Yatin A. Manerkar, Daniel Lustig*,
Margaret Martonosi, and Aarti Gupta

Princeton University *NVIDIA
MICRO-51

http://check.cs.princeton.edu/




= Specify rules governing values returned by loads in parallel programs

" MCM must be correctly implemented for all possible programs

Compiler

Microarchitecture




= Specify rules governing values returned by loads in parallel programs

" MCM must be correctly implemented for all possible programs

4
1

Microarchitecture




= Specify rules governing values returned by loads in parallel programs

" MCM must be correctly implemented for all possible programs

Target for
compilers... [

4
1

Microarchitecture




= Specify rules governing values returned by loads in parallel programs

" MCM must be correctly implemented for all possible programs

Target for

compilers... [

} ...and a specification

must implement

t that microarchitecture

Microarchitecture



= Specify rules governing values returned by loads in parallel programs

" MCM must be correctly implemented for all possible programs

Target for
compilers...

' ’ ' ...and a specification
that microarchitecture
O ) O

must implement

Microarchitecture



The Infinite Forest

[Images: HeeWann Kim, tzblacktd, audino]



The Infinite Forest

Forest goes on forever ~|400
(infinite number of 3
possible programs)

[Images: HeeWann Kim, tzblacktd, audino]



The Infinite Forest

3 Can check known
i ‘B hideouts (verify design
e for test programs)

[Images: HeeWann Kim, tzblacktd, audino]



The Infinite Forest

Are Pokemon lurking in
unexplored areas? (Do
tested programs provide
complete coverage?)

[Images: HeeWann Kim, tzblacktd, audino]



The Infinite Forest

‘-—-_f-' PIES i —

Have we caught all the Pokemon? |
(Are there any MCM bugs left in
the design?) _I

[Images: HeeWann Kim, tzblacktd, audino]



" First automated all-program microarchitectural MCM verification!

e Covers all possible addresses, values, numbers of cores

" Proof methodology based on automatic abstraction refinement

" Farly-stage: Can be conducted before RTL is written!

parch and ISA
MCM Specs
+
Auxiliary
Inputs

PipeProof

—l

All-Program
MCM
Correctness
Proof!




= Background
* |SA-level MCM specs

* Microarchitectural ordering specs

" Microarchitectural Correctness Proof
* Transitive Chain (TC) Abstraction

® Overall PipeProof Operation
e TC Abstraction Support Proof
e Chain Invariants

m Results



" Defined in terms of relational patterns [Alglave et al. TOPLAS 2014]

" |SA-level executions are graphs

* Nodes: instructions, edges: ISA-level relations between instrs

" Correctness based on acyclicity, irreflexivity, etc of relational patterns
* Eg: SCis acyclic(poUcoUrf U fr)

An ISA-level execution of mp

Message passing (mp) litmus test

Core 0 Core 1 (i1)] [x] < 1 (i3)] r1 < [y]
(1) [x] « 1 | (i3) r1 « [y] pol lpo
i2) [y] « 1 | (i4) r2 « [x] rf fr
Under SC: Forbid r1=1, r2=0 (i2)] [y] <1 (i4)| r2 < [x]




" Defined in terms of relational patterns [Alglave et al. TOPLAS 2014]

" |SA-level executions are graphs

* Nodes: instructions, edges: ISA-level relations between instrs

" Correctness based on acyclicity, irreflexivity, etc of relational patterns
* Eg: SCis acyclic(poUcoUrf U fr)

_ ‘ An ISA-level execution of mp
Message passing (mp) litmus test - <1 11
Core 0 Core 1 (i1) [X i) r ]

(i1) [x] « 1 | (i3) r1 < [y] @) !p
(i2) [y] «= 1 | (i4) r2 « [x] f fr

Under SC: Forbid r1=1, r2=0 (i2) [yl <1 (i4)] r2 & [x]




" Defined in terms of relational patterns [Alglave et al. TOPLAS 2014]

" |SA-level executions are graphs

* Nodes: instructions, edges: ISA-level relations between instrs

" Correctness based on acyclicity, irreflexivity, etc of relational patterns
* Eg: SCis acyclic(poUcoUrf U fr)

An ISA-level execution of mp

Message passing (mp) litmus test
Core 0 Core 1 1<yl
(i1) [x] « 1 | (i3) r1 <« [y] lpo
(i2) [y] <=1 | (i4) r2 « [X]
Under SC: Forbid r1=1, r2=0 r2 & [x]




" Defined in terms of relational patterns [Alglave et al. TOPLAS 2014]

" |SA-level executions are graphs

* Nodes: instructions, edges: ISA-level relations between instrs

" Correctness based on acyclicity, irreflexivity, etc of relational patterns
* Eg: SCis acyclic(poUcoUrf U fr)

An ISA-level execution of mp

Message passing (mp) litmus test
Core 0 Core 1 1<yl
(i1) [x] « 1 | (i3) r1 <« [y] lpo
(i2) [y] <=1 | (i4) r2 « [X]
Under SC: Forbid r1=1, r2=0 r2 & [x]




" Defined in terms of relational patterns [Alglave et al. TOPLAS 2014]

" |SA-level executions are graphs

* Nodes: instructions, edges: ISA-level relations between instrs

" Correctness based on acyclicity, irreflexivity, etc of relational patterns

* Eg: SCis acyclic(poUcoUrf U fr)

An ISA-level execution of mp

Message passing (mp) litmus test

Core 0 Core 1 (i1)] [x] < 1 (i3)] r1 < [y]
(1) [x] « 1 | (i3) r1 « [y] pol lpo
i2) [y] « 1 | (i4) r2 « [x] rf fr
Under SC: Forbid r1=1, r2=0 (i2)] [y] <1 (i4)| r2 < [x]




" Set of axioms in uspec DSL [Lustig et al. ASPLOS 2016]

" Used to generate microarchitectural executions as phb graphs

* Nodes: instr. sub-events, edges: happens-before relations between instrs

" Observability based on cyclicity of graphs A uhb graph of mp on simpleSC

* Cyclic graph - Unobservable fr
* Acyclic graph = Observable ‘po/ ” }
(i1) —» (i2) —» (i3)—P» (i4)
IF
Message passing (mp) litmus test EX
Core 0 Core 1
(i1) [x] «= 1 | (i3) rl « [y]
(2) [y] —1 | (i4)r2 — [x] we

Under SC: Forbid r1=1, r2=0




" Set of axioms in uspec DSL [Lustig et al. ASPLOS 2016]

" Used to generate microarchitectural executions as phb graphs

* Nodes: instr. sub-events, edges: happens-before relations between instrs

" Observability based on cyclicity of graphs

* Cyclic graph - Unobservable
* Acyclic graph - Observable

Message passing (mp) litmus test
Core 0 Core 1
(i1) [x] «= 1 | (i3) rl « [y]
(i2) [y] <=1 | (i4) r2 « [x]
Under SC: Forbid r1=1, r2=0

A phb graph of mp on simpleSC




" Set of axioms in uspec DSL [Lustig et al. ASPLOS 2016]

" Used to generate microarchitectural executions as phb graphs

* Nodes: instr. sub-events, edges: happens-before relations between instrs

" Observability based on cyclicity of graphs A uhb graph of mp on simpleSC

* Cyclic graph - Unobservable fr
* Acyclic graph = Observable ‘po/ ” }
(i1) —» (i2) —» (i3)—P» (i4)
IF
Message passing (mp) litmus test £
Core 0 Core 1
(i1) [x] «= 1 | (i3) rl « [y]
(2) [y] —1 | (i4)r2 — [x] we

Under SC: Forbid r1=1, r2=0




" Set of axioms in uspec DSL [Lustig et al. ASPLOS 2016]

" Used to generate microarchitectural executions as phb graphs

* Nodes: instr. sub-events, edges: happens-before relations between instrs

" Observability based on cyclicity of graphs A uhb graph of mp on simpleSC

* Cyclic graph - Unobservable fr
* Acyclic graph = Observable ‘po/ ” }
(i1) —» (i2) —» (i3)—P» (i4)
IF
Message passing (mp) litmus test EX
Core 0 Core 1
(i1) [x] «= 1 | (i3) rl « [y]
(2) [y] —1 | (i4)r2 — [x] we

Under SC: Forbid r1=1, r2=0




" Set of axioms in uspec DSL [Lustig et al. ASPLOS 2016]

" Used to generate microarchitectural executions as phb graphs

* Nodes: instr. sub-events, edges: happens-before relations between instrs

" Observability based on cyclicity of graphs A uhb graph of mp on simpleSC

* Cyclic graph - Unobservable fr
* Acyclic graph = Observable ‘po/ ” }
(i1) —» (i2) —» (i3)—P» (i4)
IF
Message passing (mp) litmus test EX
Core 0 Core 1
(i1) [x] «= 1 | (i3) rl « [y]
(2) [y] —1 | (i4)r2 — [x] we

Under SC: Forbid r1=1, r2=0




Microarchitecture in pspec DSL

Axiom “Decode is FIFO":
EdgeExists ((il, Decode), (i2, Decode))
=> AddEdge ((il, Execute), (i2, Execute)).

Axiom "PO Fetch":
. SameCore il i2 /\ ProgramOrder il i2 =>
AddEdge ((il, Fetch), (i2, Fetch)).

+

Litmus Test

Core 0 Core 1
(i1) [x] <=1 | (i3) r1 « [y]
(i2) [y] « 1 | (i4) r2 « [x]
Under SC: Forbid r1=1, r2=0

[Lustig et al. MICRO-47, ...]



Microarchitecture in pspec DSL

Axiom “Decode is FIFO":
. EdgeExists ((il, Decode), (i2, Decode))
=> AddEdge ((il, Execute), (i2, Execute)).

OOOOO

POTOG0000
G O0000

Axiom "PO Fetch":
. SameCore il i2 /\ ProgramOrder il i2 =>
AddEdge ((il, Fetch), (i2, Fetch)).

Q.....].’.‘.’..,Q....f.’“’..,@ Q....?.’f.’..

@@ @ @

SO I

Litmus Test 8 : -»3 8
Core 0 Core 1 g g
Q
O

(i1) [x] <=1 | (i3) r1 « [y]
(i2) [y] « 1 | (i4) r2 « [x]

Under SC: Forbid r1=1, r2=0 / \
b |

Microarchitectural happens-before (phb) graphs

[Lustig et al. MICRO-47, ...]



Our Prior Work: Litmus Test-Based MCM Verification

Microarchitecture in pspec DSL

0
V\f‘(j)

Axiom “Decode is FIFO":
. EdgeExists ((il, Decode), (i2, Decode))
=> AddEdge ((il, Execute), (i2, Execute)).

oXeYerere

TTOO000
O 3000

Axiom "PO Fetch":
. SameCore il i2 /\ ProgramOrder il i2 =>
AddEdge ((il, Fetch), (i2, Fetch)).

=
J
k=
[=
-
f=
i
f=

Q ..........
ISA-Level Observable Not Observable Q-
Outcome (2 1 Graph Acyclic) (All Graphs Cyclic) 8::
. on
Allowed oK OK (stricter
than necessary) g
Forbidden | Consistency violation! OK O

Microarchitectural happens-before (phb) graphs

[Lustig et al. MICRO-47, ...]



Our Prior Work: Litmus Test-Based MCM Verification

Microarchitecture in pspec DSL

0
V\f‘(j)

Axiom “Decode is FIFO":
. EdgeExists ((il, Decode), (i2, Decode))
=> AddEdge ((il, Execute), (i2, Execute)).

oXeYerere

TTOO000
O 3000

Axiom "PO Fetch":
. SameCore il i2 /\ ProgramOrder il i2 =>
AddEdge ((il, Fetch), (i2, Fetch)).

=
J
k=
[=
-
f=
i
f=

Q ..........
ISA-Level Observable Not Observable Q-
Outcome (2 1 Graph Acyclic) (All Graphs Cyclic) 8::
. on
Allowed OK (stricter
than necessary) g
Forbidden OK O

Microarchitectural happens-before (phb) graphs

[Lustig et al. MICRO-47, ...]



Perennial Question:

“Do your litmus tests cover all possible MCM bugs?”

How to automatically prove correctness for all programs?



The Transitive Chain (TC) Abstraction

All non-unary cycles containing fr

fr
( \
o _ _rl n_]__ _» o
I1 In
fr
— TN
. co . po .
Iy ) > 13
fr fr
o~ o~
. po po . rf . po .
fr
r N o0 0
. rf co . po .
=0, i3>,




The Transitive Chain (TC) Abstraction

All non-unary cycles containing fr

fr
i o 00
.frf . co . pol|.
=1, — I



The Transitive Chain (TC) Abstraction

All non-unary cycles containing fr

Abstraction

Using TC

fr
f \
o _ _rl__n_]__ _» o
I1 In
fr
— TN
. co . po .
Iy ) > 13
fr fr
o~ o~
. po . . po rf . po .
fr
r N o0 0
. rf co . po .
=0, i3>,

Some phb
edge from
i,toi,
(transitive
iconnection)




The Transitive Chain (TC) Abstraction

All non-unary cycles containing fr Using TC
Abstraction

fr
— —
. _ _rl n_]__ _» .
I1 In
fr
. €O : — — —
|1_>|2_>|3 i fri i frI Z  fr
IF IF IF
fr fr
— — EX EX EX
. po po . rf . po .
L= 0 I ) I3 >y WB WB WB
fr
P o~ o0 0 ()
. rf co . po .
=0, i3>,




Infinite m—

Using TC Abstraction

fr
— \
. po .
Iy 1 > I3
fr

fr
VP o~
.rf . . po .
i, — 1, I3 —> i,
fr
. po .
Iy > 1y




The Transitive Chain (TC) Abstraction

Infinite : Finite!

fr Using TC Abstraction

po rf po

)|

X H N
| |
IF
EX
WB
. . . . | | | |
L= L I3, F I
fr EX EX
r et WB WB
. rf . co . po .
N N
| |
IF
EX
WB




The Transitive Chain (TC) Abstraction

Infinite —
fr Using TC Abstraction
r el N
. co . po .
I3 T T3
fr
s —~
. po . rf . po .
Pl Pl P g A
fr
gy e~
i, <, B2, Soundness
= verified as a
00 supporting
b= proof!

Finite!

)

IF
EX
WB
i T
IF
EX
WSB!
IF
EX
WSB!

)|




Cycles containing fr

i i All
Some phb ﬁ possible
ledge from i, tran.
toi, conns.
(transitive
connection)

Cycles containing po
¥ po N\
i
’ ome phb

edgefrom ijom N >

) toi,
transitive
onnection

Other ISA-level cycles... P mn *




NoDecomp \/

Cycles containing fr N
— i
i i Al *

Some phb
ledge from i,
toi,
(transitive
connection)

' possible
tran. EX

conns.

WB

Cycles containing po
¥ po N\
i
’ ome phb

edgefrom ijom N >

) toi,
transitive
onnection

Other ISA-level cycles... P um * Other transitive
connections...




Cycles containing fr NoDecomp \/

o)
¥ N\ ' '
i i All IF

Some phb ﬁ possible

ledge from i, tran. EX
toi, conns.

(transitive WB

connection)

AbsCounterX?
Cycles containing po i’ fr \i
¥~ po N\ IF

i

’! ome phb EX
edge fromi |y | H >

. toi,

l transitive we

onnection

Other ISA-level cycles... P um * Other transitive
connections...




Cycles containing fr NoDecomp \/

IR
Y N\ i i
i i All IF
possible
Some phb ﬁ
ledge from i tran. EX
toi, conns.
(transitive WB . -
connection) Acyclic graph with

transitive connection =>

AbsCounterX?

Cycles containing po Abstract Counterexample

T
TR :
' (i.e. possible bug)
ome phb EX
edgefrom ijom N >
) toi,
l transitive ws
onnection

Other ISA-level cycles... P um * Other transitive
connections...




Cycles containing fr NoDecomp \/

o)
¥ N\ i i
i i All IF
Some phb ﬁ possible
ledge from i tran. EX
toi, conns.
(transitive WB
connection)

AbsCounterX?

Cycles containing po

¥ &
m ! I
i i 'F Transitive connection
‘ ome
ihb EX
edgefrom LN 2 may represent one or
) toi,
- WB .
l wransitive multiple ISA-level edges

onnection

Other ISA-level cycles... P um * Other transitive
connections...




NoDecomp \/

Cycles containing fr

o)
¥ N\ l l
i i Al IF
Some phb ﬁ possible
ledge from i, tran. EX
toi, conns.
(transitive WB
connection)

Cycles containing po

i,

¥ P N\ IF
i i
’ ome phb EX
edgefrom ijomnE >
., toi,
l transitive W8

onnection

AbsCounterX?

—

Try to Concretize (Replace
transitive connection with
one ISA-level edge)

Observable

Other ISA-level cycles... P um * Other transitive
connections...

Microarch Buggy,
Return Counterexample




Cycles containing fr NoDecomp \/

o)
¥ N\ i i
i i All IF
Some phb ﬁ possible
ledge from i tran. EX
toi, conns.
(transitive WB
connection)

AbsCounterX?

Cycles containing po

{/‘h
(U
()

) toi,

transitive
onnection

i
IF .
Try to Concretize (Replace |Unobs. Decc:?)r:rflp)doesrit?cl)lns
2 e wansiive comection ith S g cyvely break
g down Transitive Chain)
WB Observable N
|
|
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

IIIIIIIIIIIIII’

ome phb
edgefrom ijom N >

v

Other ISA-level cycles... P Other transitive Microarch Buggy,

connections... Return Counterexample




Cycles containing fr NoDecomp \/

IR )
¥ N\ i i
i i All IF
ossible
Some phb ﬁ P
ledge from i tran. EX
toi, conns. “Refinement Loop”
(transitive WB
connection)

AbsCounterX?

Cycles containing po

{/‘h
(U
()

) toi,

transitive
onnection

i
IF .
Try to Concretize (Replace |Unobs. Decc:?)r:rflp)doesrit?cl)lns
2 e wansiive comection ith S g cyvely break
g down Transitive Chain)
WB Observable N
|
|
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

IIIIIIIIIIIIII’

ome phb
edgefrom ijom N >

v

Other ISA-level cycles... P Other transitive Microarch Buggy,

connections... Return Counterexample




m All concretizations must be unobservable

" Observable concretizations are counterexamples

AbsCounterX?
IF Concretization:
EX = = )y Replace transitive connection

with single ISA-level edge




Concretization
= All concretizations must be unobservable

= Observable concretizations are counterexamples

i1 r_f> in
IF /
AbsCounterX? 0‘ EX
IF Concretization:
- . L 2
EX == p Replace transitive connection A
WE with single ISA-level edge




Decomposition
= Additional instruction and ISA-level edge modelled => extra constraints

* May be enough to make execution unobservable

AbsCounterX? —
X Decomposition:
IF Inductively break down
EX " transitive chain
WB (Chain of length n == Chain of length

n-1 + single “peeled-off” edge)




Decomposition
= Additional instruction and ISA-level edge modelled => extra constraints

* May be enough to make execution unobservable =
N N
I I, =1,
IF
AbsCounterX? —
X Decomposition:
IF Inductively break down
EX " " transitive chain
WB (Chain of length n == Chain of length

n-1 + single “peeled-off” edge)




Decomposition
= Additional instruction and ISA-level edge modelled => extra constraints

* May be enough to make execution unobservable =
N N
I I, =1,
IF /
AbsCounterX? —
X Decomposition:
IF Inductively break down
EX " " transitive chain
WB (Chain of length n == Chain of length

n-1 + single “peeled-off” edge)




Decomposition
= Additional instruction and ISA-level edge modelled => extra constraints

* May be enough to make execution unobservable =

AbsCounterX? —
X Decomposition:
IF Inductively break down
EX " transitive chain
WB (Chain of length n == Chain of length

n-1 + single “peeled-off” edge)




Decomposition
= Additional instruction and ISA-level edge modelled => extra constraints

* May be enough to make execution unobservable =

AbsCounterX? —
X Decomposition:
IF Inductively break down
EX " transitive chain
WB (Chain of length n == Chain of length

n-1 + single “peeled-off” edge)




® Overall PipeProof Operation
e TC Abstraction Support Proof
* Chain Invariants

m Results




Microarchitecture || ISA-Level ISA Edge -> Chain
Ordering Spec. MCM Spec. || Microarch. Mapping || Invariants

-+ 1 I i
——

Proof of ‘Pass Transitive Chain Pass Microarch.

Chain Invariants Abstraction Correctness
: Support Proof Proof
Fail {Fail

I Cex. Generation I

l

Result: All-Program MCM Correctness Proof?
Counterexample found?

PipeProof




Microarchitecture || ISA-Level
Ordering Spec.

ISA Edge ->

MCM Spec. || Microarch. Mapping

Chain
Invariants

3

Chain Invariants

Proof of ‘Pass Transitive Chain Pass Microarch.

PipeProof

Abstraction Correctness
Support Proof Proof

Fail {Fail

I Cex. Generation I

l

Result: All-Program MCM Correctness Proof?
Counterexample found?




Chain
Invariants

Links ISA- Microarchitecture || ISA-Level
level and Ordering Spec. MCM Spec.

ISA Edge ->
Microarch. Mapping

uarch
executions

3

Chain Invariants Abstraction Correctness
: Support Proof Proof
Fail {Fail

I Cex. Generation I

l

Result: All-Program MCM Correctness Proof?
Counterexample found?

Proof of ‘Pass Transitive Chain Pass Microarch.

PipeProof




Microarchitecture || ISA-Level ISA Edge ->
Ordering Spec. MCM Spec. || Microarch. Mapping

Chain
Invariants

Proof of ‘Pass Transitive Chain Pass Microarch.

Represent
repeated

ISA-level
patterns

Chain Invariants Abstraction Correctness
: Support Proof Proof
Fail {Fail

I Cex. Generation I

l

Result: All-Program MCM Correctness Proof?
Counterexample found?

PipeProof




Microarchitecture || ISA-Level ISA Edge -> Chain
Ordering Spec. MCM Spec. || Microarch. Mapping || Invariants

1

Proof of ‘Pass Transitive Chain Pass Microarch.

Chain Invariants Abstraction Correctness

Support Proof Proof
{Fail

I Cex. Generation I

Fail

PipeProof

Result: All-Program MCM Correctness Proof?
Counterexample found?

If design can’t be verified, a counterexample (a forbidden
execution that is observable) is often returned



Microarchitecture || ISA-Level ISA Edge -> Chain
Ordering Spec. MCM Spec. || Microarch. Mapping || Invariants

1

Supporting

_ Proof of ’ Transitive Chain Pass Microarch.
proofs provide Chain Invariants ’ Abstraction Correctness
foundation for Support Proof Proof

al .
correctness Fail

proof PipeProof I Cex. Generation I

l

Result: All-Program MCM Correctness Proof?
Counterexample found?




" Ensure that ISA-level pattern and parch. support TC Abstraction

" Base case: Do initial ISA-level edges guarantee connection?

" Inductive case: Extend transitive chain => extend transitive connection?

IF

EX

WB

IF

EX

WB

i1 i2

IF

EX

WB

i1y 02

IF

EX

WB

i1 22 2

il i2

IF

EX

WB

iy

I

]

Some
| Tran |
Conn.

_> |

IF

— «

WB

iy

Some Transitive
|  Connection

n+1



" Abstractly represent repeated ISA-level patterns
" Sometimes needed for refinement loop to terminate
" Inductively proven by PipeProof before their use in proof algorithms

" Example: checking for edge from il to i5 (TC abstraction support proof)

Abstract Counterexample

i1 i3 2% ia —"p is




" Abstractly represent repeated ISA-level patterns
" Sometimes needed for refinement loop to terminate
" Inductively proven by PipeProof before their use in proof algorithms

" Example: checking for edge from il to i5 (TC abstraction support proof)

Repeating ISA-Level Pattern

(o)
i 2% aP% a5




" Abstractly represent repeated ISA-level patterns
" Sometimes needed for refinement loop to terminate
" Inductively proven by PipeProof before their use in proof algorithms

" Example: checking for edge from il to i5 (TC abstraction support proof)

Repeating ISA-Level Pattern

(o)
i 2% aP% a5

Can continue
decomposing

in this way
forever!




" Abstractly represent repeated ISA-level patterns
" Sometimes needed for refinement loop to terminate
" Inductively proven by PipeProof before their use in proof algorithms

" Example: checking for edge from il to i5 (TC abstraction support proof)

Chain Invariant Applied

o plus f
i1 2 —=P " o iy s

-po_plus = arbitrary
number of repetitions of po

-Next edge peeled off will
be something other than po




= Optimizations
* Covering Sets: Eliminate redundant transitive connections

 Memoization: Eliminate redundant ISA-level cycles
" Inductive ISA edge generation

" Adequate Model Over-Approximation

* Needed to ensure soundness of PipeProof’s abstraction-based approach

=" .and more!




" Ran PipeProof on simpleSC (SC) and simpleTSO (TSO) parches

e 3-stage in-order pipelines

" Proved correctness of both microarchitectures for all programs

* With optimizations, runtimes < 1 hour!

simpleSC simpleSC
(w/ Covering Sets + Memoization)
Total Time 225.9 sec 19.1 sec
simpleTSO simpleTSO
(w/ Covering Sets + Memoization)
Total Time Timeout 2449.7 sec
(= 41 mins)




" Ran PipeProof on simpleSC (SC) and simpleTSO (TSO) parches

e 3-stage in-order pipelines

" Proved correctness of both microarchitectures for all programs

* With optimizations, runtimes < 1 hour!

simpleSC simpleSC
(w/ Covering Sets + Memoization)
Total Time m 19.1 sec
simpleTSO simpleTSO
(w/ Covering Sets + Memoization)
Total Time Timeout 2449.7 sec
(= 41 mins)




" Ran PipeProof on simpleSC (SC) and simpleTSO (TSO) parches

e 3-stage in-order pipelines

" Proved correctness of both microarchitectures for all programs

* With optimizations, runtimes < 1 hour!

simpleSC simpleSC
(w/ Covering Sets + Memoization)

Total Time 225.9 sec

simpleTSO simpleTSO

(w/ Covering Sets + Memoization)
Total Time Timeout 2449.7 sec
(= 41 mins)




" Ran PipeProof on simpleSC (SC) and simpleTSO (TSO) parches

e 3-stage in-order pipelines

" Proved correctness of both microarchitectures for all programs

* With optimizations, runtimes < 1 hour!

simpleSC simpleSC
(w/ Covering Sets + Memoization)
Total Time 225.9 sec 19.1 sec
simpleTSO simpleTSO
(w/ Covering Sets + Memoization)

Total Time Timeout ' 2449.7 sec
(= 41 mins)




" Ran PipeProof on simpleSC (SC) and simpleTSO (TSO) parches

e 3-stage in-order pipelines

" Proved correctness of both microarchitectures for all programs

* With optimizations, runtimes < 1 hour!

simpleSC simpleSC
(w/ Covering Sets + Memoization)
Total Time 225.9 sec 19.1 sec
simpleTSO simpleTSO
(w/ Covering Sets + Memoization)

Total Time Timeout 2449.7 sec :
(= 41 mins) ‘




Conclusions
" PipeProof: Automated All-Program Microarchitectural MCM Verification

* Designers no longer need to choose between completeness and automation

" Transitive Chain Abstraction allows inductive modelling and verification
of the infinite set of all possible executions

e Abstraction is automatically refined as necessary to prove correctness

" Verified simple microarchitectures implementing SC and TSO in < 1 hour!

https://github.com/ymanerka/pipeproof

[Image: Napish]



Yatin A. Manerkar, Daniel Lustig*,
Margaret Martonosi, and Aarti Gupta

http://check.cs.princeton.edu/




" Must verify across all possible transitive connections

" Each decomposition creates a new set of transitive connections

e Can quickly lead to a case explosion

" The Covering Sets Optimization eliminates redundant transitive connections

A B
i fr i i fr i
1 n
IF (X IF
EX EX




" Must verify across all possible transitive connections

" Each decomposition creates a new set of transitive connections

e Can quickly lead to a case explosion

" The Covering Sets Optimization eliminates redundant transitive connections

A B
i, T LT
1 n
Graph Ahasanedge | | % IF
from x—>z (tran conn.) | |Ex EX

WB




Covering Sets Optimization

" Must verify across all possible transitive connections

" Each decomposition creates a new set of transitive connections

e Can quickly lead to a case explosion

" The Covering Sets Optimization eliminates redundant transitive connections

A B
K fr N\ ofr

Graph Ahasanedge | | Y% IF Graph B has edges from
from x>z (tran conn.) | |EX EX y—>z (tran conn.) and

x—>z (by transitivity)




Covering Sets Optimization

" Must verify across all possible transitive connections

" Each decomposition creates a new set of transitive connections

e Can quickly lead to a case explosion

" The Covering Sets Optimization eliminates redundant transitive connections

A B
K fr N\ ofr

Graph Ahasanedge | | Y% IF Graph B has edges from
from x>z (tran conn.) | |EX EX y—>z (tran conn.) and

x—>z (by transitivity)

Correctness of A => Correctness of B (since B contains A’s tran conn.)
Checking B explicitly is redundant!




" Base PipeProof algorithm examines some cycles multiple times

" Memoization eliminates redundant checks of cycles that have already
been verified




" Base PipeProof algorithm examines some cycles multiple times

" Memoization eliminates redundant checks of cycles that have already
been verified

Ko
I1 In
IF
Some
EX Tran.
fr Conn.
WB




" Base PipeProof algorithm examines some cycles multiple times

" Memoization eliminates redundant checks of cycles that have already
been verified

PO PO Some Some
EX Tran. EX Tran.
Conn. onn.




" Base PipeProof algorithm examines some cycles multiple times

" Memoization eliminates redundant checks of cycles that have already
been verified

Ko ¥ po ) Ko
I1 In I1 In I1 In
IF IF IF
Some Some Some
EX Tran. EX Tran. EX Tran.
rf Conn. onn. Conn.
WB WB WB

Same cycle is checked 3 times!




Memoization Optimization
" Base PipeProof algorithm examines some cycles multiple times

" Memoization eliminates redundant checks of cycles that have already
been verified

Ko ¥ po ) Ko
I1 In I1 In I1 In
IF IF IF
Some Some Some
EX Tran. EX Tran. EX Tran.
rf Conn. onn. Conn.
WB WB WB

Same cycle is checked 3 times!

Procedure: If all ISA-level cycles containing edge r, have been checked,
do not peel off r, edges when checking subsequent cycles




= Addition of an instruction can make unobservable execution observable!
" Need to work with over-approximation of microarchitectural constraints

" PipeProof sets all exists clauses to true as its over-approximation

SubsetExec SubsetWithExternal




