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The Rise of Parallelism…

[Image: K. Rupp, M. Horowitz et al.] 2



The Rise of Parallelism…

[Image: K. Rupp, M. Horowitz et al.]

Moore’s Law and end 
of Dennard Scaling: 

stagnation of single-
threaded performance
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Parallelism fuels 
modern performance 

improvements
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Parallel processors are hard to get right!
How can we formally verify parallel hardware?
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Formal Methods Expert

• Build proven-correct processor (e.g. Kami) or… 
• …construct formal model of implementation 

and verify that (REMS)
• Formal methods expert carries most of the 
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• Generally not much formal methods 
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• Can they share more of the 
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Computer Architect

My work: Automated tools that enable engineers to 
formally verify their systems by themselves!

Case Study: Memory Consistency Verification



Talk Outline
▪Overview

▪Memory Consistency Background

▪PipeProof: All-Program Microarchitectural MCM Verification

▪RTLCheck: MCM Verification of Verilog RTL

▪Expanding to other domains

▪Conclusion
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Processors Communicate via Shared Memory
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These executions obey Sequential Consistency (SC) [Lamport79], which requires 
that the results of the overall program correspond to some in-order 
interleaving of the statements from each individual thread.
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What does this program print?
Thread 0 Thread 1

❶x = 1; ❸if (y == 1)
print("Answer is:");

❷y = 1; ❹if (x == 1)
print("42");

How about “Answer is:”? ❷❶❸❹It depends!

NO! YES!

Most processors today implement “weak memory 
models” that relax orderings required by SC!
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Why reorder memory operations?

Answer: Performance!

Memory

Core 0 Core 1

r1 = y = 1;
r2 = x = 0;

Core 0 Core 1

x = 1;
y = 1;

r1 = y;
r2 = x;

Can r1=1 and r2=0?

Message Passing (mp)

Cache
y: 1x: 1 y: 1

x = 1;
FENCE
y = 1;

r1 = y = 1;
r2 = x = 1;

Fence/synchronization 
instructions can enforce 
order between memory 

operations where needed
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Memory Consistency Models (MCMs)

▪ Instruction sets (ISAs) represent hardware operations (add, ld, st, …)

▪MCMs similarly represent the orderings among hardware memory ops

ISA-Level MCM (x86, 
ARMv8, RISC-V, etc)

Where do I 
need to add 

fences?

Compiler

Hardware

How much can I 
buffer and reorder 

memory operations?

In a nutshell: MCMs specify what value will be 
returned when your program does a load!



Memory Consistency Models (MCMs)

JVMLLVM IR PTX SPIR

Java 

Bytecode

C11/

C++11

Cuda OpenCL

x86

CPU

ARM

CPU

Power

CPU

Nvidia

GPU

AMD 

GPU

…

…

…

Shared Virtual Memory

Memory Consistency Models (MCMs)

Specify rules and guarantees about the ordering and 
visibility of accesses to shared memory [Sorin et al., 2011].
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The Check Suite: Automated Tools For Verifying 
Memory Orderings and their Security Implications

High-Level Languages (HLL)
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RTL (e.g. Verilog)

PipeCheck [Micro ‘14] [IEEE MICRO Top Picks]

TriCheck [ASPLOS ‘17] [IEEE MICRO Top Picks]

CCICheck [Micro ‘15] [Nominated for Best Paper Award]

COATCheck [ASPLOS ‘16] [IEEE MICRO Top Picks]

RTLCheck [Micro ‘17] [IEEE MICRO Top Picks Honorable Mention]

• Axiomatic specifications -> Happens-before graphs
• Cyclic => Impossible, Acyclic => Possible

• Model Checking space of graphs using SMT solvers
• Most tools written in Gallina => can be proven correct

A

C

B

CheckMate
[Micro ‘18]
[IEEE Micro 
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PipeProof
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Microarchitectural MCM Verification
Microarchitecture

SC/TSO/RISC-V MCM?

?

Memory Hierarchy

WB

EX

IF

WB

EX

IF

...

...

Core 0 Core n

▪PipeProof proves that a microarchitecture respects its ISA MCM

• For all possible programs!

▪How do we formally specify

• ISA-level MCMs?

• Microarchitectural orderings?



▪MCMs often defined using relational patterns
• [Shasha and Snir TOPLAS 1988] [Alglave et al. TOPLAS 2014]

▪ ISA-level executions are graphs

• nodes: instructions, edges: ISA-level relations

▪Eg: SC is 𝑎𝑐𝑦𝑐𝑙𝑖𝑐 𝑝𝑜 ∪ 𝑐𝑜 ∪ 𝑟𝑓 ∪ 𝑓𝑟

▪ Formal specifications of ISA + HLL MCMs in recent years

• x86 [Owens et al. TPHOLS2009], ARM [Pulte et al. POPL2018], C11 [Batty et al. POPL 2011], …

▪Automated formal tools e.g. herd [Alglave et al. TOPLAS 2014]

• Can formally analyse small test programs against these models

ISA-Level MCM Specifications

(i1) (i2) (i3) (i4)
po porf

fr

Core 0 Core 1

(i1) x = 1;
(i2) y = 1;

(i3) r1 = y;
(i4) r2 = x;

SC Forbids: r1 = 1, r2 = 0

Legend:
po = Program order
co = coherence order
rf = reads-from
fr = from-reads
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▪Developed by PipeCheck [Lustig et al. MICRO 2014]

▪Microarchitecture performs instrs. in stages

▪Microarchitectural executions are µhb graphs

• Nodes: instr. sub-events, edges: happens-before relationships

▪Cyclic µhb graph → unobservable, Acyclic → observable

Microarchitectural Happens-Before (µhb) Graphs

Legend:
IF = Fetch
EX = Execute
WB = Writeback

Message passing (mp) litmus test

Core 0 Core 1
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(i3) r1 = y;
(i4) r2 = x;

SC Forbids: r1 = 1, r2 = 0
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• Nodes: instr. sub-events, edges: happens-before relationships

▪Cyclic µhb graph → unobservable, Acyclic → observable

Microarchitectural Happens-Before (µhb) Graphs
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EX = Execute
WB = Writeback

Message passing (mp) litmus test
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Microarchitectural MCM Verification
Microarchitecture

SC/TSO/RISC-V MCM?

?

Memory Hierarchy

WB
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IF

WB

EX

IF

...

...

Core 0 Core n



Microarchitecture Specification in μSpec DSL
Microarchitectural MCM Verification

SC/TSO/RISC-V MCM?

?

Memory Hierarchy

WB

EX

IF

WB

EX

IF

...

...

Core 0 Core nAxiom "PO_Fetch":
forall microops "i1",
forall microops "i2",
SameCore i1 i2 /\ ProgramOrder i1 i2 =>
AddEdge ((i1, Fetch), (i2, Fetch), "PO").

Axiom "Execute_stage_is_in_order":
forall microops "i1",
...

▪µSpec DSL [Lustig et al. ASPLOS 2016] is similar to first-order logic (FOL)

• forall, exists, AND (/\), OR (\/), NOT (~), implication (=>)

• Has built-in predicates which take memory operations as input

− e.g. ProgramOrder i j where i and j are loads/stores

• Predicates can reference nodes and edges (µhb edges closed under transitivity)

− e.g. EdgeExists ((i1, Fetch), (i2, Fetch))



▪PipeProof verifies that a microarchitecture correctly 
respects its ISA MCM across all possible programs

• Early-stage design-time verification (i.e. before RTL)

Microarch. and 
ISA MCM Specs

All-Program MCM 
Correctness Proof!

PipeProof

High-Level Languages (HLL)

Compiler

Instruction Set (ISA)

Microarchitecture

Processor RTL (Verilog)

PipeProof: Automated All-Program MCM Verif.

[Yatin A. Manerkar, Daniel Lustig, Margaret Martonosi, and Aarti Gupta. PipeProof: Automated Memory Consistency Proofs for 
Microarchitectural Specifications. The 51st Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), October 2018.]
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(e.g. Mappings)



Verifying Across All Possible Programs
▪Are all forbidden programs microarchitecturally unobservable?

• If so, then microarchitecture is correct

▪ Infinite number of forbidden programs

• E.g.: For SC, must check all possibilities of 𝑐𝑦𝑐𝑙𝑖𝑐(𝑝𝑜 ∪ 𝑐𝑜 ∪ 𝑟𝑓 ∪ 𝑓𝑟)

▪Prove using abstractions and induction

• Based on Counterexample-guided abstraction refinement [Clarke et al. CAV 2000]
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All non-unary cycles containing fr
(Infinite set)
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The Transitive Chain (TC) Abstraction
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i1 in
r1…n-1

fr

All non-unary cycles containing fr
(Infinite set)
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The Transitive Chain (TC) Abstraction
Transitive chain (sequence) 

of ISA-level edges

Cycle = Transitive Chain (sequence) 
+ Loopback edge (fr)
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i1 in
r1…n-1

fr

All non-unary cycles containing fr
(Infinite set)
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i1 i3
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i2 i4
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i1 i3

fr

i2 i4
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…

Some µhb
edge from i1

to in

(transitive 
connection)

IF

EX

WB

The Transitive Chain (TC) Abstraction

Cycle = Transitive Chain (sequence) 
+ Loopback edge (fr)

ISA-level transitive chain => 
Microarch. level transitive connection
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22

Infinite!



⟹
Using

TC Abstraction
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3 x 3 = 9 possible 
transitive connections 

from  i1 to in
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⟹
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TC Abstraction
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Abstraction soundness 
automatically verified 
as a supporting proof!

The Transitive Chain (TC) Abstraction
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i1 in

fr

Some µhb
edge from 

i1 to in
(transitive 

connection)

All possible 
transitive 

connections

Other ISA-level 
cycles…

i1 in

po

Some µhb
edge from 

i1 to in
(transitive 

connection)

Cycles containing fr

Cycles containing po

Microarchitectural Correctness Proof
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Cycles containing fr

Cycles containing po

Acyclic graph with transitive connection => 

Abstract Counterexample (i.e. possible bug)

Microarchitectural Correctness Proof
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Microarchitectural Correctness Proof
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Consider all 
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“Refinement Loop”
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i1 in

IF

EX

WB

fr
?AbsCounterX

Refinement Loop: Concretization
▪Replaces transitive connection with a single ISA-level edge

• All concretizations must be unobservable

• Observable concretizations are counterexamples (bugs)
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Refinement Loop: Concretization
▪Replaces transitive connection with a single ISA-level edge

• All concretizations must be unobservable

• Observable concretizations are counterexamples (bugs)

rf
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Refinement Loop: Concretization
▪Replaces transitive connection with a single ISA-level edge

• All concretizations must be unobservable

• Observable concretizations are counterexamples (bugs)
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p

i1

IF

EX

WB

r

q

in

fr
?AbsCounterX

Refinement Loop: Decomposition
▪ Inductively break down transitive chain

• Additional constraints may be enough to make execution unobservable

25
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Refinement Loop: Decomposition
▪ Inductively break down transitive chain

• Additional constraints may be enough to make execution unobservable

25

factorial(n) factorial(n-1) *= n

Chain of length n Chain of length n-1 “Peeled-off” edge= +
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Refinement Loop: Decomposition
▪ Inductively break down transitive chain

• Additional constraints may be enough to make execution unobservable
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Refinement Loop: Decomposition
▪ Inductively break down transitive chain

• Additional constraints may be enough to make execution unobservable
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Refinement Loop: Decomposition
▪ Inductively break down transitive chain

• Additional constraints may be enough to make execution unobservable

p
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rf
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q

in

fr

If decomposition is abstract 

counterexample, repeat concretization 

and decomposition!
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simpleTSO simpleTSO
(w/ Covering Sets + Memoization)

Total Time Timeout 2449.7 sec (≈ 41 mins)

simpleSC simpleSC
(w/ Covering Sets + Memoization)

Total Time 225.9 sec 19.1 sec

Results
▪Ran PipeProof on simpleSC (SC) and simpleTSO (TSO1) µarches

• 3-stage in-order pipelines

▪TSO verification made feasible by optimizations

• Explicitly checking all decompositions => case explosion

• Covering Sets Optimization (eliminate redundant transitive connections)

• Memoization (eliminate previously checked ISA-level cycles)

261TSO (Total Store Order) is the MCM of Intel x86 processors. It relaxes Store->Load ordering.



PipeProof Takeaways
▪ First Ever Automated All-Program Microarchitectural MCM Verification

• Designers get both completeness and automation of verification

• Engineers can verify microarchitectures themselves, before RTL is written!

▪Based on techniques from formal methods (CEGAR) [Clarke et al. CAV 2000]

▪Transitive Chain (TC) Abstraction models infinite set of executions

▪Accolades:

• Nominated for Best Paper at MICRO 2018

• “Honorable Mention” in 2018 IEEE Micro Top Picks of Comp. Arch. Conferences
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Talk Outline
▪Overview and Motivation

▪Memory Consistency Background

▪PipeProof: All-Program Microarchitectural MCM Verification

▪RTLCheck: MCM Verification of Verilog RTL

▪Expanding to other domains

▪Conclusion
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Microarchitectural Orderings
Verified with 

PipeProof

What if I want to verify RTL (Verilog)?

po rf
i1 i3

fr

i2 i4
po

(i2)(i1)

IF

EX

WB

(i3) (i4)

ISA-Level MCM

Axiom "PO_Fetch":
forall microop "i1", "i2",
SameCore i1 i2 /\ ProgramOrder i1 i2 =>

AddEdge ((i1, IF), (i2, IF)).
...

acyclic (po U co U rf U fr)
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RTL implementation (Verilog)

[RTL Image: Christopher Batten]
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RTL implementation (Verilog)

[RTL Image: Christopher Batten]

Microarchitectural Orderings
Verified with 

PipeProof

What if I want to verify RTL (Verilog)?

po rf
i1 i3

fr

i2 i4
po

(i2)(i1)

IF

EX

WB

(i3) (i4)

ISA-Level MCM

Axiom "PO_Fetch":
forall microop "i1", "i2",
SameCore i1 i2 /\ ProgramOrder i1 i2 =>

AddEdge ((i1, IF), (i2, IF)).
...

acyclic (po U co U rf U fr)

?✓





[Yatin A. Manerkar, Daniel Lustig, Margaret Martonosi, and Michael Pellauer. RTLCheck: Verifying the Memory Consistency of RTL Designs. 
The 50th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), October 2017.]

▪RTLCheck enables automated checking of Verilog RTL 
against µspec axioms for litmus test suites

RTLCheck: Checking RTL Consistency Orderings

High-Level Languages (HLL)

Compiler

Instruction Set (ISA)

Microarchitecture

Processor RTL (Verilog)

30

Mapping 
Functions

RTLCheck

Axiom "PO_Fetch":
forall microop "i1", "i2",
SameCore i1 i2 /\ ProgramOrder i1 i2 =>

AddEdge ((i1, IF), (i2, IF)).

assert property @(posedge clk) (...)
...

Core 0 Core 1

x = 1;
y = 1;

r1 = y;
r2 = x;

Litmus Testµspec axioms

Test-specific Temporal RTL Properties
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Mapping 
Functions

RTLCheck

Axiom "PO_Fetch":
forall microop "i1", "i2",
SameCore i1 i2 /\ ProgramOrder i1 i2 =>

AddEdge ((i1, IF), (i2, IF)).

assert property @(posedge clk) (...)
...

Core 0 Core 1

x = 1;
y = 1;

r1 = y;
r2 = x;

Litmus Testµspec axioms

Test-specific Temporal RTL Properties



SystemVerilog Assertions (SVA)
▪ SVA: Industry standard for RTL verification, e.g.: ARM [Reid et al. CAV 2016]

• Based on Linear Temporal Logic (LTL) with regular operators

▪Commercial tools (e.g. JasperGold) can formally verify SVA assertions

▪Translating µspec to SVA => RTL MCM verification using industry flows

▪But it’s not that simple!

31

assert property @(posedge clk) (...)
...

SVA Assertions

RTL Impl.

Cadence JasperGold

Assertion Proven?
Counterexample found?



Meaning can be Lost in Translation!

小心地滑
(Caution: Slippery Floor)



Meaning can be Lost in Translation!

[Image: Barbara Younger]
[Inspiration: Tae Jun Ham]
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The µspec/SVA Mismatch
▪Tricky to translate µspec to SVA while maintaining µspec semantics

▪ SVA Verifiers (JasperGold) don’t implement full SVA spec!

• Causes further complications

▪Example: Outcome Filtering

• Filtering litmus test executions to those that have particular values for loads



Outcome Filtering with Execution as a Single Unit
▪ In this case, outcome filtering is easy and efficient

▪Know load values, so can draw (red) edges based on these values

• Example: i4 reads 0 => i4 must read mem before write i1

mp litmus test

Core 0 Core 1

(i1) x = 1;
(i2) y = 1;

(i3) r1 = y;
(i4) r2 = x;

IF

EX

WB

(i1) (i2) (i3) (i4)
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▪ In temporal logic syntax (G = always, F = eventually), this becomes:

▪Assumptions introduce liveness: expensive to check! [Cerny et al. 2010]

▪ SVA verifiers approximate: only check assumptions until current state

• This results in a property which is easier to check…

• …but makes outcome filtering impossible with such verifiers!

▪RTLCheck Solution: Generate properties that handle all test outcomes

Outcome Filtering with Temporal Logic

35

assume property (a); // e.g. Load i4 returns 0
assert property (b); // e.g. i4 reads mem before write i1

//The above is equivalent to...
assert property ((always a) implies (always b));

G a -> G b = (~(G a)) \/ G b = (F ~a) \/ G b



▪ First automated RTL MCM verification for litmus test suites

• Engineers can check MCM properties of their RTL themselves

• Compatible with existing industry flows and tools

▪Novel algorithms to translate µspec axioms to temporal SVA properties

• Ongoing work: Formalise mismatch between µspec and SVA

▪Discovered bug in memory implementation of RISC-V V-scale processor

▪Accolades:

• “Honorable Mention” in 2017 IEEE Micro Top Picks of Comp. Arch. Conferences

RTLCheck Takeaways
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Talk Outline
▪Overview and Motivation

▪Background on MCM Specification and Verification

▪PipeProof: All-Program Microarchitectural MCM Verification
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Security Analysis with CheckMate [Trippel et al. MICRO 2018]

38

▪Work by another member of our research group (Caroline Trippel)

▪Her key insight: µhb graphs can be used for reasoning about security!

CheckMate
Hardware Exploit 

Prog. Synthesis

Microarchitecture + OS Specification in Alloy

Exploit Pattern Specification

prime probe

ViCL Create

ViCL Expire

Attacker T0 on C0 Attacker T1 on C1

R [VA1]à0 R [VA1]à0

R [VA0] à r1

W [f(r1)=VA1] à 0

R [VA1]à0

VA to PA Mapping: VA1:(PA1:A), VA0:(PA0:V)

VA to Cache Index Mapping: VA1:IDX0, VA0:IDX1

Attacker T0 on C0 Attacker T1 on C1

R [VA1]à0 W [VA1]à0

R [VA0] à r1

W [f(r1)=VA1] à 0

R [VA1]à0

VA to PA Mapping: VA1:(PA1:A), VA0:(PA0:V)
VA to Cache Index Mapping: VA1:IDX0, VA0:IDX1

Attacker T0 on C0

CLFLUSH [VA2]à0

R [VA1] à r1

R [f(r1)=VA2] à 0

R [VA2]à0

A to PA Mapping: VA2:(PA1:A), VA1:(PA0:V)
VA to Cache Index Mapping: VA2:IDX0, VA1:IDX1

Victim T0 on C0 Attacker T1 on C1

R [VA1]à0

W [VA0] à r1

R [VA1]à0

VA to PA Mapping: VA1:(PA1:A), VA0:(PA0:V)
VA to Cache Index Mapping: VA1:IDX0, VA0:IDX0

Victim T0 on C0 Attacker T1 on C1

W [VA1]à0

R [VA0] à r1

R [VA1]à0

VA to PA Mapping: VA1:(PA1:A), VA0:(PA0:V)
VA to Cache Index Mapping: VA1:IDX0, VA0:IDX0

Victim T0 on C0 Attacker T1 on C1

R [VA1]à0

R [VA0] à r1

R [VA1]à0

VA to PA Mapping: VA1:(PA1:A), VA0:(PA0:V)

VA to Cache Index Mapping: VA1:IDX0, VA0:IDX0

Exploits synthesized from µhb analysis

fact Program_Order_Fetch {
all disj e0, e1 : Event |
ProgramOrder[e0, e1] =>
EdgeExists[e0, Fetch, e1, Fetch, uhb_inter]

}

fact In_Order_Decode {
all disj e0, e1 : Event |
EdgeExists[e0, Fetch, e1, Fetch, uhb_inter] =>
EdgeExists[e0, Decode, e1, Decode, uhb_inter]

}

[CheckMate: Automated Exploit Program Generation for Hardware Security Verification. Caroline Trippel, Daniel Lustig, and 
Margaret Martonosi. In Proceedings of the 51st International Symposium on Microarchitecture (MICRO), October 2018.]
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Exploits synthesized from µhb analysis

fact Program_Order_Fetch {
all disj e0, e1 : Event |
ProgramOrder[e0, e1] =>
EdgeExists[e0, Fetch, e1, Fetch, uhb_inter]

}

fact In_Order_Decode {
all disj e0, e1 : Event |
EdgeExists[e0, Fetch, e1, Fetch, uhb_inter] =>
EdgeExists[e0, Decode, e1, Decode, uhb_inter]

}

Includes new exploits! 
(SpectrePrime, MeltdownPrime)

[CheckMate: Automated Exploit Program Generation for Hardware Security Verification. Caroline Trippel, Daniel Lustig, and 
Margaret Martonosi. In Proceedings of the 51st International Symposium on Microarchitecture (MICRO), October 2018.]
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Exploits synthesized from µhb analysis

fact Program_Order_Fetch {
all disj e0, e1 : Event |
ProgramOrder[e0, e1] =>
EdgeExists[e0, Fetch, e1, Fetch, uhb_inter]

}
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EdgeExists[e0, Fetch, e1, Fetch, uhb_inter] =>
EdgeExists[e0, Decode, e1, Decode, uhb_inter]

}

ViCL abstraction [Manerkar 

et al. MICRO 2015] used to 
model cache behaviour

Includes new exploits! 
(SpectrePrime, MeltdownPrime)

[CheckMate: Automated Exploit Program Generation for Hardware Security Verification. Caroline Trippel, Daniel Lustig, and 
Margaret Martonosi. In Proceedings of the 51st International Symposium on Microarchitecture (MICRO), October 2018.]
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▪ Joint work with Themis Melissaris

▪Distributed systems have some similarities to shared-memory systems

• Distributed protocols (e.g. Paxos) similar to cache coherence protocols

• Replicated data store consistency models similar to MCMs
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Ongoing Work: Verifying Distributed Systems

39[Cartoon by Julia Evans]

▪ Joint work with Themis Melissaris

▪Distributed systems have some similarities to shared-memory systems

• Distributed protocols (e.g. Paxos) similar to cache coherence protocols

• Replicated data store consistency models similar to MCMs

▪Also have features with no shared-memory analogue!

• Correctness in the presence of node failures

• Eventual consistency [Vogels CACM 2009]
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Talk Outline
▪Overview and Motivation

▪Background on MCM Specification and Verification

▪PipeProof: All-Program Microarchitectural MCM Verification

▪RTLCheck: MCM Verification of Verilog RTL

▪Expanding to other domains

▪Conclusion
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▪Complexity of computing hardware is increasing

• Ubiquitous parallelism and increased heterogeneity

▪Automated formal verification helps engineers handle this complexity

• Give engineers the ability to formally verify their systems themselves

• PipeProof: Automated All-Program Microarchitectural MCM Verification

• RTLCheck: Per-Program MCM Verification of RTL Designs

▪Techniques for MCM analysis applicable to other domains

• e.g. Security [Trippel et al. MICRO 2018] and distributed systems

Conclusions

41
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Chain Invariants
▪Abstractly represent repeated ISA-level patterns

▪ Sometimes needed for refinement loop to terminate

▪ Inductively proven by PipeProof before their use in proof algorithms

▪Example: checking for edge from i1 to i5 (TC abstraction support 
proof) Abstract Counterexample

i1 i3 i4
fr

i5
po
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▪ Sometimes needed for refinement loop to terminate

▪ Inductively proven by PipeProof before their use in proof algorithms

▪Example: checking for edge from i1 to i5 (TC abstraction support 
proof) Repeating ISA-Level Pattern

i1 i3 i4
fr

i5
po

i1 i3 i4
fr

i2
po

i5
po

Can continue 
decomposing 

in this way 
forever!
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Chain Invariants
▪Abstractly represent repeated ISA-level patterns

▪ Sometimes needed for refinement loop to terminate

▪ Inductively proven by PipeProof before their use in proof algorithms

▪Example: checking for edge from i1 to i5 (TC abstraction support 
proof) Chain Invariant Applied

i1 i3 i4
fr

i5
po

i1 i3 i4
fr

i2
po

i5
po

i1 i4
fr

i2
po_plus

i5

-po_plus = arbitrary 
number of repetitions of po
-Next edge peeled off will 
be something other than po

45



Covering Sets Optimization
▪Must verify across all possible transitive connections

▪ Each decomposition creates a new set of transitive connections
• Can quickly lead to a case explosion

▪ The Covering Sets Optimization eliminates redundant transitive 
connections
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Covering Sets Optimization
▪Must verify across all possible transitive connections

▪ Each decomposition creates a new set of transitive connections
• Can quickly lead to a case explosion

▪ The Covering Sets Optimization eliminates redundant transitive 
connections

x

y

i1

z

in

IF

EX

WB

fr

x

y

i1

z

in

IF

EX

WB

fr

BA

Graph B has edges from 
y→z (tran conn.) and 
x→z (by transitivity)

Graph A has an edge 
from x→z (tran conn.)

Correctness of A => Correctness of B (since B contains A’s tran conn.)
Checking B explicitly is redundant!



Memoization Optimization
▪Base PipeProof algorithm examines some cycles multiple times

▪Memoization eliminates redundant checks of cycles that have already 
been verified

i1

fr

i2

i3

i4

rf

po po



Memoization Optimization
▪Base PipeProof algorithm examines some cycles multiple times

▪Memoization eliminates redundant checks of cycles that have already 
been verified

i1 in

IF

EX

WB

fr

Some 
Tran.
Conn.

i1

fr

i2

i3

i4

rf

po po

fr



Memoization Optimization
▪Base PipeProof algorithm examines some cycles multiple times

▪Memoization eliminates redundant checks of cycles that have already 
been verified

i1 in

IF

EX

WB

fr

Some 
Tran.
Conn.

i1

fr

i2

i3

i4

rf

po po

i1 in

IF

EX

WB

po

Some 
Tran.
Conn.

po po



Memoization Optimization
▪Base PipeProof algorithm examines some cycles multiple times

▪Memoization eliminates redundant checks of cycles that have already 
been verified

i1 in

IF

EX

WB

fr

Some 
Tran.
Conn.

i1 in

IF

EX

WB

rf

Some 
Tran.
Conn.

i1

fr

i2

i3

i4

rf

po po

i1 in

IF

EX

WB

po

Some 
Tran.
Conn.rf

Same cycle is checked 3 times!



Memoization Optimization
▪Base PipeProof algorithm examines some cycles multiple times

▪Memoization eliminates redundant checks of cycles that have already 
been verified

i1 in

IF

EX

WB

fr

Some 
Tran.
Conn.

i1 in

IF

EX

WB

rf

Some 
Tran.
Conn.

i1

fr

i2

i3

i4

rf

po po

i1 in

IF

EX

WB

po

Some 
Tran.
Conn.rf

Procedure: If all ISA-level cycles containing edge ri have been checked, 
do not peel off ri edges when checking subsequent cycles

Same cycle is checked 3 times!



Filtering Invalid Decompositions
▪When decomposing a transitive connection, the decomposition should 

guarantee the transitive connections of its parent abstract cexes.

▪Decompositions that do not do this are invalid and filtered out

p

i1

r

q

in

IF

EX

WB

fr

?AbsCounterX

p

i1 in-1

IF

EX

WB

rf

r

q

in

fr
Invalid Decomposition



The Adequate Model Over-Approximation
▪Addition of an instruction can make unobservable execution observable!

▪Need to work with over-approximation of microarchitectural constraints

▪PipeProof sets all exists clauses to true as its over-approximation

t

i1 i2

IF

EX

WB

fr

v

i3
co

SubsetExec

u

t

i1 i2

IF

EX

WB

fr

v

i3

SubsetWithExternal

u

i4
rf

co
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PipeProof Block Diagram
Microarchitecture 

Ordering Spec.
ISA-Level 

MCM Spec.

PipeProof

ISA Edge -> 
Microarch. Mapping

Result: All-Program MCM Correctness Proof?
Counterexample found?

Chain 
Invariants

Transitive Chain 
Abstraction 

Support Proof

Microarch. 
Correctness 

Proof

Cex. Generation

Proof of 
Chain Invariants

FailFail

PassPass

If design can’t be verified, a counterexample (a forbidden 
execution that is observable) is often returned



PipeProof Block Diagram
Microarchitecture 

Ordering Spec.
ISA-Level 

MCM Spec.

PipeProof

ISA Edge -> 
Microarch. Mapping

Result: All-Program MCM Correctness Proof?
Counterexample found?

Chain 
Invariants

Transitive Chain 
Abstraction 

Support Proof

Microarch. 
Correctness 

Proof

Cex. Generation

Proof of 
Chain Invariants

FailFail

PassPass
Supporting 

proofs provide 
foundation for 

correctness 
proof



Mapping ISA-Level Edges to Microarchitecture
▪Translate each edge in ISA-level cycle to microarchitectural constraints

▪Do so with user-provided Mapping Axioms

▪Example: Mapping of 𝑝𝑜 edges

Axiom "Mapping_po":
forall microop "i",
forall microop "j",
(HasDependency po i j =>

AddEdge ((i, Fetch), (j, Fetch), "po_arch", "blue")).

i1 i2

IF

EX

WB

po
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Mapping ISA-Level Edges to Microarchitecture
▪Translate each edge in ISA-level cycle to microarchitectural constraints

▪Do so with user-provided Mapping Axioms

▪Example: Mapping of 𝑝𝑜 edges

Axiom "Mapping_po":
forall microop "i",
forall microop "j",
(HasDependency po i j =>

AddEdge ((i, Fetch), (j, Fetch), "po_arch", "blue")).

i1 i2

IF

EX

WB

po

Blue edges between EX and WB stages added by 
other FIFO axioms (refer to µspec file)



▪Open question as to whether a set of litmus tests is complete

(i1) (i2)

IF

EX

WB

(i3) (i4) (i1) (i2)

IF

EX

WB

(i3) (i4)

Cyclic => Still unobservable Acyclic => BUG!

Core 0 Core 1

x = 1;
y = 1;

r1 = y;
r2 = x;

Forbid: r1 = 1, r2 = 0

mp Litmus Test

Core 0 Core 1

x = 1;
r1 = y;

y = 1;
r2 = x;

Forbid: r1 = 0, r2 = 0

sb Litmus Test

po porf

fr

po pofr

fr

57

Can “litmus tests” provide complete coverage?
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r2 = x;

Forbid: r1 = 1, r2 = 0

mp Litmus Test

Core 0 Core 1

x = 1;
r1 = y;

y = 1;
r2 = x;

Forbid: r1 = 0, r2 = 0

sb Litmus Test

po porf

fr

po pofr

fr

57

Can “litmus tests” provide complete coverage?

Different tests catch different bugs!

To catch all bugs, must verify across all programs!



Property to check:
mapNode(Ld x → St x, Ld x == 0) or mapNode(St x → Ld x, Ld x == 1);

▪Don’t filter based on outcome

• Translate all possible outcomes

▪Tag each case with appropriate load value constraints

• reflect the data constraints required for edge(s)

▪Ongoing work: Precisely formalise the µspec/SVA mismatch

• How much is fundamental? How much is due to SVA verifier approximation?

Solution: Load Value Constraints

Axiom "Read_Values":
Every load either reads BeforeAllWrites OR reads FromLatestWrite

Core 0 Core 1

(i1) x = 1; (i3) r1 = y;

(i2) y = 1; (i4) r2 = x;

SC Forbids: r1 = 1, r2 = 0

mp

Note: Axioms and properties abstracted for brevity
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▪Ongoing work: Precisely formalise the µspec/SVA mismatch

• How much is fundamental? How much is due to SVA verifier approximation?

Solution: Load Value Constraints

Axiom "Read_Values":
Every load either reads BeforeAllWrites OR reads FromLatestWrite

Core 0 Core 1

(i1) x = 1; (i3) r1 = y;

(i2) y = 1; (i4) r2 = x;

SC Forbids: r1 = 1, r2 = 0

mp

Note: Axioms and properties abstracted for brevity
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▪When two stores are sent 
to memory in successive 
cycles, first of two stores 
is dropped by memory!

▪Bug would occur even in 
single-core V-scale

▪ Fixed bug by eliminating 
intermediate wdata reg

Core 0 Core 1 Core 2 Core 3

Arbiter

WB

DX

IF

WB

DX

IF

WB

DX

IF

WB

DX

IF

Memory

wdata

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Mem array

Stores

x = 1

y = 1

Bug Discovered in V-scale Mem. Implementation
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