alternative. To com-
pensate for the fact that the speed of a hardware
clock /-/ is not adjustable, a logical clock C with
adjustable speed is implemented in software. The
value of C is defined as the sum of the local hard-
ware clock H and a periodically computed adjust-
ment function A:

C(t)=-H(t)+A(t).

To avoid logical clock discontinuities (i.e., jumps)
A must be a continuous function of time. For sim-
plicity we consider only linear adjustment func-
tions

A(t)=m,H(t)+N,

where the m and N parameters are computed per-
iodically as described below. If, at local rapport
time L, a slave estimates that the master clock dis-
plays time M, M + L , the goal is to increase (if
M > L) or decrease (if M < L) the speed of the slave
clock C so that it will show time M +~ (instead
of L + c~) ~ clock time units after rapport, where

is a positive clock amortization parameter. Since
at the beginning and end of the amortization peri-

od the slave clock displays the values
L = H (I + m) + N and M + ~ = (H + ~) (I + m) + N ,
respectively, where H is the hardware clock value
at rapport, by solving the above system of equa-
tions we conclude that the parameters m,N must
be set to

m=(M-L)/c~, N = L - (1 +m)*H (A)

for the e clock time units following rapport. After
the ~ amortization period elapses, at local time
E = M + e, the slave clock C can be allowed to run
again at the speed of the local hardware clock until
the next rapport by setting m to 0 and (to ensure
continuity of C) N to E - H', where H' is the value
displayed by the hardware clock at the end of the
amortization period.

The master-slave synchronization protocol

The time service is implemented by a group of dis-
tributed time server processes, one per correctly
functioning processor in the system. The master
server running on the master processor M keeps
the master logical clock CM within a maximum
deviation em (external-master) of external (or real)
time. A slave server S keeps its logical clock C
within a maximum deviation ms (master-slave)
from the master clock. In this way the maximum
deviation e s of a slave from external time will be
era+ms and the maximum relative deviation of
two slaves will be s s = 2 ms.

Since the protocol used for synchronizing a
master clock to the clock of an attached self-check-
ing receiver is similar to that used for synchroniz-
ing a slave clock to a master clock, we only describe
the latter in detail. The main difference between
the two protocols lies in the variability of observed
round trip delays. While a variability of the order
of milliseconds is reasonable for master slave com-
munications, variabilities much smaller can be
achieved for the communication between a master
time server and the self-checking receiver attached
via a dedicated bus (for instance by ensuring that
the master server does not relinquish control of
the master CPU during a receiver clock reading
attempt). By formula (8) this yields a very high
receiver clock reading precision. If this high read-
ing precision is supplemented by the adoption of
a high master clock resynchroniza~ion frequency,
the e m constant can be kept so small that it is
reasonable to assume in what follows that a master
clock runs at the same speed as the external time.

The absence of master drift, the fact that for
current local area network technology round trip
delays smaller than 10 s are the rule, and that a

152 F. Cristian: Probabilistic clock synchronization

drift rate p of the order of 10 - 6 o r less makes
terms of the form dp-where d is a round trip delay-
insignificant, allows us to simplify the formulae (6)-
(9) as follows. When a slave S receives a successful
round trip of length 2D from the master M, the
master clock CM is in the interval [-T+min, T
+ 2 D - mini :

CM (t) e [T+ rain, T+ 2 O -- mini. (6')

By estimating the value of the master clock as being
the midpoint of this interval

CS (T,, D) =- T+ D (7')

the maximum reading error that S can make is

e = D - min. (8')

The protocol followed by a slave S relies upon the
above simplified formulae. The remainder of this
section presents this protocol informally and ana-
lyzes its behavior. A detailed description is given
in the Appendix.

To keep synchronized with a master, a slave
S attempts periodically to reach rapport. Each at-
tempt at rapport consists of at most k attempts
at reading the master clock, where successive read-
ing attempts are separated by W clock time units.
We assume W > 2 U , i.e., a slave knows whether
its previous reading attempt has succeeded when
it is time to try again reading. If during an attempt
to reach rapport all k reading attempts fail, S must
leave the group of synchronized slaves (such a de-
parture can be followed by a later rejoin). Consider
now that one of the reading attempts results in
a round trip delay 2 D < 2 U allowing S to reach
rapport with M. At rapport, the speed of the slave
logical clock C is set according to the equations
(A) for the next t~ real time units, (1 - p) ~ _< t~ _< (1
+p)c~, so that during amortization, say t real time
units after rapport, O<t<_t~, the worst case dis-
tance d between the slave clock C and the master
clock is

d=(1 - t / t ~)ms+t / t~e+p t , (9')

where e is the reading error and ms is the worst
case distance between C and CM at rapport. The
term p t in (9') reflects the fact after rapport the
slave clock C continues to drift from CM. During
amortization d is required to stay smaller than ms,
i.e.,

(1 - t / t ~) m s + t e / t ~ + p t < m s . (10')

By rewriting (10') we get

e+pt~ <_ms. (11')

We show later that if amortization ends before a
next attempt at rapport, (11') is satisfied.

Since the slave clock continues to drift from
the master clock after amortization ends, it follows
that for any t>t~, the distance between C and CM
can be as large as e + p t. To keep C and CM within
ms of each other, i.e.,

e + pt <ms, (12')

it is sufficient to ensure that after each rapport
(with error e) the real time delay to the next rapport
d n r is smaller than

d n r = p - l (m s - e) . (13')

If at most k reading attempts are allowed (during
which the slave S can drift from the master by
as much as pkw, where w = (l + p) W i s the maxi-
mum real time which can elapse between successive
reading attempts), it follows that the maximum real
time delay dna between a rapport and the next
attempt at rapport must be

d n a = p - l (m s - e) - (1 +p) kW. (14')

Since S must measure this delay with its own timer
(which can run as fast as 1 +p), S must set the
timer measuring the delay to the next attempt at
rapport conservatively to

D N A = (1 - p) d n a = p - l (1 - p) (m s - e) - k W . . (15')

Note that the time interval which elapses between
a rapport and the beginning of the next attempt
at rapport is variable, since it is a function of the
round trip delay 2D observed at the last rapport.
If D is close to min, the tight synchronization pre-
cision achieved allows the delay to the next attempt
at rapport to be as long as:

DNAmax = p- ~ (1 - p) ms - kW. (16')

When rapport is achieved with a round trip delay
that is barely acceptable (i.e., the reading error is
close to U - m i n) the delay to the next attempt
can be as short as

DNAmi,=p-~(1 - p) (m s + m i n - U) - k w . (17')

We constrain amortization to end before a next
attempt at rapport, i.e.,

< D N A m i n. (18')

Condition (18') implies (11'), that is, if amortization
ends before a next attempt at rapport then C and
CM stay within ms during amortization. To keep
logical clocks monotonic, the amortization period
must also be chosen so that the speed change pa-
rameter m of (A) satisfies the relation m > - 1 . For
this, it is sufficient to chose ~ greater than ms + U

F. Cristian: Probabilistic clock synchronization 153

-min (see (23') for more details). Since the amorti-
zation parameter e is positive

0_<cr (19')

we infer from (17') and (19') that

ms > U - m i n +ok(1 +p) W. (20)

Thus, for a given choice of the U, k, and W con-
stants, the smallest master slave maximum devia-
tion that can be achieved is

m S m i n = U - - min + p k (1 + p) W. (21')

For aggressive risky algorithms for which U is
close to min, maximum deviations as small as
p k (1 + p)W can be achieved at the expense of many
synchronization messages (recall p is of the order
of 10-6). For sure "deterministic" algorithms for
which U is close to an assumed maximum delay
max, we get synchronization precisions slightly
worse than m a x - m i n with only two messages per
synchronization, a result comparable to the pre-
cisions achievable by previously published deter-
ministic synchronization algorithms (Cristian et al.
1986; Dolev et al. 1984; Lamport 1987; Lundelius
and Lynch 1984; Lamport and Melliar-Smith
1985; Schneider 1987; Srikanth and Toueg 1987).

The clock reading method described naturally
tolerates communication failures: up to k - 1 suc-
cessive performance failures can be masked if they
are followed by a successful rapport. The existence
of variable delays between successive slave syn-
chronizations is a useful property, since it will tend
to uniformly spread the synchronization traffic
generated by independent slaves in time.

Performance: two numerical examples

To illustrate the synchronization precisions achiev-
able by our time service, we analyze in this section
its performance in the context of a simple system
of two 4381 processors (Dong, private communica-
tion, June 1988), assuming one plays the role of
master and the other one the role of slave.

If we chose 2 U to be the median round trip
delay 2 U =4.48 milliseconds, the probability p of
an unsuccessful round trip is 0.5. By (12) this yields
an average number ff of messages per successful
rapport of ti--4. Assuming that a probability of
losing synchronization of 10 .9 is acceptable, we
find that at least k = 30 successive attempts at rap-
port should be allowed ((0.5)3o< 1 0 - 9) . Assuming
a worst case drift rate of p = 6 . 1 0 -6, a waiting
time constant between successive reading attempts
W of 2 seconds, formulae (16') and (17') indicate
that it is possible to achieve a maximum master

slave deviation ms of i millisecond. The minimum,
average, and maximum delays between successive
synchronization are 63, 67, and 108 seconds, re-
spectively. Thus, for this choice of U, p, k, and
W,, a slave stays within a maximum deviation of
ms = 1 millisecond from a master with probability
greater than 1-10 -9 by sending on the average ff
= 4 messages every 1.11 minutes.

A more conservative choice of 2 U ' = 5.2 milli-
seconds, yields a probability p' of an unsuccessful
round trip of 0.05 and an average number g' of
messages per successful rapport of 2.1. For this p',
to achieve a probability of successful rapport
greater than 1-10 -9, k must be chosen to be at
least 7 (i.e., ((0.05)7< 10-9)). Since for this choice
of U', the reading error is 0.98 milliseconds, we
settle for the goal of achieving a maximum master
slave deviation of ms' = 2 milliseconds. Assuming
as in the previous example p = 6 . ! 0 - 6, and W= 2
seconds, we find that to achieve the 2"milliseconds
maximum deviation, a slave must o n the average
spend 2.1 messages to reach rapport with a master
every 231 seconds (3.85 minutes). The minimum
and maximum delays between successive resyn-
chronizations are 230 and 273 seconds, respective-
ly.

The above example precisions compare favora-
bly with the best precision of at most 44.47 milli-
seconds achievable by the deterministic synchroni-
zation algorithms described in Cristian et al. (1986),
Dolev et al. (1984), Lamport and Melliar-Smith
(1985), Lundelius and Lynch (1984), Marzullo
(1984), Schneider (1987), Srikanth and Toueg
(1987).

Extensions

In this section we relax two of the assumptions
made earlier: the existence of a continuously avail-
able master processor and the existence of reliable
clocks that never fail. We also mention how to
handle slave failures, how one can improve syn-
chronization accuracy by taking advantage of past
local clock drift statistics and how to adapt to a
variable system load.

D e a l i n g w i t h m a s t e r s e r v e r f a i l u r e s

With a unique master server, the master time ser-
vice fails when the unique process implementing
it fails. The probability of a master service failure
can be reduced if the service is implemented by
a group of redundant master servers, all synchro-
nized within e m of external time. There are several

154 F. Cristian: Probabilistic clock synchronization

ways in which such a group can be structured. We
mention three alternatives.

Active Master Set. In this arrangement each slave
multicasts ("time-- ?") requests to all masters, each
master answers each time request, and slaves pick
up the first answer that arrives. With such a strate-
gy, synchronized slaves will stay within
e s = e m + m s of external time, but since some slaves
might be synchronized to one master, and some
others to another, the relative deviation among
slaves ss becomes 2es, instead of 2ms as before.
This solution leads to an increase in message cost:
2m messages per attempt at rapport, where m is
the number of members in the master group. Note,
however, that if all processors are on a broadcast
local area network, this number can be reduced
to m + l .

Ranked Master Group. To reduce the message cost,
one can use a synchronous membership protocol
(Cristian 1988) to rank the group of active masters
into a primary synchronizer, back-up, and so on.
With such an arrangement slaves would send their
requests only to the primary. This results in a mes-
sage cost per attempt at rapport of 2. Let C be
the upper bound on the failure detection time guar-
anteed by the synchronous master membership
protocol (C is a function of the timeout delay maxp
chosen for detecting communication failures
(Cristian 1988)) and let A be the time needed to
inform the slaves that all subsequent time requests
should be sent to a new master. If W is chosen
greater than C+A, a slave cannot distinguish be-
tween a master failure and an excessive synchroni-
zation message delay, so the maximum deviations
es and ss stay as before, i.e., es=em+ms, ss=2es.
If Wis chosen smaller than C+A, then one has
to adopt a higher upper bound on the maximum
number of successive attempts at rapport and the
analysis of the probability of achieving rapport be-
comes slightly more complex.

Active Master Ring. A third solution would use
a master membership protocol to order all active
masters on a virtual ring. To send a time request
a slave chooses an active master at random. If no
answer arrives within 2 U, the slave asks the next
active master on the ring, and so on. The message
cost of each attempt at rapport is 2 as in the
Ranked Master Group case, but the maximum de-
viations es and ss stay the same as in the Active
Master Set architecture, irrespective of the relation
between Wand C +A, where A corresponds in this
case to the worst case time needed to inform all
slaves of a master group membership change.

Detect ing clock fai lures

Let UM, min~t be the parameters of the probabilis-
tic algorithm run by a master M to synchronize
its clock CM to the clock CR of its attached receiver
R. The maximum difference which can exist be-
tween C~t and M's estimate of CR at rapport is

maxad j~=e~ + em. (22')

The first term eM = Uu-minM represents the maxi-
mum error in reading CR while the second term
accounts for the maximum distance which might
exist between CR and C~t at rapport. If a previously
synchronized master M detects at rapport that the
distance between Cu and its estimate of C R is
greater than maxadj~t, a master clock failure has
occurred (recall our assumption that the source of
external time signals is reliable and that receivers
are self-checking). Upon detecting the failure of its
local clock, a master server leaves the active master
group after reporting the failure to an operator.

Similarly, if a master M and a slave S are cor-
rect and synchronized within ms, the maximum
difference at rapport between the clock C of the
slave and the slave's estimate of CM is

ma x a d j s = (U - min) + ms + 2em. (23')

The last term is added because S can successively
synchronize to different masters that are 2 e m apart
from each other. A slave which at rapport detects
that its clock is more than maxadjs apart from
a master, detects either a master or a local clock
failure. Assuming that masters synchronize more
frequently than slaves, if a master clock failure has
occurred, the master will detect the failure before
the next rapport with the slave. Thus, a slave de-
tects a local clock failure if it observes twice in
a row that its distance to the same master clock
is greater than maxadjs. Upon detecting the fail-
ure of its clock, a slave leaves the group of synchro-
nized time servers after reporting the failure to an
operator.

Bet ter bounds on the actual drift rate
o f a slave

The delay between successive resynchronizations
of a slave (see (15')) can be increased by using better
lower and upper bounds on the actual drift rate
PA of a slave's hardware clock than the manufac-
turer specified lower and upper bounds - p , p. This
will have the desirable consequence of decreasing
the number of messages which must be sent per
slave per time unit for synchronization purposes.

F. Cristian: Probabilistic clock synchronization 155

It is possible to compute estimates of the actual
drift rate PA as well as upper and lower bounds
for Pa under a variety of different assumptions. For
example one might assume that PA is a constant,
or the PA is a time varying function possessing a
first derivative that is bounded by constant from
above and below, etc. In what follows we limit our-
selves to discussing the problem of approximating
Pa and determining lower and upper bounds for
it under the assumption that it is a constant.

By definition

Hi -- Ho
PA--]

t~-- t o

where t i denotes the real time at which the i'th
rapport is achieved, i=1, ..., and Hi=H(t i) de-
notes the value of the slave hardware clock at the
i'th rapport. A slave can read Hi but cannot read
t~. It is however possible to estimate t~ as being
the value displayed by the master clock at rapport:
M i = TiA-Di, where T~ is the clock value sent by
the master and Di is half the round trip delay ob-
served at the i'th rapport. In estimating h by M~,
a slave makes an error of at most e i=D~-min ,
that is:

M i - - ei <_ ti <-- M i -t- e i .

The above set of inequalities (i= O, 1) implies

Hi -- Ho Hi-- Ho
1 < 1

Mi -- Mo + ei + eo ti -- to

< Hi - Ho 1.
- M i - - M o - e i - e o

This leads us to define the i'th upper and lower
bound drift estimates pp"~ and ppi, as:

{ H i - H o 1},
pmax = min p~_,x, Mi - Mo - ei -- eo

{ . H i - H o 1 }
ppin = max PF:3, Mi - M0 + ei + eo

where p,~,X=p and p~in= _p . These bounds on
PA can be used to compute a longer delay to the
next attempt at achieving the i + l ' th rapport by
using the formula (15") below instead of (15'):

D NA, i = fi~ 1 (1 -- #i) (ms -- ei) -- k W,

where fii=max{lp~'i"l,]p~"Xl}. (15")

Self-adjusting logical clocks

Since for each i, we know upper and lower bounds
pm~X, pmi. on the actual drift rate p~, it is natural
to define the i'th estimate Pi of PA as the midpoint

of the interval [pro,x, pmi,] :

p,_ �89 +pm..).

One can easily verify that

lim (pmin-pm"x)=0 and hence: lim (pA-p i)=0 .
i ~ o o i ~ o o

The successive estimates p~ of the actual drift rate
PA can be used to define a sequence of "virtual"
hardware clocks V H i - (1 - p ~) H , such that when
i increases to oo the speed of VHi converges to-
wards I. Indeed, the drift rate vp~ of VH i is vp~
=(PA-Pi) , and since Pi converges towards Pa, it
follows that vp~ converges towards 0. For this rea-
son, we call the sequence of clocks VHi self-adjust-
ing.

Self-adjusting clocks not only improve the ac-
curacy with which delays can be measured, but
can also cause drastic reductions in the clock syn-
chronization related message traffic. Define the i'th
self-adjusting logical slave clock Ci as being (1
+ m)VHi + N during the amortization period fol-
lowing the i'th rapport, and as VH~ between the
end of the amortization and the i+ l ' th rapport.
To compute the delay between successive resyn-
chronizations of C i we need to know an upper
bound vpi for Ivpil. This can be computed as fol-
lows. Since pmi, < Pa --< pp,X, it follows that

P~""- Pi <-- P A-- Pi <-- pm,X__ Pi"

Thus,

[PA--Pi[- max {[P~ in --Pi[, [P~n~x-- Pil}
= � 8 9 m ~ . - -

Pi) = vP i "

By substituting vpi for p in (15'), we get:

DNA, i, = 2 (p?,X _ p ~ n i n) - 1

(1 - l (p m ~ x - p m i ~)) (m s - e O - k W . (16")

Note that since pmi. pp~X converges towards 0
as better estimates of the actual drift rates become
known, the delays between successive resynchroni-
zations can increase apparently without bound. In
practice these delays have to stay bounded if one
wants to ensure upper bounds on clock failure de-
tection times by tests such as (23'). To determine
the new resynchronization delays corresponding to
the use of self-adjusting clocks, one might also want
to take into account terms of the order of p2 or
smaller, ignored (for simplicity reasons) in this
paper.

Dealing with slave server failures
A slow slave, which takes too long to read its mes-
sages or to time out, eventually discovers that the

156 F. Cristian: Probabilistic clock synchronization

distance between its clock and a master clock has
become unacceptable when it evaluates the test
(23'). Early slave timing failures (e.g., caused by fast
slave timers) lead to an increase in network syn-
chronization traffic. The occurrence of such failures
can be detected by the master group, if the masters
keep track of the last time each slave has asked
for the time. If a slave asks too often, the masters
could simply ignore it. The faulty slave will then
fail to synchronize and will eventually leave the
group of synchronized servers.

Adapting to changing system load

Another extension consists in making the choice
of the acutal U-indexed slave synchronization algo-
rithm used in a system at a given moment depen-
dent on the system load. We sketch here a possible
way to take into consideration system load when
deciding on a round trip acceptability threshold
U. The intention is that U should increase when
load increases and should decrease when load de-
creases. This can be achieved in the following way.
If at least one slave experiences k ' < k successive
unsuccessful attempts at reaching rapport with a
master, it should announce to the master group
that all slaves have to adopt a higher timeout delay
U'(U'> U) known in advance. The masters could
then agree on this and diffuse a decision that begin-
ning with some time in the future everybody has
to switch to the new round trip acceptability
threshold U' and, hence, to bigger master-slave
maximum deviations. The effect will be to increase
the maximum master slave clock deviation when
the system load increases.

To decrease the maximum clock deviation
when load is light, a slave processor could commu-
nicate to the master group the fact that it measures
round trip delays that are consistently smaller than
U", for some U" < U known in advance. If the mas-
ters receive such messages from all slave proces-
sors, they could diffuse the information that begin-
ning with some time in the future, everybody
should decrease their round trip acceptability
threshold to U". The effect will be to decrease the
master slave clock deviation when the system load
decreases.

Conclusions
A new probabilistic approach for reading remote
clocks was proposed and illustrated by presenting
a synchronization algorithm that achieves external
clock synchronization. The new approach allows

one to achieve precisions better than the best pre-
cision bound (m a x - m i n) (1 - 1 / n) guaranteeable
by previously published deterministic algorithms
(Cristian et al. 1986; Dolev et al. 1984; Lamport
1987; Lundelius and Lynch 1984; Lamport and
Melliar-Smith 1985; Lundelius-Welch and Lynch
1988; Schneider 1987; Srikanth and Toueg 1987).
(Specialized hardware can be used to reduce the
difference between max and min (Kopetz and Och-
senreiter 1987), but the inherent limitation of deter-
ministic protocols remains unchanged.) When in-
dexed by a conservative parameter U, such as a
communication failure detection timeout delay
maxp, our external clock synchronization algo-
rithm also achieves a relative deviation at rapport
2 (maxp-mi n) smaller than the best precision
4 (maxp-mi n) achievable by previously published
algorithms based on communication failure detec-
tion timeouts (Gusella and Zatti 1987; Marzullo
1984). One of the key observations of this paper
is that no relation needs to exist between clock
synchronization and communication detection ti-
meout delays. Synchronization algorithms indexed
by timeout parameters U close to min can in theory
achieve synchronization precisions close to 3 pmin,
where p and min are of order of 10 - 6 and 10 -3
seconds, respectively, for commercially available
clocks and local area networks. One can envisage
that by estimating actual clock drift rates and using
self-adjusting clocks one could achieve precisions
even better than the above bound.

Besides improving synchronization precision,
the new approach has other properties worth men-
tioning. Since a probabilistic approach does not
assume an upper bound on message transmission
delays, it can be used to synchronize clocks in all
systems, not only those which guarantee an upper
bound on message delays. A probabilistic time ser-
vice such as the one sketched previously distributes
uniformly the clock synchronization traffic in time,
avoiding the periodic synchronization traffic bursts
produced by the existence of synchronization
points in previously known synchronization algo-
rithms. The service is simple to implement (see Ap-
pendix) and robust. Likely process and communi-
cation failures are tolerated. Clock failures are de-
tected and processes with faulty clocks are shut
down. Finally the time service described is efficient:
it uses a number of messages that is linear in the
number of processes to be synchronized.

While deterministic synchronization protocols
always succeed in synchronizing clocks, the proba-
bilistic approach proposed in this paper carries
with it a certain risk of not achieving synchroniza-
tion. In view of the impossibility result of Lundelius

F. Cristian: Probabilistic clock synchronization 157

and Lynch (1984) that deterministic clock synchro-
nization algorithms cannot synchronize the clocks
of n processes closer than (m a x - m i n) (1 - i/n), this
seems to be an unavoidable price for wanting to
achieve a higher precision. As the desired precision
becomes higher, more messages are sent and the
risk of not achieving synchronization becomes
higher. Conversely, as the desired precision be-
comes lower, the risk of not achieving synchroniza-
tion becomes lower and fewer messages need to
be sent. Actually, the U-indexed family of master-
slave synchronization algorithms presented
achieves a continuum between, at one end, sure "de-
terministic" protocols (indexed by large Us close
to maxp or max) that achieve poor precision with
a high probability and a small number of messages,
and "aggressive" protocols (indexed by small Us
close to min) capable of achieving very high pre-
cision but which carry with them a significant risk
of not achieving synchronization even when sub-
stantial numbers of messages are exchanged. In
practice, one needs to choose a parameter U that
achieves the right balance between precision and
message overhead, and reduces the risk of losing
synchronization to a level that is acceptably small.

The new view cast on clock synchronization
in this paper prompts a number of questions which
can lead to further research. We mention here sev-
eral. How is it possible to improve the accuracy
of some of the internal clock synchronization algo-
rithms surveyed in Schneider (1987) by using pro-
babilistic remote clock reading methods? What
lower bounds exist for probabilistic synchroniza-
tion algorithms? How can the accuracy of clock
synchronization be improved if one knows the dis-
tribution obeyed by message delays? How can one
estimate bounds on the actual drift rate of hard-
ware clocks if this rate is a function of time? And
finally, how can one design algorithms which adapt
to variable system load?

Acknowledgements . The idea that the randomness inherent in
message transmission delays can be used to improve clock syn-
chronization precision originated while the author was working
with John Rankin and Mike Swanson on problems related to
synchronizing the clocks of high end IBM processors in Pough-
keepsie, NY, during February 1986. In the summer of 1987,
John Palmer independently proposed a similar clock synchroni-
zation protocol for the high end Amoeba system prototype
under development at the Almaden Research Center. The round
trip delay measurements used in this paper were performed
by Margaret Dong in the Amoeba system. Discussions with
Danny Dolev, Frank Schmuck, Larry Stockmeyer, and Ray
Strong helped improve the contents and the form of this exposi-
tion. The research presented was partially sponsored by IBM's
Systems Integration Division group located in Rockville, Mary-
land, as part of a FAA sponsored project to build a new air
traffic control system for the US.

References
Cristian F (1988) Reaching agreement on processor group mem-

bership in synchronous distributed systems. 18th Int Conf
on Fault-Tolerant Computing, Tokyo, Japan (June 1988)

Cristian F, Aghili H, Strong R (1986) Approximate clock syn-
chronization despite omission and performance failures and
processor joins. 16th Int Syrup on Fault Tolerant Comput-
ing, Vienna, Austria (June 1986)

Cristian F, Aghili H, Strong R, Dolce D (1985) Atomic broad-
cast: from simple message diffusion to Byzantine agreement.
15th Int Syrup on Fault-Tolerant Computing, Ann Arbor,
Michigan (June 1985)

Dolev D, Halpern J, Simons B, Strong R (1984) Fault-tolerant
clock synchronization. Proc 3 rd ACM Symp on Principles
of Distributed Computing

Gusella R, Zatti S (1987) The accuracy of the clock synchroniza-
tion achieved by tempo in Berkeley Unix 4.3BSD. Rep
UCB/CSD 87/337

Kinemetrics/Truetime (1986) Time and Frequency Receivers,
Santa Rosa, California

Kopetz H, Ochsenreiter W (1987) Clock synchronization in dis-
tributed real-time systems. IEEE Trans Comput 36:933-940

Lamport L (1987) Synchronizing time servers, TR 18. DEC
Systems Research Center, Palo Alto, California (June 1987)

Lundelius J, Lynch N (1984) An upper and lower bound for
clock synchronization. Inf Control 62:191~204

Lamport L, Melliar-Smith M (1985) Synchronizing clocks in
the presence of faults. J Assoe Comput Mach 32:52-78

Lundelius-Welch J, Lynch N (1988) A new fault-tolerant algo-
rithm for clock synchronization. Inf Comput 77:1 36

Marzullo K (1984) Maintaining the time in a distributed system.
Xerox Rep OSD-T8401 (March 1984)

Schneider F (1987) Understanding protocols for Byzantine
clock synchronization. TR 87-859, Cornell University (Au-
gust 1987)

Srikanth TK, Toueg S (1987) Optimal clock synchronization.
JACM 34:626 645

Appendix

Detailed description of the master slave protocol

A detailed description of a slave time server under the simplify-
ing unique master assumption is given in Figs. 2 and 3. To
simplify this presentation, we do not give a detailed description
of the master time server, since it is similar to a slave server
and we do not use self-adjusting logical slave clocks. In what
follows, we refer to l inej of Fig. i as (i.j).
The round trip acceptability threshold U, the maximum number
of successive reading attempts k, waiting time between reading
attempts W,, the amortization delay c~, and the maximum devia-
tion m s are parameters of the protocol (2.1). Once U is chosen,
the probability p that, under worst case load conditions, a round
trip delay is greater than 2 U is also determined. The constant
k must be chosen to ensure that the probability pk of observing
k successive round trip delays greater than 2 U is acceptably
small (typically two or more orders of magnitude smaller then
the instantaneous crash rate of the underlying processor). We
assume that the constant Wis chosen greater than the accept-
able round trip delay 2 U.

The slave protocol uses three timers (2.5): a "Synch" timer
for measuring delays between successive synchronization at-
tempts, an "At tempt" timer for measuring delays between suc-
cessive master clock reading attempts, and an "Amor t " timer

158 F. Cristian: Probabilistic clock synchronization

1 task Slave(U:Time, k:Int, W,c~,ms:Time);
2 const min: Time;
3 master: processor;
4 var T,T',T",D,N: Time; try: Integer; m: Real;
5 Synch,Attempt,Amort: Timer;
6 synchronized: Boolean; H: hardware-clock;

7 synchronized~-false; Synch.set(0);
8 cycle
9 when lreceive("tirne?") do send-local-time;

10 when Synch.timeout
11 do t r y ~ l ; T ' ~ H ;
12 send("time = ?",T') to master; Attempt.set(W);
13 when receive("time = ",ET,T")
14 d o / f T ' + T " then iterate f i ;
15 T ~ H ; D ~ (T - - T')/2;
16 / f D > U then iterate f i ;
17 Attempt.reset; compute-adjustment;
18 S y n c h . s e t (p - l (l - p) (m s + m i n - D) - k W) ;
19 when Attempt.timeout
20 d o / f try_>k then synchronized~false; "leave" f / ;
21 t r y ~ t r y + 1; T ' ~ H ;
22 send(" time = ?",T') to master; Attempt.set(W);
23 when Amort.t imeout do m o O ; N ~ N - - H ;
24 endcycle

Fig. 2

for measuring amortization periods. There are two kinds of
operations that are defined on a timer T: set and reset. The
meaning of a

1
2
3
4
5

6
7
8
9

10
11
12
13

Fig. 3

procedure send-local-time;
/f synchronized
then lsend(" time = ",H + N + m * H)
else lsend(" undefined")
fi;

procedure compute-adjustment;
i f synchronized
then if-n okadj then synchronized*-false; " leave"f i ;

m ~((ET + D)-- (T + N + m �9 T))/e;
N ~ N - - m * T ; Amort.set(c0;

else m ~ 0 ; N ~ (E T + D) - T ;
synchronized~true;

fi;

T.set(6) invocation is "ignore all previous T.set invocations and
signal a T.timeout event 6 clock time units from now". The
meaning of a T.reset invocation is "ignore all previous T.set
invocations". Thus, if after invoking T.set(100) at local time
200, a new T.set(100) invocation is made a local time 250, there
is no T.timeout event at time 300. If no other T.set or T.reset
invocation is made before time 350, a T.timeout event occurs
at local time 350.

A local Boolean variable "synchronized" (2.6) is true when
the local clock is synchronized to the master clock and is false
when the local clock can be out of synchrony with respect to
the master clock. The local logical time is undefined when "syn-

chronized" is false (3.4). To prevent any confusion between mes-
sages pertaining to old and current clock reading attempts in
the presence of performance failures each message is identified
by the value of the local hardware clock H when the message
is sent. This ensures that the identifiers of messages are unique
with extremely high probability. For example, if we assume a
typical hardware clock of 64 bits, the probability that some
"o ld" message still existing undelivered in the communication
network because of a performance failure - is confused with
a recently sent message by the test (2.14) is smaller than 5
x 10-x8, even if we make the unrealistic assumption that mes-

sages can stay undelivered in the network for all the time needed
to wrap around a clock: approximately 58 centuries for a clock
whose low level bit is incremented every micro-second. Another
variable " t ry" counts the number of unsuccessful master clock
reading attempts (2.4).

After initializing the "synchronized" local variable, an at-
tempt to synchronize with the master is immediately scheduled
(2.7). When the Synch.timeout event occurs (2.10), the counter
for unsuccessful attempts " t ry" is initialized and a message iden-
tified by the local hardware clock value T' is sent to the master
(2.12). The master responds to this message by sending its logical
clock value (4.3). To simplify our presentation, we assume that
a master clock is always synchronized to external time (the
absence of synchrony with external time at the master can be
handled in a manner similar to the absence of synchrony with
the master at a slave). When a master response

1 task Master;
4 var N: Time; m: Real; H: Hardware-clock;

2 cycle
3 when receive (" t ime= ?", T)from s
4 do send("t ime= " , H + N + m . H , T) to s
5 endcycle;

Fig. 4

arrives (2.13), if the received and locally saved message identi-
fiers match (2.14) the message is accepted, otherwise it is dis-
carded (the iterate command terminates the current iteration
of the loop (2.8-2.24) and begins a new iteration). Unacceptably
long round trips are discarded (2.16). Unsuccessful reading at-
tempts cause Attempt.t imeout events (2.19). Indeed, the "At-
tempt" timer is set by each new attempt at reaching rapport
(2.12, 2.22) and is reset only when rapport is reached (2.17).
If k successive unsuccessful attempts occur (2.20), a slave can
no longer be sure that its clock is within ms from the master
clock and must leave the group of synchronized slaves. Such
a departure can be followed by a later rejoin.

Consider now that a matching answer which arrives in
less than 2 U time units leads to a successful rapport and causes
the "At tempt" timer to be reset (2.17). If the slave logical clock
was not previously synchronized, it is bumped to the estimate
(7') of the master time (3.11). If the slave was previously synchro-
nized, and the adjustment to be made passes the resonableness
test "okad j" (3.8) defined in (23'), the speed of the local logical
clock C is set so as to reach the slave's estimate of the master
clock within ~ clock time units (3.9 3.10) following equation
(A). After amortization ends (2.23) the logical slave clock is
let again to run at the speed of the hardware clock until the
next rapport (2.17).

