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Memory Consistency Models (MCMs)
▪ Specify rules governing values returned by loads in parallel programs
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The Infinite Forest

Forest goes on forever 
(infinite number of 
possible programs)
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The Infinite Forest

Can check known 
hideouts (verify design 

for test programs)
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The Infinite Forest

Are Pokemon lurking in 
unexplored areas? (Do 

tested programs provide 
complete coverage?)
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The Infinite Forest

Have we caught all the Pokemon? 
(Are there any MCM bugs left in 

the design?)



PipeProof Overview

µarch and ISA 
MCM Specs

+
Auxiliary 

Inputs

All-Program 
MCM 

Correctness 
Proof!

PipeProof

▪ First automated all-program microarchitectural MCM verification!

• Covers all possible addresses, values, numbers of cores

▪Proof methodology based on automatic abstraction refinement

▪Early-stage: Can be conducted before RTL is written!



Outline
▪Background

• ISA-level MCM specs

• Microarchitectural ordering specs

▪Microarchitectural Correctness Proof

• Transitive Chain (TC) Abstraction

▪Overall PipeProof Operation

• TC Abstraction Support Proof

• Chain Invariants

▪Results



ISA-Level MCM Specifications
▪Defined in terms of relational patterns [Alglave et al. TOPLAS 2014]

▪ ISA-level executions are graphs

• Nodes: instructions, edges: ISA-level relations between instrs

▪Correctness based on acyclicity, irreflexivity, etc of relational patterns

• Eg: SC is 𝑎𝑐𝑦𝑐𝑙𝑖𝑐(𝑝𝑜 ∪ 𝑐𝑜 ∪ 𝑟𝑓 ∪ 𝑓𝑟)

Message passing (mp) litmus test
An ISA-level execution of mp
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Microarchitectural Ordering Specifications
▪ Set of axioms in µspec DSL [Lustig et al. ASPLOS 2016]

▪Used to generate microarchitectural executions as µhb graphs

• Nodes: instr. sub-events, edges: happens-before relations between instrs

▪Observability based on cyclicity of graphs

• Cyclic graph → Unobservable

• Acyclic graph → Observable

Message passing (mp) litmus test

A µhb graph of mp on simpleSC

(i1) (i2)

IF

EX

WB

po
(i3) (i4)

fr

rf po



Microarchitectural Ordering Specifications
▪ Set of axioms in µspec DSL [Lustig et al. ASPLOS 2016]

▪Used to generate microarchitectural executions as µhb graphs

• Nodes: instr. sub-events, edges: happens-before relations between instrs

▪Observability based on cyclicity of graphs

• Cyclic graph → Unobservable

• Acyclic graph → Observable

Message passing (mp) litmus test

A µhb graph of mp on simpleSC

(i1) (i2)

IF

EX

WB

po
(i3) (i4)

fr

rf po



Microarchitectural Ordering Specifications
▪ Set of axioms in µspec DSL [Lustig et al. ASPLOS 2016]

▪Used to generate microarchitectural executions as µhb graphs

• Nodes: instr. sub-events, edges: happens-before relations between instrs

▪Observability based on cyclicity of graphs

• Cyclic graph → Unobservable

• Acyclic graph → Observable

Message passing (mp) litmus test

A µhb graph of mp on simpleSC

(i1) (i2)

IF

EX

WB

po
(i3) (i4)

fr

rf po



Microarchitectural Ordering Specifications
▪ Set of axioms in µspec DSL [Lustig et al. ASPLOS 2016]

▪Used to generate microarchitectural executions as µhb graphs

• Nodes: instr. sub-events, edges: happens-before relations between instrs

▪Observability based on cyclicity of graphs

• Cyclic graph → Unobservable

• Acyclic graph → Observable

Message passing (mp) litmus test

A µhb graph of mp on simpleSC

(i1) (i2)

IF

EX

WB

po
(i3) (i4)

fr

rf po



Microarchitectural Ordering Specifications
▪ Set of axioms in µspec DSL [Lustig et al. ASPLOS 2016]

▪Used to generate microarchitectural executions as µhb graphs

• Nodes: instr. sub-events, edges: happens-before relations between instrs

▪Observability based on cyclicity of graphs

• Cyclic graph → Unobservable

• Acyclic graph → Observable

Message passing (mp) litmus test

A µhb graph of mp on simpleSC

(i1) (i2)

IF

EX

WB

po
(i3) (i4)

fr

rf po



Our Prior Work: Litmus Test-Based MCM Verification

Axiom “Decode_is_FIFO":
... EdgeExists ((i1, Decode), (i2, Decode))

=> AddEdge ((i1, Execute), (i2, Execute)).
...
Axiom "PO_Fetch":
... SameCore i1 i2 /\ ProgramOrder i1 i2 =>

AddEdge ((i1, Fetch), (i2, Fetch)).

Microarchitecture

Litmus Test

in µspec DSL

[Lustig et al. MICRO-47, …]
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Perennial Question:

“Do your litmus tests cover all possible MCM bugs?”

How to automatically prove correctness for all programs?
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Transitive Chain (TC) Abstraction Support Proof
▪Ensure that ISA-level pattern and µarch. support TC Abstraction

▪Base case: Do initial ISA-level edges guarantee connection?

▪ Inductive case: Extend transitive chain => extend transitive connection?

i1 i2

IF

EX

WB

po
i1 i2

IF
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WB

rf
i1 i2

IF
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fr
i1 i2
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co

⟹
i1 in
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rn in+1

Some 
Tran 

Conn.

i1 in+1

IF

EX

WB

Some Transitive 
Connection



Chain Invariants
▪Abstractly represent repeated ISA-level patterns

▪ Sometimes needed for refinement loop to terminate

▪ Inductively proven by PipeProof before their use in proof algorithms

▪Example: checking for edge from i1 to i5 (TC abstraction support proof)

Abstract Counterexample
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Chain Invariants
▪Abstractly represent repeated ISA-level patterns

▪ Sometimes needed for refinement loop to terminate

▪ Inductively proven by PipeProof before their use in proof algorithms

▪Example: checking for edge from i1 to i5 (TC abstraction support proof)

Chain Invariant Applied

i1 i3 i4
fr

i5
po

i1 i3 i4
fr

i2
po

i5
po

i1 i4
fr

i2
po_plus

i5

-po_plus = arbitrary 
number of repetitions of po
-Next edge peeled off will 
be something other than po



In the paper…
▪Optimizations

• Covering Sets: Eliminate redundant transitive connections

• Memoization: Eliminate redundant ISA-level cycles

▪ Inductive ISA edge generation

▪Adequate Model Over-Approximation

• Needed to ensure soundness of PipeProof’s abstraction-based approach

▪…and more!
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Conclusions
▪PipeProof: Automated All-Program Microarchitectural MCM Verification

• Designers no longer need to choose between completeness and automation

▪Transitive Chain Abstraction allows inductive modelling and verification 
of the infinite set of all possible executions

• Abstraction is automatically refined as necessary to prove correctness

▪Verified simple microarchitectures implementing SC and TSO in < 1 hour!

Code available at 
https://github.com/ymanerka/pipeproof

[Image: Napish]
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Covering Sets Optimization
▪Must verify across all possible transitive connections

▪ Each decomposition creates a new set of transitive connections

• Can quickly lead to a case explosion

▪ The Covering Sets Optimization eliminates redundant transitive connections
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Covering Sets Optimization
▪Must verify across all possible transitive connections

▪ Each decomposition creates a new set of transitive connections

• Can quickly lead to a case explosion

▪ The Covering Sets Optimization eliminates redundant transitive connections

x

y

i1

z

in

IF
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WB

fr

x

y

i1

z

in

IF

EX

WB

fr

BA

Graph B has edges from 
y→z (tran conn.) and 
x→z (by transitivity)

Graph A has an edge 
from x→z (tran conn.)

Correctness of A => Correctness of B (since B contains A’s tran conn.)
Checking B explicitly is redundant!
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Memoization Optimization
▪Base PipeProof algorithm examines some cycles multiple times

▪Memoization eliminates redundant checks of cycles that have already 
been verified

i1 in

IF

EX
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fr
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Conn.

i1 in
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i1

fr

i2

i3

i4

rf

po po

i1 in
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po

Some 
Tran.
Conn.rf

Procedure: If all ISA-level cycles containing edge ri have been checked, 
do not peel off ri edges when checking subsequent cycles

Same cycle is checked 3 times!



The Adequate Model Over-Approximation
▪Addition of an instruction can make unobservable execution observable!

▪Need to work with over-approximation of microarchitectural constraints

▪PipeProof sets all exists clauses to true as its over-approximation
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