
Yatin A. Manerkar, Daniel Lustig*, 

Margaret Martonosi, and Aarti Gupta

PipeProof:

Automated Memory Consistency Proofs 
for Microarchitectural Specifications

http://check.cs.princeton.edu/

Princeton University *NVIDIA

MICRO-51



Memory Consistency Models (MCMs)
▪ Specify rules governing values returned by loads in parallel programs

▪MCM must be correctly implemented for all possible programs

Compiler

Microarchitecture



Memory Consistency Models (MCMs)

ISA-Level MCM (x86-TSO, 
Power, ARMv8, etc)

▪ Specify rules governing values returned by loads in parallel programs

▪MCM must be correctly implemented for all possible programs

Compiler

Microarchitecture



Memory Consistency Models (MCMs)

ISA-Level MCM (x86-TSO, 
Power, ARMv8, etc)

▪ Specify rules governing values returned by loads in parallel programs

▪MCM must be correctly implemented for all possible programs

Target for 
compilers… 

Compiler

Microarchitecture



Memory Consistency Models (MCMs)

ISA-Level MCM (x86-TSO, 
Power, ARMv8, etc)

▪ Specify rules governing values returned by loads in parallel programs

▪MCM must be correctly implemented for all possible programs

Target for 
compilers… 

Compiler

Microarchitecture

…and a specification 
that microarchitecture 

must implement



Memory Consistency Models (MCMs)
▪ Specify rules governing values returned by loads in parallel programs

▪MCM must be correctly implemented for all possible programs

Target for 
compilers… 

Compiler

Microarchitecture

…and a specification 
that microarchitecture 

must implement???



[Images: HeeWann Kim, tzblacktd, audino]

The Infinite Forest



-∞ +∞

-∞

+∞

[Images: HeeWann Kim, tzblacktd, audino]

The Infinite Forest

Forest goes on forever 
(infinite number of 
possible programs)



-∞ +∞

-∞

+∞

[Images: HeeWann Kim, tzblacktd, audino]

The Infinite Forest

Can check known 
hideouts (verify design 

for test programs)



-∞ +∞

-∞

+∞

[Images: HeeWann Kim, tzblacktd, audino]

The Infinite Forest

Are Pokemon lurking in 
unexplored areas? (Do 

tested programs provide 
complete coverage?)



-∞ +∞

-∞

+∞

[Images: HeeWann Kim, tzblacktd, audino]

The Infinite Forest

Have we caught all the Pokemon? 
(Are there any MCM bugs left in 

the design?)



PipeProof Overview

µarch and ISA 
MCM Specs

+
Auxiliary 

Inputs

All-Program 
MCM 

Correctness 
Proof!

PipeProof

▪ First automated all-program microarchitectural MCM verification!

• Covers all possible addresses, values, numbers of cores

▪Proof methodology based on automatic abstraction refinement

▪Early-stage: Can be conducted before RTL is written!



Outline
▪Background

• ISA-level MCM specs

• Microarchitectural ordering specs

▪Microarchitectural Correctness Proof

• Transitive Chain (TC) Abstraction

▪Overall PipeProof Operation

• TC Abstraction Support Proof

• Chain Invariants

▪Results



ISA-Level MCM Specifications
▪Defined in terms of relational patterns [Alglave et al. TOPLAS 2014]

▪ ISA-level executions are graphs

• Nodes: instructions, edges: ISA-level relations between instrs

▪Correctness based on acyclicity, irreflexivity, etc of relational patterns

• Eg: SC is 𝑎𝑐𝑦𝑐𝑙𝑖𝑐(𝑝𝑜 ∪ 𝑐𝑜 ∪ 𝑟𝑓 ∪ 𝑓𝑟)

Message passing (mp) litmus test
An ISA-level execution of mp

[x] ← 1

fr

[y] ← 1

r1 ← [y]

r2 ← [x]

rf
po po

(i4)

(i3)(i1)

(i2)



ISA-Level MCM Specifications
▪Defined in terms of relational patterns [Alglave et al. TOPLAS 2014]

▪ ISA-level executions are graphs

• Nodes: instructions, edges: ISA-level relations between instrs

▪Correctness based on acyclicity, irreflexivity, etc of relational patterns

• Eg: SC is 𝑎𝑐𝑦𝑐𝑙𝑖𝑐(𝑝𝑜 ∪ 𝑐𝑜 ∪ 𝑟𝑓 ∪ 𝑓𝑟)

Message passing (mp) litmus test
An ISA-level execution of mp

[x] ← 1

fr

[y] ← 1

r1 ← [y]

r2 ← [x]

rf
po po

(i4)

(i3)(i1)

(i2)



ISA-Level MCM Specifications
▪Defined in terms of relational patterns [Alglave et al. TOPLAS 2014]

▪ ISA-level executions are graphs

• Nodes: instructions, edges: ISA-level relations between instrs

▪Correctness based on acyclicity, irreflexivity, etc of relational patterns

• Eg: SC is 𝑎𝑐𝑦𝑐𝑙𝑖𝑐(𝑝𝑜 ∪ 𝑐𝑜 ∪ 𝑟𝑓 ∪ 𝑓𝑟)

Message passing (mp) litmus test
An ISA-level execution of mp

[x] ← 1

fr

[y] ← 1

r1 ← [y]

r2 ← [x]

rf
po po

(i4)

(i3)(i1)

(i2)



ISA-Level MCM Specifications
▪Defined in terms of relational patterns [Alglave et al. TOPLAS 2014]

▪ ISA-level executions are graphs

• Nodes: instructions, edges: ISA-level relations between instrs

▪Correctness based on acyclicity, irreflexivity, etc of relational patterns

• Eg: SC is 𝑎𝑐𝑦𝑐𝑙𝑖𝑐(𝑝𝑜 ∪ 𝑐𝑜 ∪ 𝑟𝑓 ∪ 𝑓𝑟)

Message passing (mp) litmus test
An ISA-level execution of mp

[x] ← 1

fr

[y] ← 1

r1 ← [y]

r2 ← [x]

rf
po po

(i4)

(i3)(i1)

(i2)



ISA-Level MCM Specifications
▪Defined in terms of relational patterns [Alglave et al. TOPLAS 2014]

▪ ISA-level executions are graphs

• Nodes: instructions, edges: ISA-level relations between instrs

▪Correctness based on acyclicity, irreflexivity, etc of relational patterns

• Eg: SC is 𝑎𝑐𝑦𝑐𝑙𝑖𝑐(𝑝𝑜 ∪ 𝑐𝑜 ∪ 𝑟𝑓 ∪ 𝑓𝑟)

Message passing (mp) litmus test
An ISA-level execution of mp

[x] ← 1

fr

[y] ← 1

r1 ← [y]

r2 ← [x]

rf
po po

(i4)

(i3)(i1)

(i2)



Microarchitectural Ordering Specifications
▪ Set of axioms in µspec DSL [Lustig et al. ASPLOS 2016]

▪Used to generate microarchitectural executions as µhb graphs

• Nodes: instr. sub-events, edges: happens-before relations between instrs

▪Observability based on cyclicity of graphs

• Cyclic graph → Unobservable

• Acyclic graph → Observable

Message passing (mp) litmus test

A µhb graph of mp on simpleSC

(i1) (i2)

IF

EX

WB

po
(i3) (i4)

fr

rf po



Microarchitectural Ordering Specifications
▪ Set of axioms in µspec DSL [Lustig et al. ASPLOS 2016]

▪Used to generate microarchitectural executions as µhb graphs

• Nodes: instr. sub-events, edges: happens-before relations between instrs

▪Observability based on cyclicity of graphs

• Cyclic graph → Unobservable

• Acyclic graph → Observable

Message passing (mp) litmus test

A µhb graph of mp on simpleSC

(i1) (i2)

IF

EX

WB

po
(i3) (i4)

fr

rf po



Microarchitectural Ordering Specifications
▪ Set of axioms in µspec DSL [Lustig et al. ASPLOS 2016]

▪Used to generate microarchitectural executions as µhb graphs

• Nodes: instr. sub-events, edges: happens-before relations between instrs

▪Observability based on cyclicity of graphs

• Cyclic graph → Unobservable

• Acyclic graph → Observable

Message passing (mp) litmus test

A µhb graph of mp on simpleSC

(i1) (i2)

IF

EX

WB

po
(i3) (i4)

fr

rf po



Microarchitectural Ordering Specifications
▪ Set of axioms in µspec DSL [Lustig et al. ASPLOS 2016]

▪Used to generate microarchitectural executions as µhb graphs

• Nodes: instr. sub-events, edges: happens-before relations between instrs

▪Observability based on cyclicity of graphs

• Cyclic graph → Unobservable

• Acyclic graph → Observable

Message passing (mp) litmus test

A µhb graph of mp on simpleSC

(i1) (i2)

IF

EX

WB

po
(i3) (i4)

fr

rf po



Microarchitectural Ordering Specifications
▪ Set of axioms in µspec DSL [Lustig et al. ASPLOS 2016]

▪Used to generate microarchitectural executions as µhb graphs

• Nodes: instr. sub-events, edges: happens-before relations between instrs

▪Observability based on cyclicity of graphs

• Cyclic graph → Unobservable

• Acyclic graph → Observable

Message passing (mp) litmus test

A µhb graph of mp on simpleSC

(i1) (i2)

IF

EX

WB

po
(i3) (i4)

fr

rf po



Our Prior Work: Litmus Test-Based MCM Verification

Axiom “Decode_is_FIFO":
... EdgeExists ((i1, Decode), (i2, Decode))

=> AddEdge ((i1, Execute), (i2, Execute)).
...
Axiom "PO_Fetch":
... SameCore i1 i2 /\ ProgramOrder i1 i2 =>

AddEdge ((i1, Fetch), (i2, Fetch)).

Microarchitecture

Litmus Test

in µspec DSL

[Lustig et al. MICRO-47, …]



Our Prior Work: Litmus Test-Based MCM Verification

Microarchitectural happens-before (µhb) graphs

Axiom “Decode_is_FIFO":
... EdgeExists ((i1, Decode), (i2, Decode))

=> AddEdge ((i1, Execute), (i2, Execute)).
...
Axiom "PO_Fetch":
... SameCore i1 i2 /\ ProgramOrder i1 i2 =>

AddEdge ((i1, Fetch), (i2, Fetch)).

Microarchitecture

Litmus Test

in µspec DSL

[Lustig et al. MICRO-47, …]



Our Prior Work: Litmus Test-Based MCM Verification

Microarchitectural happens-before (µhb) graphs

Axiom “Decode_is_FIFO":
... EdgeExists ((i1, Decode), (i2, Decode))

=> AddEdge ((i1, Execute), (i2, Execute)).
...
Axiom "PO_Fetch":
... SameCore i1 i2 /\ ProgramOrder i1 i2 =>

AddEdge ((i1, Fetch), (i2, Fetch)).

Microarchitecture

Litmus Test

in µspec DSL

ISA-Level 
Outcome

Observable
(≥ 1 Graph Acyclic)

Not Observable
(All Graphs Cyclic)

Allowed OK
OK (stricter

than necessary)

Forbidden Consistency violation! OK

[Lustig et al. MICRO-47, …]



Our Prior Work: Litmus Test-Based MCM Verification

Microarchitectural happens-before (µhb) graphs

Axiom “Decode_is_FIFO":
... EdgeExists ((i1, Decode), (i2, Decode))

=> AddEdge ((i1, Execute), (i2, Execute)).
...
Axiom "PO_Fetch":
... SameCore i1 i2 /\ ProgramOrder i1 i2 =>

AddEdge ((i1, Fetch), (i2, Fetch)).

Microarchitecture

Litmus Test

in µspec DSL

ISA-Level 
Outcome

Observable
(≥ 1 Graph Acyclic)

Not Observable
(All Graphs Cyclic)

Allowed OK
OK (stricter

than necessary)

Forbidden Consistency violation! OK

[Lustig et al. MICRO-47, …]



Our Prior Work: Litmus Test-Based MCM Verification

Microarchitectural happens-before (µhb) graphs

Axiom “Decode_is_FIFO":
... EdgeExists ((i1, Decode), (i2, Decode))

=> AddEdge ((i1, Execute), (i2, Execute)).
...
Axiom "PO_Fetch":
... SameCore i1 i2 /\ ProgramOrder i1 i2 =>

AddEdge ((i1, Fetch), (i2, Fetch)).

Microarchitecture

Litmus Test

in µspec DSL

ISA-Level 
Outcome

Observable
(≥ 1 Graph Acyclic)

Not Observable
(All Graphs Cyclic)

Allowed OK
OK (stricter

than necessary)

Forbidden Consistency violation! OK

[Lustig et al. MICRO-47, …]

Perennial Question:

“Do your litmus tests cover all possible MCM bugs?”

How to automatically prove correctness for all programs?



The Transitive Chain (TC) Abstraction

i1 in
r1…n-1

fr

All non-unary cycles containing fr

i1

fr

i2
po

i1 i3

fr

i2
poco

po rf
i1 i3

fr

i2 i4
po

corf
i1 i3

fr

i2 i4
po

…



The Transitive Chain (TC) Abstraction

i1 in
r1…n-1

fr

All non-unary cycles containing fr

i1

fr

i2
po

i1 i3

fr

i2
poco

po rf
i1 i3

fr

i2 i4
po

corf
i1 i3

fr

i2 i4
po

…

Transitive chain (sequence) 
of ISA-level edges



The Transitive Chain (TC) Abstraction

i1 in
r1…n-1

fr

All non-unary cycles containing fr

i1

fr

i2
po

i1 i3

fr

i2
poco

po rf
i1 i3

fr

i2 i4
po

corf
i1 i3

fr

i2 i4
po

…

⟹
Using TC 

Abstraction
i1 in

fr

Some µhb
edge from 

i1 to in
(transitive 

connection)

IF

EX

WB

i1 in
IF

EX

WB

fr
i1 in

IF

EX

WB

fr
i1 in

IF

EX

WB

fr

…



The Transitive Chain (TC) Abstraction

i1 in
r1…n-1

fr

All non-unary cycles containing fr

i1

fr

i2
po

i1 i3

fr

i2
poco

po rf
i1 i3

fr

i2 i4
po

corf
i1 i3

fr

i2 i4
po

…

⟹
Using TC 

Abstraction
i1 in

fr

Some µhb
edge from 

i1 to in
(transitive 

connection)

IF

EX

WB

i1 in
IF

EX

WB

fr
i1 in

IF

EX

WB

fr
i1 in

IF

EX

WB

fr

…



The Transitive Chain (TC) Abstraction

⟹
Using TC Abstraction

Infinite

i1

fr

i2
po

i1 i3

fr

i2
poco

po rf
i1 i3

fr

i2 i4
po

corf
i1 i3

fr

i2 i4
po

…



The Transitive Chain (TC) Abstraction

⟹
Using TC Abstraction

Infinite

i1 in
IF

EX

WB

fr

i1

fr

i2
po

i1 i3

fr

i2
poco

po rf
i1 i3

fr

i2 i4
po

corf
i1 i3

fr

i2 i4
po

…

Finite!

i1 in
IF

EX

WB

fr
i1 in

IF

EX

WB

fr

i1 in
IF

EX

WB

fr
i1 in

IF

EX

WB

fr
i1 in

IF

EX

WB

fr

i1 in
IF

EX

WB

fr
i1 in

IF

EX

WB

fr
i1 in

IF

EX

WB

fr



The Transitive Chain (TC) Abstraction

⟹
Using TC Abstraction

Infinite

i1 in
IF

EX

WB

fr

i1

fr

i2
po

i1 i3

fr

i2
poco

po rf
i1 i3

fr

i2 i4
po

corf
i1 i3

fr

i2 i4
po

…

Finite!

i1 in
IF

EX

WB

fr
i1 in

IF

EX

WB

fr

i1 in
IF

EX

WB

fr
i1 in

IF

EX

WB

fr
i1 in

IF

EX

WB

fr

i1 in
IF

EX

WB

fr
i1 in

IF

EX

WB

fr
i1 in

IF

EX

WB

fr

Soundness 
verified as a 
supporting 

proof!



Microarchitectural Correctness Proof

i1 in

fr

Some µhb
edge from i1

to in
(transitive 

connection)

All 
possible 

tran. 
conns.

Other ISA-level cycles…

i1 in

po

Some µhb
edge from i1

to in
(transitive 

connection)

Cycles containing fr

Cycles containing po



Microarchitectural Correctness Proof

i1 in

IF

EX

WB

fr
✓NoDecomp

i1 in

fr

Some µhb
edge from i1

to in
(transitive 

connection)

All 
possible 

tran. 
conns.

Other transitive 
connections…

Other ISA-level cycles…

i1 in

po

Some µhb
edge from i1

to in
(transitive 

connection)

Cycles containing fr

Cycles containing po



Microarchitectural Correctness Proof

i1 in
IF

EX

WB

fr

?AbsCounterX

i1 in

IF

EX

WB

fr
✓NoDecomp

i1 in

fr

Some µhb
edge from i1

to in
(transitive 

connection)

All 
possible 

tran. 
conns.

Other transitive 
connections…

Other ISA-level cycles…

i1 in

po

Some µhb
edge from i1

to in
(transitive 

connection)

Cycles containing fr

Cycles containing po



Microarchitectural Correctness Proof

i1 in
IF

EX

WB

fr

?AbsCounterX

i1 in

IF

EX

WB

fr
✓NoDecomp

i1 in

fr

Some µhb
edge from i1

to in
(transitive 

connection)

All 
possible 

tran. 
conns.

Other transitive 
connections…

Other ISA-level cycles…

i1 in

po

Some µhb
edge from i1

to in
(transitive 

connection)

Cycles containing fr

Cycles containing po

Acyclic graph with 

transitive connection => 

Abstract Counterexample 

(i.e. possible bug)



Microarchitectural Correctness Proof

i1 in
IF

EX

WB

fr

?AbsCounterX

i1 in

IF

EX

WB

fr
✓NoDecomp

i1 in

fr

Some µhb
edge from i1

to in
(transitive 

connection)

All 
possible 

tran. 
conns.

Other transitive 
connections…

Other ISA-level cycles…

i1 in

po

Some µhb
edge from i1

to in
(transitive 

connection)

Cycles containing fr

Cycles containing po

Transitive connection 

may represent one or 

multiple ISA-level edges



Microarchitectural Correctness Proof

i1 in
IF

EX

WB

fr

?AbsCounterX

i1 in

IF

EX

WB

fr
✓NoDecomp

i1 in

fr

Some µhb
edge from i1

to in
(transitive 

connection)

Try to Concretize (Replace 
transitive connection with 

one ISA-level edge)

Microarch Buggy,
Return Counterexample

Observable

All 
possible 

tran. 
conns.

Other transitive 
connections…

Other ISA-level cycles…

i1 in

po

Some µhb
edge from i1

to in
(transitive 

connection)

Cycles containing fr

Cycles containing po



Microarchitectural Correctness Proof

i1 in
IF

EX

WB

fr

?AbsCounterX

i1 in

IF

EX

WB

fr
✓NoDecomp

i1 in

fr

Some µhb
edge from i1

to in
(transitive 

connection)

Try to Concretize (Replace 
transitive connection with 

one ISA-level edge)

Unobs.

Microarch Buggy,
Return Counterexample

Observable

Consider all 
Decompositions

(Inductively break 
down Transitive Chain)

All 
possible 

tran. 
conns.

Other transitive 
connections…

Other ISA-level cycles…

i1 in

po

Some µhb
edge from i1

to in
(transitive 

connection)

Cycles containing fr

Cycles containing po



Microarchitectural Correctness Proof

i1 in
IF

EX

WB

fr

?AbsCounterX

i1 in

IF

EX

WB

fr
✓NoDecomp

i1 in

fr

Some µhb
edge from i1

to in
(transitive 

connection)

Try to Concretize (Replace 
transitive connection with 

one ISA-level edge)

Unobs.

Microarch Buggy,
Return Counterexample

Observable

Consider all 
Decompositions

(Inductively break 
down Transitive Chain)

All 
possible 

tran. 
conns.

Other transitive 
connections…

Other ISA-level cycles…

“Refinement Loop”

i1 in

po

Some µhb
edge from i1

to in
(transitive 

connection)

Cycles containing fr

Cycles containing po



Concretization

Concretization:
Replace transitive connection 

with single ISA-level edgep

i1

r

q

in

IF

EX

WB

fr

?AbsCounterX

▪All concretizations must be unobservable

▪Observable concretizations are counterexamples



Concretization

✓

p

i1

r

q

in

IF

EX

WB

fr
rf

p

i1

r

q

in

IF

EX

WB

fr
po

Concretization:
Replace transitive connection 

with single ISA-level edge

…

✓

p

i1

r

q

in

IF

EX

WB

fr

?AbsCounterX

▪All concretizations must be unobservable

▪Observable concretizations are counterexamples



Decomposition

p

i1

r

q

in

IF

EX

WB

fr

▪Additional instruction and ISA-level edge modelled => extra constraints

• May be enough to make execution unobservable

Decomposition:
Inductively break down 

transitive chain
(Chain of length n == Chain of length 

n-1 + single “peeled-off” edge)

?AbsCounterX



Decomposition

…

p

i1 in-1

IF

EX

WB

rf

r

q

in

fr

p

i1 i2

IF

EX

WB

co

r

q

in

fr

p

i1

r

q

in

IF

EX

WB

fr

▪Additional instruction and ISA-level edge modelled => extra constraints

• May be enough to make execution unobservable

Decomposition:
Inductively break down 

transitive chain
(Chain of length n == Chain of length 

n-1 + single “peeled-off” edge)

?AbsCounterX



Decomposition

…

p

i1 in-1

IF

EX

WB

rf

r

q

in

fr

p

i1 i2

IF

EX

WB

co

r

q

in

fr

✓

p

i1

r

q

in

IF

EX

WB

fr

▪Additional instruction and ISA-level edge modelled => extra constraints

• May be enough to make execution unobservable

Decomposition:
Inductively break down 

transitive chain
(Chain of length n == Chain of length 

n-1 + single “peeled-off” edge)

?AbsCounterX



Decomposition

…

p

i1 in-1

IF

EX

WB

rf

r

q

in

fr

p

i1 i2

IF

EX

WB

co

r

q

in

fr

✓

?p

i1

r

q

in

IF

EX

WB

fr

▪Additional instruction and ISA-level edge modelled => extra constraints

• May be enough to make execution unobservable

Decomposition:
Inductively break down 

transitive chain
(Chain of length n == Chain of length 

n-1 + single “peeled-off” edge)

?AbsCounterX



Decomposition

…

p

i1 in-1

IF

EX

WB

rf

r

q

in

fr

p

i1 i2

IF

EX

WB

co

r

q

in

fr

✓

?p

i1

r

q

in

IF

EX

WB

fr

▪Additional instruction and ISA-level edge modelled => extra constraints

• May be enough to make execution unobservable

Decomposition:
Inductively break down 

transitive chain
(Chain of length n == Chain of length 

n-1 + single “peeled-off” edge)

?AbsCounterX



Outline
▪Background

• ISA-level MCM specs

• Microarchitectural ordering specs

▪Microarchitectural Correctness Proof

• Transitive Chain (TC) Abstraction

▪Overall PipeProof Operation

• TC Abstraction Support Proof

• Chain Invariants

▪Results



PipeProof Block Diagram
Microarchitecture 

Ordering Spec.
ISA-Level 

MCM Spec.

PipeProof

ISA Edge -> 
Microarch. Mapping

Result: All-Program MCM Correctness Proof?
Counterexample found?

Chain 
Invariants

Transitive Chain 
Abstraction 

Support Proof

Microarch. 
Correctness 

Proof

Cex. Generation

Proof of 
Chain Invariants

FailFail

PassPass



PipeProof Block Diagram
Microarchitecture 

Ordering Spec.
ISA-Level 

MCM Spec.

PipeProof

ISA Edge -> 
Microarch. Mapping

Result: All-Program MCM Correctness Proof?
Counterexample found?

Chain 
Invariants

Transitive Chain 
Abstraction 

Support Proof

Microarch. 
Correctness 

Proof

Cex. Generation

Proof of 
Chain Invariants

FailFail

PassPass



PipeProof Block Diagram
Microarchitecture 

Ordering Spec.
ISA-Level 

MCM Spec.

PipeProof

ISA Edge -> 
Microarch. Mapping

Result: All-Program MCM Correctness Proof?
Counterexample found?

Chain 
Invariants

Transitive Chain 
Abstraction 

Support Proof

Microarch. 
Correctness 

Proof

Cex. Generation

Proof of 
Chain Invariants

FailFail

PassPass

Links ISA-
level and 

µarch 
executions



PipeProof Block Diagram
Microarchitecture 

Ordering Spec.
ISA-Level 

MCM Spec.

PipeProof

ISA Edge -> 
Microarch. Mapping

Result: All-Program MCM Correctness Proof?
Counterexample found?

Chain 
Invariants

Transitive Chain 
Abstraction 

Support Proof

Microarch. 
Correctness 

Proof

Cex. Generation

Proof of 
Chain Invariants

FailFail

PassPass

Represent 
repeated 
ISA-level 
patterns



PipeProof Block Diagram
Microarchitecture 

Ordering Spec.
ISA-Level 

MCM Spec.

PipeProof

ISA Edge -> 
Microarch. Mapping

Result: All-Program MCM Correctness Proof?
Counterexample found?

Chain 
Invariants

Transitive Chain 
Abstraction 

Support Proof

Microarch. 
Correctness 

Proof

Cex. Generation

Proof of 
Chain Invariants

FailFail

PassPass

If design can’t be verified, a counterexample (a forbidden 
execution that is observable) is often returned



PipeProof Block Diagram
Microarchitecture 

Ordering Spec.
ISA-Level 

MCM Spec.

PipeProof

ISA Edge -> 
Microarch. Mapping

Result: All-Program MCM Correctness Proof?
Counterexample found?

Chain 
Invariants

Transitive Chain 
Abstraction 

Support Proof

Microarch. 
Correctness 

Proof

Cex. Generation

Proof of 
Chain Invariants

FailFail

PassPass
Supporting 

proofs provide 
foundation for 

correctness 
proof



Transitive Chain (TC) Abstraction Support Proof
▪Ensure that ISA-level pattern and µarch. support TC Abstraction

▪Base case: Do initial ISA-level edges guarantee connection?

▪ Inductive case: Extend transitive chain => extend transitive connection?

i1 i2

IF

EX

WB

po
i1 i2

IF

EX

WB

rf
i1 i2

IF

EX

WB

fr
i1 i2

IF

EX

WB

co

⟹
i1 in

IF

EX

WB

rn in+1

Some 
Tran 

Conn.

i1 in+1

IF

EX

WB

Some Transitive 
Connection



Chain Invariants
▪Abstractly represent repeated ISA-level patterns

▪ Sometimes needed for refinement loop to terminate

▪ Inductively proven by PipeProof before their use in proof algorithms

▪Example: checking for edge from i1 to i5 (TC abstraction support proof)

Abstract Counterexample

i1 i3 i4
fr

i5
po



Chain Invariants
▪Abstractly represent repeated ISA-level patterns

▪ Sometimes needed for refinement loop to terminate

▪ Inductively proven by PipeProof before their use in proof algorithms

▪Example: checking for edge from i1 to i5 (TC abstraction support proof)

Repeating ISA-Level Pattern

i1 i3 i4
fr

i5
po

i1 i3 i4
fr

i2
po

i5
po



Chain Invariants
▪Abstractly represent repeated ISA-level patterns

▪ Sometimes needed for refinement loop to terminate

▪ Inductively proven by PipeProof before their use in proof algorithms

▪Example: checking for edge from i1 to i5 (TC abstraction support proof)

Repeating ISA-Level Pattern

i1 i3 i4
fr

i5
po

i1 i3 i4
fr

i2
po

i5
po

Can continue 
decomposing 

in this way 
forever!



Chain Invariants
▪Abstractly represent repeated ISA-level patterns

▪ Sometimes needed for refinement loop to terminate

▪ Inductively proven by PipeProof before their use in proof algorithms

▪Example: checking for edge from i1 to i5 (TC abstraction support proof)

Chain Invariant Applied

i1 i3 i4
fr

i5
po

i1 i3 i4
fr

i2
po

i5
po

i1 i4
fr

i2
po_plus

i5

-po_plus = arbitrary 
number of repetitions of po
-Next edge peeled off will 
be something other than po



In the paper…
▪Optimizations

• Covering Sets: Eliminate redundant transitive connections

• Memoization: Eliminate redundant ISA-level cycles

▪ Inductive ISA edge generation

▪Adequate Model Over-Approximation

• Needed to ensure soundness of PipeProof’s abstraction-based approach

▪…and more!



simpleTSO simpleTSO
(w/ Covering Sets + Memoization)

Total Time Timeout 2449.7 sec
(≈ 41 mins)

Results
▪Ran PipeProof on simpleSC (SC) and simpleTSO (TSO) µarches

• 3-stage in-order pipelines

▪Proved correctness of both microarchitectures for all programs

• With optimizations, runtimes < 1 hour!

simpleSC simpleSC
(w/ Covering Sets + Memoization)

Total Time 225.9 sec 19.1 sec



simpleTSO simpleTSO
(w/ Covering Sets + Memoization)

Total Time Timeout 2449.7 sec
(≈ 41 mins)

Results
▪Ran PipeProof on simpleSC (SC) and simpleTSO (TSO) µarches

• 3-stage in-order pipelines

▪Proved correctness of both microarchitectures for all programs

• With optimizations, runtimes < 1 hour!

simpleSC simpleSC
(w/ Covering Sets + Memoization)

Total Time 225.9 sec 19.1 sec



simpleTSO simpleTSO
(w/ Covering Sets + Memoization)

Total Time Timeout 2449.7 sec
(≈ 41 mins)

Results
▪Ran PipeProof on simpleSC (SC) and simpleTSO (TSO) µarches

• 3-stage in-order pipelines

▪Proved correctness of both microarchitectures for all programs

• With optimizations, runtimes < 1 hour!

simpleSC simpleSC
(w/ Covering Sets + Memoization)

Total Time 225.9 sec 19.1 sec



simpleTSO simpleTSO
(w/ Covering Sets + Memoization)

Total Time Timeout 2449.7 sec
(≈ 41 mins)

Results
▪Ran PipeProof on simpleSC (SC) and simpleTSO (TSO) µarches

• 3-stage in-order pipelines

▪Proved correctness of both microarchitectures for all programs

• With optimizations, runtimes < 1 hour!

simpleSC simpleSC
(w/ Covering Sets + Memoization)

Total Time 225.9 sec 19.1 sec



simpleTSO simpleTSO
(w/ Covering Sets + Memoization)

Total Time Timeout 2449.7 sec
(≈ 41 mins)

Results
▪Ran PipeProof on simpleSC (SC) and simpleTSO (TSO) µarches

• 3-stage in-order pipelines

▪Proved correctness of both microarchitectures for all programs

• With optimizations, runtimes < 1 hour!

simpleSC simpleSC
(w/ Covering Sets + Memoization)

Total Time 225.9 sec 19.1 sec



Conclusions
▪PipeProof: Automated All-Program Microarchitectural MCM Verification

• Designers no longer need to choose between completeness and automation

▪Transitive Chain Abstraction allows inductive modelling and verification 
of the infinite set of all possible executions

• Abstraction is automatically refined as necessary to prove correctness

▪Verified simple microarchitectures implementing SC and TSO in < 1 hour!

Code available at 
https://github.com/ymanerka/pipeproof

[Image: Napish]



Yatin A. Manerkar, Daniel Lustig*, 

Margaret Martonosi, and Aarti Gupta

PipeProof: Automated Memory 
Consistency Proofs for 

Microarchitectural Specifications

http://check.cs.princeton.edu/

Code available at 
https://github.com/ymanerka/pipeproof



Covering Sets Optimization
▪Must verify across all possible transitive connections

▪ Each decomposition creates a new set of transitive connections

• Can quickly lead to a case explosion

▪ The Covering Sets Optimization eliminates redundant transitive connections

x

y

i1

z

in

IF

EX

WB

fr

x

y

i1

z

in

IF

EX

WB

fr

BA



Covering Sets Optimization
▪Must verify across all possible transitive connections

▪ Each decomposition creates a new set of transitive connections

• Can quickly lead to a case explosion

▪ The Covering Sets Optimization eliminates redundant transitive connections

x

y

i1

z

in

IF

EX

WB

fr

x

y

i1

z

in

IF

EX

WB

fr

BA

Graph A has an edge 
from x→z (tran conn.)



Covering Sets Optimization
▪Must verify across all possible transitive connections

▪ Each decomposition creates a new set of transitive connections

• Can quickly lead to a case explosion

▪ The Covering Sets Optimization eliminates redundant transitive connections

x

y

i1

z

in

IF

EX

WB

fr

x

y

i1

z

in

IF

EX

WB

fr

BA

Graph B has edges from 
y→z (tran conn.) and 
x→z (by transitivity)

Graph A has an edge 
from x→z (tran conn.)



Covering Sets Optimization
▪Must verify across all possible transitive connections

▪ Each decomposition creates a new set of transitive connections

• Can quickly lead to a case explosion

▪ The Covering Sets Optimization eliminates redundant transitive connections

x

y

i1

z

in

IF

EX

WB

fr

x

y

i1

z

in

IF

EX

WB

fr

BA

Graph B has edges from 
y→z (tran conn.) and 
x→z (by transitivity)

Graph A has an edge 
from x→z (tran conn.)

Correctness of A => Correctness of B (since B contains A’s tran conn.)
Checking B explicitly is redundant!



Memoization Optimization
▪Base PipeProof algorithm examines some cycles multiple times

▪Memoization eliminates redundant checks of cycles that have already 
been verified

i1

fr

i2

i3

i4

rf

po po



Memoization Optimization
▪Base PipeProof algorithm examines some cycles multiple times

▪Memoization eliminates redundant checks of cycles that have already 
been verified

i1 in

IF

EX

WB

fr

Some 
Tran.
Conn.

i1

fr

i2

i3

i4

rf

po po

fr



Memoization Optimization
▪Base PipeProof algorithm examines some cycles multiple times

▪Memoization eliminates redundant checks of cycles that have already 
been verified

i1 in

IF

EX

WB

fr

Some 
Tran.
Conn.

i1

fr

i2

i3

i4

rf

po po

i1 in

IF

EX

WB

po

Some 
Tran.
Conn.

po po



Memoization Optimization
▪Base PipeProof algorithm examines some cycles multiple times

▪Memoization eliminates redundant checks of cycles that have already 
been verified

i1 in

IF

EX

WB

fr

Some 
Tran.
Conn.

i1 in

IF

EX

WB

rf

Some 
Tran.
Conn.

i1

fr

i2

i3

i4

rf

po po

i1 in

IF

EX

WB

po

Some 
Tran.
Conn.rf

Same cycle is checked 3 times!



Memoization Optimization
▪Base PipeProof algorithm examines some cycles multiple times

▪Memoization eliminates redundant checks of cycles that have already 
been verified

i1 in

IF

EX

WB

fr

Some 
Tran.
Conn.

i1 in

IF

EX

WB

rf

Some 
Tran.
Conn.

i1

fr

i2

i3

i4

rf

po po

i1 in

IF

EX

WB

po

Some 
Tran.
Conn.rf

Procedure: If all ISA-level cycles containing edge ri have been checked, 
do not peel off ri edges when checking subsequent cycles

Same cycle is checked 3 times!



The Adequate Model Over-Approximation
▪Addition of an instruction can make unobservable execution observable!

▪Need to work with over-approximation of microarchitectural constraints

▪PipeProof sets all exists clauses to true as its over-approximation

t

i1 i2

IF

EX

WB

fr

v

i3
co

SubsetExec

u

t

i1 i2

IF

EX

WB

fr

v

i3

SubsetWithExternal

u

i4
rf

co


