
Yatin A. Manerkar

Automated Formal

Memory Consistency Verification

of Hardware

http://www.cs.princeton.edu/~manerkar

Princeton University

June 23rd, 2019

1

The Rise of Parallelism…

[Image: K. Rupp, M. Horowitz et al.] 2

The Rise of Parallelism…

[Image: K. Rupp, M. Horowitz et al.]

Moore’s Law and end
of Dennard Scaling:

stagnation of single-
threaded performance

2

The Rise of Parallelism…

[Image: K. Rupp, M. Horowitz et al.]

Parallelism fuels
modern performance

improvements

2

…and Heterogeneity (Example: Apple A12)

3

…and Heterogeneity (Example: Apple A12)

3

“Big” CPUs

…and Heterogeneity (Example: Apple A12)

3

“Big” CPUs

“Little” CPUs

…and Heterogeneity (Example: Apple A12)

3

“Big” CPUs

“Little” CPUs

GPUs

…and Heterogeneity (Example: Apple A12)

3

“Big” CPUs

“Little” CPUs

GPUs

ML
Accelerator

…and Heterogeneity (Example: Apple A12)

3

“Big” CPUs

“Little” CPUs

GPUs

ML
Accelerator

…and Heterogeneity (Example: Apple A12)

3

“Big” CPUs

“Little” CPUs

GPUs

ML
Accelerator

Parallel processors are hard to get right!
How can we formally verify parallel hardware?

Building a Formally Verified Processor

4

Formal Methods Expert

• Build proven-correct processor (e.g. Kami) or…

Building a Formally Verified Processor

4

Formal Methods Expert

• Build proven-correct processor (e.g. Kami) or…
• …construct formal model of implementation

and verify that (REMS)

Building a Formally Verified Processor

4

Formal Methods Expert

• Build proven-correct processor (e.g. Kami) or…
• …construct formal model of implementation

and verify that (REMS)
• Formal methods expert carries most of the

verification burden

Building a Formally Verified Processor

4

Formal Methods Expert

• Build proven-correct processor (e.g. Kami) or…
• …construct formal model of implementation

and verify that (REMS)
• Formal methods expert carries most of the

verification burden

• Experts on building processors
• Generally not much formal methods

expertise
• Can they share more of the

verification burden?

Computer Architect

Building a Formally Verified Processor

4

Formal Methods Expert

• Build proven-correct processor (e.g. Kami) or…
• …construct formal model of implementation

and verify that (REMS)
• Formal methods expert carries most of the

verification burden

• Experts on building processors
• Generally not much formal methods

expertise
• Can they share more of the

verification burden?

Computer Architect

My work: Automated tools that enable engineers to
formally verify their systems by themselves!

Case Study: Memory Consistency Verification

Talk Outline
▪Overview

▪Memory Consistency Background

▪PipeProof: All-Program Microarchitectural MCM Verification

▪RTLCheck: MCM Verification of Verilog RTL

▪Expanding to other domains

▪Conclusion

5

Processors Communicate via Shared Memory

6

“Big” CPUs

“Little” CPUs

GPUs

ML
Accelerator

What does this program print?
Thread 0 Thread 1

❶x = 1; ❸if (y == 1)
print("Answer is:");

❷y = 1; ❹if (x == 1)
print("42");

What does this program print?
Thread 0 Thread 1

❶x = 1; ❸if (y == 1)
print("Answer is:");

❷y = 1; ❹if (x == 1)
print("42");

Can it print “Answer is: 42”? Yes, eg: ❶❷❸❹

What does this program print?
Thread 0 Thread 1

❶x = 1; ❸if (y == 1)
print("Answer is:");

❷y = 1; ❹if (x == 1)
print("42");

Can it print “Answer is: 42”?

How about just “42”?

Yes, eg: ❶❷❸❹

Yes, eg: ❶❸❹❷

What does this program print?
Thread 0 Thread 1

❶x = 1; ❸if (y == 1)
print("Answer is:");

❷y = 1; ❹if (x == 1)
print("42");

Can it print “Answer is: 42”?

How about just “42”?

Could it print nothing?

Yes, eg: ❶❷❸❹

Yes, eg: ❶❸❹❷

Yes, eg: ❸❹❶❷

What does this program print?
Thread 0 Thread 1

❶x = 1; ❸if (y == 1)
print("Answer is:");

❷y = 1; ❹if (x == 1)
print("42");

Can it print “Answer is: 42”?

How about just “42”?

Could it print nothing?

Yes, eg: ❶❷❸❹

Yes, eg: ❶❸❹❷

Yes, eg: ❸❹❶❷

These executions obey Sequential Consistency (SC) [Lamport79], which requires
that the results of the overall program correspond to some in-order
interleaving of the statements from each individual thread.

What does this program print?
Thread 0 Thread 1

❶x = 1; ❸if (y == 1)
print("Answer is:");

❷y = 1; ❹if (x == 1)
print("42");

How about “Answer is:”? ❷❶❸❹

What does this program print?
Thread 0 Thread 1

❶x = 1; ❸if (y == 1)
print("Answer is:");

❷y = 1; ❹if (x == 1)
print("42");

How about “Answer is:”? ❷❶❸❹It depends!

What does this program print?
Thread 0 Thread 1

❶x = 1; ❸if (y == 1)
print("Answer is:");

❷y = 1; ❹if (x == 1)
print("42");

How about “Answer is:”? ❷❶❸❹It depends!

NO!

What does this program print?
Thread 0 Thread 1

❶x = 1; ❸if (y == 1)
print("Answer is:");

❷y = 1; ❹if (x == 1)
print("42");

How about “Answer is:”? ❷❶❸❹It depends!

NO! YES!

What does this program print?
Thread 0 Thread 1

❶x = 1; ❸if (y == 1)
print("Answer is:");

❷y = 1; ❹if (x == 1)
print("42");

How about “Answer is:”? ❷❶❸❹It depends!

NO! YES!

Most processors today implement “weak memory
models” that relax orderings required by SC!

Why reorder memory operations?

Answer: Performance!

x: 0 y: 0
Memory

Core 0

x = 1;
y = 1;

Core 1

r1 = y;
r2 = x;

Core 0 Core 1

x = 1;
y = 1;

r1 = y;
r2 = x;

Can r1=1 and r2=0?

Message Passing (mp)

Cache
y: 0

Why reorder memory operations?

Answer: Performance!

x: 0 y: 0
Memory

Core 0

x = 1;
y = 1;

Core 1

r1 = y;
r2 = x;

Core 0 Core 1

x = 1;
y = 1;

r1 = y;
r2 = x;

Can r1=1 and r2=0?

Message Passing (mp)

Cache
y: 0

Can improve
performance by

sending both stores to
memory in parallel

Why reorder memory operations?

Answer: Performance!

Memory

Core 0 Core 1

r1 = y;
r2 = x;

x = 1;
y = 1;

Core 0 Core 1

x = 1;
y = 1;

r1 = y;
r2 = x;

Can r1=1 and r2=0?

Message Passing (mp)

Cache
y: 1

x: 0

Store to y finishes
quickly in cache

Why reorder memory operations?

Answer: Performance!

Memory

Core 0 Core 1

x = 1;
y = 1;

r1 = y = 1;
r2 = x;

Core 0 Core 1

x = 1;
y = 1;

r1 = y;
r2 = x;

Can r1=1 and r2=0?

Message Passing (mp)

Cache
y: 1

x: 0

Why reorder memory operations?

Answer: Performance!

Memory

Core 0 Core 1

x = 1;
y = 1;

r1 = y = 1;
r2 = x = 0;

Core 0 Core 1

x = 1;
y = 1;

r1 = y;
r2 = x;

Can r1=1 and r2=0?

Message Passing (mp)

Cache
y: 1x: 0 y: 1

Why reorder memory operations?

Answer: Performance!

Memory

Core 0 Core 1

x = 1;
y = 1;

r1 = y = 1;
r2 = x = 0;

Core 0 Core 1

x = 1;
y = 1;

r1 = y;
r2 = x;

Can r1=1 and r2=0?

Message Passing (mp)

Cache
y: 1x: 1 y: 1

By the time store of x is
complete, Core 1 has
observed reordering!

Why reorder memory operations?

Answer: Performance!

Memory

Core 0 Core 1

r1 = y = 1;
r2 = x = 0;

Core 0 Core 1

x = 1;
y = 1;

r1 = y;
r2 = x;

Can r1=1 and r2=0?

Message Passing (mp)

Cache
y: 1x: 1 y: 1

x = 1;
FENCE
y = 1;

r1 = y = 1;
r2 = x = 1;

Fence/synchronization
instructions can enforce
order between memory

operations where needed

Memory Consistency Models (MCMs)

▪ Instruction sets (ISAs) represent hardware operations (add, ld, st, …)

▪MCMs similarly represent the orderings among hardware memory ops

Compiler

Hardware

Memory Consistency Models (MCMs)

▪ Instruction sets (ISAs) represent hardware operations (add, ld, st, …)

▪MCMs similarly represent the orderings among hardware memory ops

Where do I
need to add

fences?

Compiler

Hardware

Memory Consistency Models (MCMs)

▪ Instruction sets (ISAs) represent hardware operations (add, ld, st, …)

▪MCMs similarly represent the orderings among hardware memory ops

Where do I
need to add

fences?

Compiler

Hardware

How much can I
buffer and reorder

memory operations?

Memory Consistency Models (MCMs)

▪ Instruction sets (ISAs) represent hardware operations (add, ld, st, …)

▪MCMs similarly represent the orderings among hardware memory ops

ISA-Level MCM (x86,
ARMv8, RISC-V, etc)

Where do I
need to add

fences?

Compiler

Hardware

How much can I
buffer and reorder

memory operations?

Memory Consistency Models (MCMs)

▪ Instruction sets (ISAs) represent hardware operations (add, ld, st, …)

▪MCMs similarly represent the orderings among hardware memory ops

ISA-Level MCM (x86,
ARMv8, RISC-V, etc)

Where do I
need to add

fences?

Compiler

Hardware

How much can I
buffer and reorder

memory operations?

In a nutshell: MCMs specify what value will be
returned when your program does a load!

Memory Consistency Models (MCMs)

JVMLLVM IR PTX SPIR

Java

Bytecode

C11/

C++11

Cuda OpenCL

x86

CPU

ARM

CPU

Power

CPU

Nvidia

GPU

AMD

GPU

…

…

…

Shared Virtual Memory

Memory Consistency Models (MCMs)

Specify rules and guarantees about the ordering and
visibility of accesses to shared memory [Sorin et al., 2011].

Memory Consistency Models (MCMs)

JVMLLVM IR PTX SPIR

Java

Bytecode

C11/

C++11

Cuda OpenCL

x86

CPU

ARM

CPU

Power

CPU

Nvidia

GPU

AMD

GPU

…

…

…

Shared Virtual Memory

SW MCMs

Memory Consistency Models (MCMs)

Specify rules and guarantees about the ordering and
visibility of accesses to shared memory [Sorin et al., 2011].

Memory Consistency Models (MCMs)

JVMLLVM IR PTX SPIR

Java

Bytecode

C11/

C++11

Cuda OpenCL

x86

CPU

ARM

CPU

Power

CPU

Nvidia

GPU

AMD

GPU

…

…

…

Shared Virtual Memory

HW MCMs

Memory Consistency Models (MCMs)

Specify rules and guarantees about the ordering and
visibility of accesses to shared memory [Sorin et al., 2011].

Memory Consistency Models (MCMs)

JVMLLVM IR PTX SPIR

Java

Bytecode

C11/

C++11

Cuda OpenCL

x86

CPU

ARM

CPU

Power

CPU

Nvidia

GPU

AMD

GPU

…

…

…

Shared Virtual Memory

IR MCMs

Memory Consistency Models (MCMs)

Specify rules and guarantees about the ordering and
visibility of accesses to shared memory [Sorin et al., 2011].

Interface (e.g. ISA-Level MCM)

The Need for MCM Verification
▪MCMs are specified at interfaces between layers of the stack

• Upper layers target MCM; lower layers must maintain it for all programs!

Upper layer (e.g. Compiler)

Lower layer (e.g. Microarchitecture1)

Interface MCM (e.g. ISA-level MCM)

1Microarchitecture is a component-level (e.g. caches, pipeline stages, store buffers) model of the hardware.

Interface (e.g. ISA-Level MCM)

The Need for MCM Verification
▪MCMs are specified at interfaces between layers of the stack

• Upper layers target MCM; lower layers must maintain it for all programs!

Targets MCM of
lower layer

Upper layer (e.g. Compiler)

Lower layer (e.g. Microarchitecture1)

Interface MCM (e.g. ISA-level MCM)

1Microarchitecture is a component-level (e.g. caches, pipeline stages, store buffers) model of the hardware.

Interface (e.g. ISA-Level MCM)

The Need for MCM Verification
▪MCMs are specified at interfaces between layers of the stack

• Upper layers target MCM; lower layers must maintain it for all programs!

Targets MCM of
lower layer

Upper layer (e.g. Compiler)

Lower layer (e.g. Microarchitecture1)

Must maintain
MCM of interface!

1Microarchitecture is a component-level (e.g. caches, pipeline stages, store buffers) model of the hardware.

???

The Need for MCM Verification
▪MCMs are specified at interfaces between layers of the stack

• Upper layers target MCM; lower layers must maintain it for all programs!

Targets MCM of
lower layer

Upper layer (e.g. Compiler)

Lower layer (e.g. Microarchitecture1)

Must maintain
MCM of interface!

1Microarchitecture is a component-level (e.g. caches, pipeline stages, store buffers) model of the hardware.

The Check Suite: Automated Tools For Verifying
Memory Orderings and their Security Implications

High-Level Languages (HLL)

Compiler

Architecture (ISA)

Microarchitecture

OS

RTL (e.g. Verilog)

PipeCheck [Micro ‘14] [IEEE MICRO Top Picks]

TriCheck [ASPLOS ‘17] [IEEE MICRO Top Picks]

CCICheck [Micro ‘15] [Nominated for Best Paper Award]

COATCheck [ASPLOS ‘16] [IEEE MICRO Top Picks]

RTLCheck [Micro ‘17] [IEEE MICRO Top Picks Honorable Mention]

• Axiomatic specifications -> Happens-before graphs
• Cyclic => Impossible, Acyclic => Possible

• Model Checking space of graphs using SMT solvers
• Most tools written in Gallina => can be proven correct

A

C

B

CheckMate
[Micro ‘18]
[IEEE Micro
Top Picks]

PipeProof
[Micro ‘18]
[Best Paper Nominee.
IEEE Micro Top Picks
Honorable Mention]

http://check.cs.princeton.edu

The Check Suite: Automated Tools For Verifying
Memory Orderings and their Security Implications

High-Level Languages (HLL)

Compiler

Architecture (ISA)

Microarchitecture

OS

RTL (e.g. Verilog)

PipeCheck [Micro ‘14] [IEEE MICRO Top Picks]

TriCheck [ASPLOS ‘17] [IEEE MICRO Top Picks]

CCICheck [Micro ‘15] [Nominated for Best Paper Award]

COATCheck [ASPLOS ‘16] [IEEE MICRO Top Picks]

RTLCheck [Micro ‘17] [IEEE MICRO Top Picks Honorable Mention]

• Axiomatic specifications -> Happens-before graphs
• Cyclic => Impossible, Acyclic => Possible

• Model Checking space of graphs using SMT solvers
• Most tools written in Gallina => can be proven correct

A

C

B

CheckMate
[Micro ‘18]
[IEEE Micro
Top Picks]

PipeProof
[Micro ‘18]
[Best Paper Nominee.
IEEE Micro Top Picks
Honorable Mention]

http://check.cs.princeton.edu

So far, tools have found bugs in:
• Widely-used Research simulator
• Cache coherence paper
• IBM XL C++ compiler (fixed in v13.1.5)
• In-design commercial processors
• RISC-V ISA specification
• Open-source RTL (Verilog)
• C++ 11 mem model
• SpectrePrime, MeltdownPrime

The Check Suite: Automated Tools For Verifying
Memory Orderings and their Security Implications

High-Level Languages (HLL)

Compiler

Architecture (ISA)

Microarchitecture

OS

RTL (e.g. Verilog)

PipeCheck [Micro ‘14] [IEEE MICRO Top Picks]

TriCheck [ASPLOS ‘17] [IEEE MICRO Top Picks]

CCICheck [Micro ‘15] [Nominated for Best Paper Award]

COATCheck [ASPLOS ‘16] [IEEE MICRO Top Picks]

RTLCheck [Micro ‘17] [IEEE MICRO Top Picks Honorable Mention]

• Axiomatic specifications -> Happens-before graphs
• Cyclic => Impossible, Acyclic => Possible

• Model Checking space of graphs using SMT solvers
• Most tools written in Gallina => can be proven correct

A

C

B

CheckMate
[Micro ‘18]
[IEEE Micro
Top Picks]

PipeProof
[Micro ‘18]
[Best Paper Nominee.
IEEE Micro Top Picks
Honorable Mention]

http://check.cs.princeton.edu

So far, tools have found bugs in:
• Widely-used Research simulator
• Cache coherence paper
• IBM XL C++ compiler (fixed in v13.1.5)
• In-design commercial processors
• RISC-V ISA specification
• Open-source RTL (Verilog)
• C++ 11 mem model
• SpectrePrime, MeltdownPrime

The Check Suite: Automated Tools For Verifying
Memory Orderings and their Security Implications

High-Level Languages (HLL)

Compiler

Architecture (ISA)

Microarchitecture

OS

RTL (e.g. Verilog)

PipeCheck [Micro ‘14] [IEEE MICRO Top Picks]

TriCheck [ASPLOS ‘17] [IEEE MICRO Top Picks]

CCICheck [Micro ‘15] [Nominated for Best Paper Award]

COATCheck [ASPLOS ‘16] [IEEE MICRO Top Picks]

RTLCheck [Micro ‘17] [IEEE MICRO Top Picks Honorable Mention]

• Axiomatic specifications -> Happens-before graphs
• Cyclic => Impossible, Acyclic => Possible

• Model Checking space of graphs using SMT solvers
• Most tools written in Gallina => can be proven correct

A

C

B

CheckMate
[Micro ‘18]
[IEEE Micro
Top Picks]

PipeProof
[Micro ‘18]
[Best Paper Nominee.
IEEE Micro Top Picks
Honorable Mention]

http://check.cs.princeton.edu

So far, tools have found bugs in:
• Widely-used Research simulator
• Cache coherence paper
• IBM XL C++ compiler (fixed in v13.1.5)
• In-design commercial processors
• RISC-V ISA specification
• Open-source RTL (Verilog)
• C++ 11 mem model
• SpectrePrime, MeltdownPrime

Talk Outline
▪Overview and Motivation

▪Memory Consistency Background

▪PipeProof: All-Program Microarchitectural MCM Verification

▪RTLCheck: MCM Verification of Verilog RTL

▪Expanding to other domains

▪Conclusion

14

Microarchitectural MCM Verification
Microarchitecture

SC/TSO/RISC-V MCM?

?

Memory Hierarchy

WB

EX

IF

WB

EX

IF

...

...

Core 0 Core n

▪PipeProof proves that a microarchitecture respects its ISA MCM

• For all possible programs!

▪How do we formally specify

• ISA-level MCMs?

• Microarchitectural orderings?

▪MCMs often defined using relational patterns
• [Shasha and Snir TOPLAS 1988] [Alglave et al. TOPLAS 2014]

▪ ISA-level executions are graphs

• nodes: instructions, edges: ISA-level relations

▪Eg: SC is 𝑎𝑐𝑦𝑐𝑙𝑖𝑐 𝑝𝑜 ∪ 𝑐𝑜 ∪ 𝑟𝑓 ∪ 𝑓𝑟

▪ Formal specifications of ISA + HLL MCMs in recent years

• x86 [Owens et al. TPHOLS2009], ARM [Pulte et al. POPL2018], C11 [Batty et al. POPL 2011], …

▪Automated formal tools e.g. herd [Alglave et al. TOPLAS 2014]

• Can formally analyse small test programs against these models

ISA-Level MCM Specifications

(i1) (i2) (i3) (i4)
po porf

fr

Core 0 Core 1

(i1) x = 1;
(i2) y = 1;

(i3) r1 = y;
(i4) r2 = x;

SC Forbids: r1 = 1, r2 = 0

Legend:
po = Program order
co = coherence order
rf = reads-from
fr = from-reads

16

Message passing (mp) litmus test

▪MCMs often defined using relational patterns
• [Shasha and Snir TOPLAS 1988] [Alglave et al. TOPLAS 2014]

▪ ISA-level executions are graphs

• nodes: instructions, edges: ISA-level relations

▪Eg: SC is 𝑎𝑐𝑦𝑐𝑙𝑖𝑐 𝑝𝑜 ∪ 𝑐𝑜 ∪ 𝑟𝑓 ∪ 𝑓𝑟

▪ Formal specifications of ISA + HLL MCMs in recent years

• x86 [Owens et al. TPHOLS2009], ARM [Pulte et al. POPL2018], C11 [Batty et al. POPL 2011], …

▪Automated formal tools e.g. herd [Alglave et al. TOPLAS 2014]

• Can formally analyse small test programs against these models

ISA-Level MCM Specifications

(i1) (i2) (i3) (i4)
po porf

fr

Core 0 Core 1

(i1) x = 1;
(i2) y = 1;

(i3) r1 = y;
(i4) r2 = x;

SC Forbids: r1 = 1, r2 = 0

Legend:
po = Program order
co = coherence order
rf = reads-from
fr = from-reads

16

Message passing (mp) litmus test

▪MCMs often defined using relational patterns
• [Shasha and Snir TOPLAS 1988] [Alglave et al. TOPLAS 2014]

▪ ISA-level executions are graphs

• nodes: instructions, edges: ISA-level relations

▪Eg: SC is 𝑎𝑐𝑦𝑐𝑙𝑖𝑐 𝑝𝑜 ∪ 𝑐𝑜 ∪ 𝑟𝑓 ∪ 𝑓𝑟

▪ Formal specifications of ISA + HLL MCMs in recent years

• x86 [Owens et al. TPHOLS2009], ARM [Pulte et al. POPL2018], C11 [Batty et al. POPL 2011], …

▪Automated formal tools e.g. herd [Alglave et al. TOPLAS 2014]

• Can formally analyse small test programs against these models

ISA-Level MCM Specifications

(i1) (i2) (i3) (i4)
po porf

fr

Core 0 Core 1

(i1) x = 1;
(i2) y = 1;

(i3) r1 = y;
(i4) r2 = x;

SC Forbids: r1 = 1, r2 = 0

Legend:
po = Program order
co = coherence order
rf = reads-from
fr = from-reads

16

Message passing (mp) litmus test

▪MCMs often defined using relational patterns
• [Shasha and Snir TOPLAS 1988] [Alglave et al. TOPLAS 2014]

▪ ISA-level executions are graphs

• nodes: instructions, edges: ISA-level relations

▪Eg: SC is 𝑎𝑐𝑦𝑐𝑙𝑖𝑐 𝑝𝑜 ∪ 𝑐𝑜 ∪ 𝑟𝑓 ∪ 𝑓𝑟

▪ Formal specifications of ISA + HLL MCMs in recent years

• x86 [Owens et al. TPHOLS2009], ARM [Pulte et al. POPL2018], C11 [Batty et al. POPL 2011], …

▪Automated formal tools e.g. herd [Alglave et al. TOPLAS 2014]

• Can formally analyse small test programs against these models

ISA-Level MCM Specifications

(i1) (i2) (i3) (i4)
po porf

fr

Core 0 Core 1

(i1) x = 1;
(i2) y = 1;

(i3) r1 = y;
(i4) r2 = x;

SC Forbids: r1 = 1, r2 = 0

Legend:
po = Program order
co = coherence order
rf = reads-from
fr = from-reads

16

Message passing (mp) litmus test

▪Developed by PipeCheck [Lustig et al. MICRO 2014]

▪Microarchitecture performs instrs. in stages

▪Microarchitectural executions are µhb graphs

• Nodes: instr. sub-events, edges: happens-before relationships

▪Cyclic µhb graph → unobservable, Acyclic → observable

Microarchitectural Happens-Before (µhb) Graphs

Legend:
IF = Fetch
EX = Execute
WB = Writeback

Message passing (mp) litmus test

Core 0 Core 1

(i1) x = 1;
(i2) y = 1;

(i3) r1 = y;
(i4) r2 = x;

SC Forbids: r1 = 1, r2 = 0

17

(i1) (i2) (i3) (i4)
po porf

fr

Memory Hierarchy

WB

EX

IF

WB

EX

IF

simpleSC microarchitecture
...

...

Core 0 Core n

▪Developed by PipeCheck [Lustig et al. MICRO 2014]

▪Microarchitecture performs instrs. in stages

▪Microarchitectural executions are µhb graphs

• Nodes: instr. sub-events, edges: happens-before relationships

▪Cyclic µhb graph → unobservable, Acyclic → observable

Microarchitectural Happens-Before (µhb) Graphs

IF

EX

WB

Legend:
IF = Fetch
EX = Execute
WB = Writeback

Message passing (mp) litmus test

Core 0 Core 1

(i1) x = 1;
(i2) y = 1;

(i3) r1 = y;
(i4) r2 = x;

SC Forbids: r1 = 1, r2 = 0

17

(i1) (i2) (i3) (i4)
po porf

fr

Memory Hierarchy

WB

EX

IF

WB

EX

IF

simpleSC microarchitecture
...

...

Core 0 Core n

▪Developed by PipeCheck [Lustig et al. MICRO 2014]

▪Microarchitecture performs instrs. in stages

▪Microarchitectural executions are µhb graphs

• Nodes: instr. sub-events, edges: happens-before relationships

▪Cyclic µhb graph → unobservable, Acyclic → observable

Microarchitectural Happens-Before (µhb) Graphs

IF

EX

WB

Legend:
IF = Fetch
EX = Execute
WB = Writeback

Message passing (mp) litmus test

Core 0 Core 1

(i1) x = 1;
(i2) y = 1;

(i3) r1 = y;
(i4) r2 = x;

SC Forbids: r1 = 1, r2 = 0

17

(i1) (i2) (i3) (i4)
po porf

fr

Memory Hierarchy

WB

EX

IF

WB

EX

IF

simpleSC microarchitecture
...

...

Core 0 Core n

▪Developed by PipeCheck [Lustig et al. MICRO 2014]

▪Microarchitecture performs instrs. in stages

▪Microarchitectural executions are µhb graphs

• Nodes: instr. sub-events, edges: happens-before relationships

▪Cyclic µhb graph → unobservable, Acyclic → observable

Microarchitectural Happens-Before (µhb) Graphs

IF

EX

WB

Legend:
IF = Fetch
EX = Execute
WB = Writeback

Message passing (mp) litmus test

Core 0 Core 1

(i1) x = 1;
(i2) y = 1;

(i3) r1 = y;
(i4) r2 = x;

SC Forbids: r1 = 1, r2 = 0

17

(i1) (i2) (i3) (i4)
po porf

fr

Memory Hierarchy

WB

EX

IF

WB

EX

IF

simpleSC microarchitecture
...

...

Core 0 Core n

Microarchitectural MCM Verification
Microarchitecture

SC/TSO/RISC-V MCM?

?

Memory Hierarchy

WB

EX

IF

WB

EX

IF

...

...

Core 0 Core n

Microarchitecture Specification in μSpec DSL
Microarchitectural MCM Verification

SC/TSO/RISC-V MCM?

?

Memory Hierarchy

WB

EX

IF

WB

EX

IF

...

...

Core 0 Core nAxiom "PO_Fetch":
forall microops "i1",
forall microops "i2",
SameCore i1 i2 /\ ProgramOrder i1 i2 =>
AddEdge ((i1, Fetch), (i2, Fetch), "PO").

Axiom "Execute_stage_is_in_order":
forall microops "i1",
...

▪µSpec DSL [Lustig et al. ASPLOS 2016] is similar to first-order logic (FOL)

• forall, exists, AND (/\), OR (\/), NOT (~), implication (=>)

• Has built-in predicates which take memory operations as input

− e.g. ProgramOrder i j where i and j are loads/stores

• Predicates can reference nodes and edges (µhb edges closed under transitivity)

− e.g. EdgeExists ((i1, Fetch), (i2, Fetch))

▪PipeProof verifies that a microarchitecture correctly
respects its ISA MCM across all possible programs

• Early-stage design-time verification (i.e. before RTL)

Microarch. and
ISA MCM Specs

All-Program MCM
Correctness Proof!

PipeProof

High-Level Languages (HLL)

Compiler

Instruction Set (ISA)

Microarchitecture

Processor RTL (Verilog)

PipeProof: Automated All-Program MCM Verif.

[Yatin A. Manerkar, Daniel Lustig, Margaret Martonosi, and Aarti Gupta. PipeProof: Automated Memory Consistency Proofs for
Microarchitectural Specifications. The 51st Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), October 2018.]

19

Aux. Inputs
(e.g. Mappings)

Verifying Across All Possible Programs
▪Are all forbidden programs microarchitecturally unobservable?

• If so, then microarchitecture is correct

▪ Infinite number of forbidden programs

• E.g.: For SC, must check all possibilities of 𝑐𝑦𝑐𝑙𝑖𝑐(𝑝𝑜 ∪ 𝑐𝑜 ∪ 𝑟𝑓 ∪ 𝑓𝑟)

▪Prove using abstractions and induction

• Based on Counterexample-guided abstraction refinement [Clarke et al. CAV 2000]

20

Verifying Across All Possible Programs
▪Are all forbidden programs microarchitecturally unobservable?

• If so, then microarchitecture is correct

▪ Infinite number of forbidden programs

• E.g.: For SC, must check all possibilities of 𝑐𝑦𝑐𝑙𝑖𝑐(𝑝𝑜 ∪ 𝑐𝑜 ∪ 𝑟𝑓 ∪ 𝑓𝑟)

▪Prove using abstractions and induction

• Based on Counterexample-guided abstraction refinement [Clarke et al. CAV 2000]

i1

rf

i2
po

i1 i3

fr

i2
poco

po rf
i1 i3

co

i2 i4
po

corf
i1 i3

fr

i2 i4
po …

20

All non-unary cycles containing fr
(Infinite set)

i1

fr

i2
po

i1 i3

fr

i2
poco

po rf
i1 i3

fr

i2 i4
po

corf
i1 i3

fr

i2 i4
po

…

The Transitive Chain (TC) Abstraction

21

All non-unary cycles containing fr
(Infinite set)

i1

fr

i2
po

i1 i3

fr

i2
poco

po rf
i1 i3

fr

i2 i4
po

corf
i1 i3

fr

i2 i4
po

…

The Transitive Chain (TC) Abstraction

Cycle = Transitive Chain (sequence)
+ Loopback edge (fr)

21

i1 in
r1…n-1

fr

All non-unary cycles containing fr
(Infinite set)

i1

fr

i2
po

i1 i3

fr

i2
poco

po rf
i1 i3

fr

i2 i4
po

corf
i1 i3

fr

i2 i4
po

…

The Transitive Chain (TC) Abstraction
Transitive chain (sequence)

of ISA-level edges

Cycle = Transitive Chain (sequence)
+ Loopback edge (fr)

21

i1 in
r1…n-1

fr

All non-unary cycles containing fr
(Infinite set)

i1

fr

i2
po

i1 i3

fr

i2
poco

po rf
i1 i3

fr

i2 i4
po

corf
i1 i3

fr

i2 i4
po

…

Some µhb
edge from i1

to in

(transitive
connection)

IF

EX

WB

The Transitive Chain (TC) Abstraction

Cycle = Transitive Chain (sequence)
+ Loopback edge (fr)

ISA-level transitive chain =>
Microarch. level transitive connection

21

i1

fr

i2
po

i1 i3

fr

i2
poco

po rf
i1 i3

fr

i2 i4
po

corf
i1 i3

fr

i2 i4
po

…

The Transitive Chain (TC) Abstraction

22

Infinite!

⟹
Using

TC Abstraction

i1

fr

i2
po

i1 i3

fr

i2
poco

po rf
i1 i3

fr

i2 i4
po

corf
i1 i3

fr

i2 i4
po

…

The Transitive Chain (TC) Abstraction

22

Finite!Infinite!

i1 in
r1…n-1

fr

Some µhb
edge from i1

to in

(transitive
connection)

IF

EX

WB

3 x 3 = 9 possible
transitive connections

from i1 to in

⟹
Using

TC Abstraction

i1

fr

i2
po

i1 i3

fr

i2
poco

po rf
i1 i3

fr

i2 i4
po

corf
i1 i3

fr

i2 i4
po

…

i1 in
IF

EX

WB

fr
i1 in

IF

EX

WB

fr
i1 in

IF

EX

WB

fr

i1 in
IF

EX

WB

fr
i1 in

IF

EX

WB

fr
i1 in

IF

EX

WB

fr

i1 in
IF

EX

WB

fr
i1 in

IF

EX

WB

fr
i1 in

IF

EX

WB

fr

The Transitive Chain (TC) Abstraction

22

Finite!Infinite!

⟹
Using

TC Abstraction

i1

fr

i2
po

i1 i3

fr

i2
poco

po rf
i1 i3

fr

i2 i4
po

corf
i1 i3

fr

i2 i4
po

…

i1 in
IF

EX

WB

fr
i1 in

IF

EX

WB

fr
i1 in

IF

EX

WB

fr

i1 in
IF

EX

WB

fr
i1 in

IF

EX

WB

fr
i1 in

IF

EX

WB

fr

i1 in
IF

EX

WB

fr
i1 in

IF

EX

WB

fr
i1 in

IF

EX

WB

fr

Abstraction soundness
automatically verified
as a supporting proof!

The Transitive Chain (TC) Abstraction

22

Finite!Infinite!

i1 in

fr

Some µhb
edge from

i1 to in
(transitive

connection)

All possible
transitive

connections

Other ISA-level
cycles…

i1 in

po

Some µhb
edge from

i1 to in
(transitive

connection)

Cycles containing fr

Cycles containing po

Microarchitectural Correctness Proof

23

i1 in

IF

EX

WB

fr
✓NoDecomp

i1 in

fr

Some µhb
edge from

i1 to in
(transitive

connection)

All possible
transitive

connections

Other transitive
connections…

Other ISA-level
cycles…

i1 in

po

Some µhb
edge from

i1 to in
(transitive

connection)

Cycles containing fr

Cycles containing po

Microarchitectural Correctness Proof

23

i1 in
IF

EX

WB

fr

?AbsCounterX

i1 in

IF

EX

WB

fr
✓NoDecomp

i1 in

fr

Some µhb
edge from

i1 to in
(transitive

connection)

All possible
transitive

connections

Other transitive
connections…

Other ISA-level
cycles…

i1 in

po

Some µhb
edge from

i1 to in
(transitive

connection)

Cycles containing fr

Cycles containing po

Acyclic graph with transitive connection =>

Abstract Counterexample (i.e. possible bug)

Microarchitectural Correctness Proof

23

i1 in
IF

EX

WB

fr

?AbsCounterX

i1 in

IF

EX

WB

fr
✓NoDecomp

i1 in

fr

Some µhb
edge from

i1 to in
(transitive

connection)

All possible
transitive

connections

Other transitive
connections…

Other ISA-level
cycles…

i1 in

po

Some µhb
edge from

i1 to in
(transitive

connection)

Cycles containing fr

Cycles containing po

Transitive connection (green edge) may

represent one or multiple ISA-level edges

Microarchitectural Correctness Proof

23

i1 in
IF

EX

WB

fr

?AbsCounterX

i1 in

IF

EX

WB

fr
✓NoDecomp

i1 in

fr

Some µhb
edge from

i1 to in
(transitive

connection)

Try to Concretize (Replace
transitive connection

with one ISA-level edge)

Microarch Buggy,
Return Counterexample

Observable

All possible
transitive

connections

Other transitive
connections…

Other ISA-level
cycles…

i1 in

po

Some µhb
edge from

i1 to in
(transitive

connection)

Cycles containing fr

Cycles containing po

Transitive connection (green edge) may

represent one or multiple ISA-level edges

Microarchitectural Correctness Proof

23

i1 in
IF

EX

WB

fr

?AbsCounterX

i1 in

IF

EX

WB

fr
✓NoDecomp

i1 in

fr

Some µhb
edge from

i1 to in
(transitive

connection)

Try to Concretize (Replace
transitive connection

with one ISA-level edge)

Unobs.

Microarch Buggy,
Return Counterexample

Observable

Consider all
Decompositions

(Inductively break
down Transitive Chain)

All possible
transitive

connections

Other transitive
connections…

Other ISA-level
cycles…

i1 in

po

Some µhb
edge from

i1 to in
(transitive

connection)

Cycles containing fr

Cycles containing po

Transitive connection (green edge) may

represent one or multiple ISA-level edges

Microarchitectural Correctness Proof

23

i1 in
IF

EX

WB

fr

?AbsCounterX

i1 in

IF

EX

WB

fr
✓NoDecomp

i1 in

fr

Some µhb
edge from

i1 to in
(transitive

connection)

Try to Concretize (Replace
transitive connection

with one ISA-level edge)

Unobs.

Microarch Buggy,
Return Counterexample

Observable

Consider all
Decompositions

(Inductively break
down Transitive Chain)

All possible
transitive

connections

Other transitive
connections…

Other ISA-level
cycles…

“Refinement Loop”

i1 in

po

Some µhb
edge from

i1 to in
(transitive

connection)

Cycles containing fr

Cycles containing po

Transitive connection (green edge) may

represent one or multiple ISA-level edges

Microarchitectural Correctness Proof

23

i1 in

IF

EX

WB

fr
?AbsCounterX

Refinement Loop: Concretization
▪Replaces transitive connection with a single ISA-level edge

• All concretizations must be unobservable

• Observable concretizations are counterexamples (bugs)

24

i1 in

IF

EX

WB

fr

Refinement Loop: Concretization
▪Replaces transitive connection with a single ISA-level edge

• All concretizations must be unobservable

• Observable concretizations are counterexamples (bugs)

rf

24

i1 in

IF

EX

WB

fr
po

…i1 in

IF

EX

WB

fr

Refinement Loop: Concretization
▪Replaces transitive connection with a single ISA-level edge

• All concretizations must be unobservable

• Observable concretizations are counterexamples (bugs)

rf

24

p

i1

IF

EX

WB

r

q

in

fr
?AbsCounterX

Refinement Loop: Decomposition
▪ Inductively break down transitive chain

• Additional constraints may be enough to make execution unobservable

25

factorial(n) factorial(n-1) *= n

p

i1

IF

EX

WB

r

q

in

fr
?AbsCounterX

Refinement Loop: Decomposition
▪ Inductively break down transitive chain

• Additional constraints may be enough to make execution unobservable

25

factorial(n) factorial(n-1) *= n

Chain of length n Chain of length n-1 “Peeled-off” edge= +

p

i1

IF

EX

WB

r

q

in

fr

✓

Refinement Loop: Decomposition
▪ Inductively break down transitive chain

• Additional constraints may be enough to make execution unobservable

p

i1

s

in-1

IF

EX

WB

rf

r

q

in

fr

25

factorial(n) factorial(n-1) *= n

Chain of length n Chain of length n-1 “Peeled-off” edge= +

…
p

i1

IF

EX

WB

r

q

in

fr

p

i1

t

i2

IF

EX

WB

co

r

q

in

fr

✓

Refinement Loop: Decomposition
▪ Inductively break down transitive chain

• Additional constraints may be enough to make execution unobservable

p

i1

s

in-1

IF

EX

WB

rf

r

q

in

fr

25

factorial(n) factorial(n-1) *= n

Chain of length n Chain of length n-1 “Peeled-off” edge= +

…
p

i1

IF

EX

WB

r

q

in

fr

p

i1

t

i2

IF

EX

WB

co

r

q

in

fr

✓ ?

Refinement Loop: Decomposition
▪ Inductively break down transitive chain

• Additional constraints may be enough to make execution unobservable

p

i1

s

in-1

IF

EX

WB

rf

r

q

in

fr

If decomposition is abstract

counterexample, repeat concretization

and decomposition!

25

factorial(n) factorial(n-1) *= n

Chain of length n Chain of length n-1 “Peeled-off” edge= +

simpleTSO simpleTSO
(w/ Covering Sets + Memoization)

Total Time Timeout 2449.7 sec (≈ 41 mins)

simpleSC simpleSC
(w/ Covering Sets + Memoization)

Total Time 225.9 sec 19.1 sec

Results
▪Ran PipeProof on simpleSC (SC) and simpleTSO (TSO1) µarches

• 3-stage in-order pipelines

▪TSO verification made feasible by optimizations

• Explicitly checking all decompositions => case explosion

• Covering Sets Optimization (eliminate redundant transitive connections)

• Memoization (eliminate previously checked ISA-level cycles)

261TSO (Total Store Order) is the MCM of Intel x86 processors. It relaxes Store->Load ordering.

PipeProof Takeaways
▪ First Ever Automated All-Program Microarchitectural MCM Verification

• Designers get both completeness and automation of verification

• Engineers can verify microarchitectures themselves, before RTL is written!

▪Based on techniques from formal methods (CEGAR) [Clarke et al. CAV 2000]

▪Transitive Chain (TC) Abstraction models infinite set of executions

▪Accolades:

• Nominated for Best Paper at MICRO 2018

• “Honorable Mention” in 2018 IEEE Micro Top Picks of Comp. Arch. Conferences

27

Talk Outline
▪Overview and Motivation

▪Memory Consistency Background

▪PipeProof: All-Program Microarchitectural MCM Verification

▪RTLCheck: MCM Verification of Verilog RTL

▪Expanding to other domains

▪Conclusion

28

29

Microarchitectural Orderings
Verified with

PipeProof

What if I want to verify RTL (Verilog)?

po rf
i1 i3

fr

i2 i4
po

(i2)(i1)

IF

EX

WB

(i3) (i4)

ISA-Level MCM

Axiom "PO_Fetch":
forall microop "i1", "i2",
SameCore i1 i2 /\ ProgramOrder i1 i2 =>

AddEdge ((i1, IF), (i2, IF)).
...

acyclic (po U co U rf U fr)

29

RTL implementation (Verilog)

[RTL Image: Christopher Batten]

Microarchitectural Orderings
Verified with

PipeProof

What if I want to verify RTL (Verilog)?

po rf
i1 i3

fr

i2 i4
po

(i2)(i1)

IF

EX

WB

(i3) (i4)

ISA-Level MCM

Axiom "PO_Fetch":
forall microop "i1", "i2",
SameCore i1 i2 /\ ProgramOrder i1 i2 =>

AddEdge ((i1, IF), (i2, IF)).
...

acyclic (po U co U rf U fr)

?

29

RTL implementation (Verilog)

[RTL Image: Christopher Batten]

Microarchitectural Orderings
Verified with

PipeProof

What if I want to verify RTL (Verilog)?

po rf
i1 i3

fr

i2 i4
po

(i2)(i1)

IF

EX

WB

(i3) (i4)

ISA-Level MCM

Axiom "PO_Fetch":
forall microop "i1", "i2",
SameCore i1 i2 /\ ProgramOrder i1 i2 =>

AddEdge ((i1, IF), (i2, IF)).
...

acyclic (po U co U rf U fr)

?✓



[Yatin A. Manerkar, Daniel Lustig, Margaret Martonosi, and Michael Pellauer. RTLCheck: Verifying the Memory Consistency of RTL Designs.
The 50th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), October 2017.]

▪RTLCheck enables automated checking of Verilog RTL
against µspec axioms for litmus test suites

RTLCheck: Checking RTL Consistency Orderings

High-Level Languages (HLL)

Compiler

Instruction Set (ISA)

Microarchitecture

Processor RTL (Verilog)

30

Mapping
Functions

RTLCheck

Axiom "PO_Fetch":
forall microop "i1", "i2",
SameCore i1 i2 /\ ProgramOrder i1 i2 =>

AddEdge ((i1, IF), (i2, IF)).

assert property @(posedge clk) (...)
...

Core 0 Core 1

x = 1;
y = 1;

r1 = y;
r2 = x;

Litmus Testµspec axioms

Test-specific Temporal RTL Properties

[Yatin A. Manerkar, Daniel Lustig, Margaret Martonosi, and Michael Pellauer. RTLCheck: Verifying the Memory Consistency of RTL Designs.
The 50th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), October 2017.]

▪RTLCheck enables automated checking of Verilog RTL
against µspec axioms for litmus test suites

RTLCheck: Checking RTL Consistency Orderings

High-Level Languages (HLL)

Compiler

Instruction Set (ISA)

Microarchitecture

Processor RTL (Verilog)

30

Mapping
Functions

RTLCheck

Axiom "PO_Fetch":
forall microop "i1", "i2",
SameCore i1 i2 /\ ProgramOrder i1 i2 =>

AddEdge ((i1, IF), (i2, IF)).

assert property @(posedge clk) (...)
...

Core 0 Core 1

x = 1;
y = 1;

r1 = y;
r2 = x;

Litmus Testµspec axioms

Test-specific Temporal RTL Properties

SystemVerilog Assertions (SVA)
▪ SVA: Industry standard for RTL verification, e.g.: ARM [Reid et al. CAV 2016]

• Based on Linear Temporal Logic (LTL) with regular operators

▪Commercial tools (e.g. JasperGold) can formally verify SVA assertions

▪Translating µspec to SVA => RTL MCM verification using industry flows

▪But it’s not that simple!

31

assert property @(posedge clk) (...)
...

SVA Assertions

RTL Impl.

Cadence JasperGold

Assertion Proven?
Counterexample found?

Meaning can be Lost in Translation!

小心地滑
(Caution: Slippery Floor)

Meaning can be Lost in Translation!

[Image: Barbara Younger]
[Inspiration: Tae Jun Ham]

小心地滑
(Caution: Slippery Floor)

The µspec/SVA Mismatch
▪Tricky to translate µspec to SVA while maintaining µspec semantics

▪ SVA Verifiers (JasperGold) don’t implement full SVA spec!

• Causes further complications

▪Example: Outcome Filtering

• Filtering litmus test executions to those that have particular values for loads

Outcome Filtering with Execution as a Single Unit
▪ In this case, outcome filtering is easy and efficient

▪Know load values, so can draw (red) edges based on these values

• Example: i4 reads 0 => i4 must read mem before write i1

mp litmus test

Core 0 Core 1

(i1) x = 1;
(i2) y = 1;

(i3) r1 = y;
(i4) r2 = x;

IF

EX

WB

(i1) (i2) (i3) (i4)

Outcome Filtering with Execution as a Single Unit
▪ In this case, outcome filtering is easy and efficient

▪Know load values, so can draw (red) edges based on these values

• Example: i4 reads 0 => i4 must read mem before write i1

SC Forbids: r1 = 1, r2 = 0

mp litmus test

Core 0 Core 1

(i1) x = 1;
(i2) y = 1;

(i3) r1 = y;
(i4) r2 = x;

IF

EX

WB

(i1) (i2) (i3) (i4)

Outcome Filtering with Execution as a Single Unit
▪ In this case, outcome filtering is easy and efficient

▪Know load values, so can draw (red) edges based on these values

• Example: i4 reads 0 => i4 must read mem before write i1

SC Forbids: r1 = 1, r2 = 0

mp litmus test

Core 0 Core 1

(i1) x = 1;
(i2) y = 1;

(i3) r1 = y;
(i4) r2 = x;

IF

EX

WB

(i1) (i2) (i3) (i4)

Outcome Filtering with Execution as a Single Unit
▪ In this case, outcome filtering is easy and efficient

▪Know load values, so can draw (red) edges based on these values

• Example: i4 reads 0 => i4 must read mem before write i1

SC Forbids: r1 = 1, r2 = 0

mp litmus test

Core 0 Core 1

(i1) x = 1;
(i2) y = 1;

(i3) r1 = y;
(i4) r2 = x;

IF

EX

WB

(i1) (i2) (i3) (i4)

▪ In temporal logic syntax (G = always, F = eventually), this becomes:

▪Assumptions introduce liveness: expensive to check! [Cerny et al. 2010]

▪ SVA verifiers approximate: only check assumptions until current state

• This results in a property which is easier to check…

• …but makes outcome filtering impossible with such verifiers!

▪RTLCheck Solution: Generate properties that handle all test outcomes

Outcome Filtering with Temporal Logic

35

assume property (a); // e.g. Load i4 returns 0
assert property (b); // e.g. i4 reads mem before write i1

//The above is equivalent to...
assert property ((always a) implies (always b));

G a -> G b = (~(G a)) \/ G b = (F ~a) \/ G b

▪ First automated RTL MCM verification for litmus test suites

• Engineers can check MCM properties of their RTL themselves

• Compatible with existing industry flows and tools

▪Novel algorithms to translate µspec axioms to temporal SVA properties

• Ongoing work: Formalise mismatch between µspec and SVA

▪Discovered bug in memory implementation of RISC-V V-scale processor

▪Accolades:

• “Honorable Mention” in 2017 IEEE Micro Top Picks of Comp. Arch. Conferences

RTLCheck Takeaways

36

Talk Outline
▪Overview and Motivation

▪Background on MCM Specification and Verification

▪PipeProof: All-Program Microarchitectural MCM Verification

▪RTLCheck: MCM Verification of Verilog RTL

▪Expanding to other domains

▪Conclusion

37

Security Analysis with CheckMate [Trippel et al. MICRO 2018]

38

▪Work by another member of our research group (Caroline Trippel)

▪Her key insight: µhb graphs can be used for reasoning about security!

CheckMate
Hardware Exploit

Prog. Synthesis

Microarchitecture + OS Specification in Alloy

Exploit Pattern Specification

prime probe

ViCL Create

ViCL Expire

Attacker T0 on C0 Attacker T1 on C1

R [VA1]à0 R [VA1]à0

R [VA0] à r1

W [f(r1)=VA1] à 0

R [VA1]à0

VA to PA Mapping: VA1:(PA1:A), VA0:(PA0:V)

VA to Cache Index Mapping: VA1:IDX0, VA0:IDX1

Attacker T0 on C0 Attacker T1 on C1

R [VA1]à0 W [VA1]à0

R [VA0] à r1

W [f(r1)=VA1] à 0

R [VA1]à0

VA to PA Mapping: VA1:(PA1:A), VA0:(PA0:V)
VA to Cache Index Mapping: VA1:IDX0, VA0:IDX1

Attacker T0 on C0

CLFLUSH [VA2]à0

R [VA1] à r1

R [f(r1)=VA2] à 0

R [VA2]à0

A to PA Mapping: VA2:(PA1:A), VA1:(PA0:V)
VA to Cache Index Mapping: VA2:IDX0, VA1:IDX1

Victim T0 on C0 Attacker T1 on C1

R [VA1]à0

W [VA0] à r1

R [VA1]à0

VA to PA Mapping: VA1:(PA1:A), VA0:(PA0:V)
VA to Cache Index Mapping: VA1:IDX0, VA0:IDX0

Victim T0 on C0 Attacker T1 on C1

W [VA1]à0

R [VA0] à r1

R [VA1]à0

VA to PA Mapping: VA1:(PA1:A), VA0:(PA0:V)
VA to Cache Index Mapping: VA1:IDX0, VA0:IDX0

Victim T0 on C0 Attacker T1 on C1

R [VA1]à0

R [VA0] à r1

R [VA1]à0

VA to PA Mapping: VA1:(PA1:A), VA0:(PA0:V)

VA to Cache Index Mapping: VA1:IDX0, VA0:IDX0

Exploits synthesized from µhb analysis

fact Program_Order_Fetch {
all disj e0, e1 : Event |
ProgramOrder[e0, e1] =>
EdgeExists[e0, Fetch, e1, Fetch, uhb_inter]

}

fact In_Order_Decode {
all disj e0, e1 : Event |
EdgeExists[e0, Fetch, e1, Fetch, uhb_inter] =>
EdgeExists[e0, Decode, e1, Decode, uhb_inter]

}

[CheckMate: Automated Exploit Program Generation for Hardware Security Verification. Caroline Trippel, Daniel Lustig, and
Margaret Martonosi. In Proceedings of the 51st International Symposium on Microarchitecture (MICRO), October 2018.]

Security Analysis with CheckMate [Trippel et al. MICRO 2018]

38

▪Work by another member of our research group (Caroline Trippel)

▪Her key insight: µhb graphs can be used for reasoning about security!

CheckMate
Hardware Exploit

Prog. Synthesis

Microarchitecture + OS Specification in Alloy

Exploit Pattern Specification

prime probe

ViCL Create

ViCL Expire

Attacker T0 on C0 Attacker T1 on C1

R [VA1]à0 R [VA1]à0

R [VA0] à r1

W [f(r1)=VA1] à 0

R [VA1]à0

VA to PA Mapping: VA1:(PA1:A), VA0:(PA0:V)

VA to Cache Index Mapping: VA1:IDX0, VA0:IDX1

Attacker T0 on C0 Attacker T1 on C1

R [VA1]à0 W [VA1]à0

R [VA0] à r1

W [f(r1)=VA1] à 0

R [VA1]à0

VA to PA Mapping: VA1:(PA1:A), VA0:(PA0:V)
VA to Cache Index Mapping: VA1:IDX0, VA0:IDX1

Attacker T0 on C0

CLFLUSH [VA2]à0

R [VA1] à r1

R [f(r1)=VA2] à 0

R [VA2]à0

A to PA Mapping: VA2:(PA1:A), VA1:(PA0:V)
VA to Cache Index Mapping: VA2:IDX0, VA1:IDX1

Victim T0 on C0 Attacker T1 on C1

R [VA1]à0

W [VA0] à r1

R [VA1]à0

VA to PA Mapping: VA1:(PA1:A), VA0:(PA0:V)
VA to Cache Index Mapping: VA1:IDX0, VA0:IDX0

Victim T0 on C0 Attacker T1 on C1

W [VA1]à0

R [VA0] à r1

R [VA1]à0

VA to PA Mapping: VA1:(PA1:A), VA0:(PA0:V)
VA to Cache Index Mapping: VA1:IDX0, VA0:IDX0

Victim T0 on C0 Attacker T1 on C1

R [VA1]à0

R [VA0] à r1

R [VA1]à0

VA to PA Mapping: VA1:(PA1:A), VA0:(PA0:V)

VA to Cache Index Mapping: VA1:IDX0, VA0:IDX0

Exploits synthesized from µhb analysis

fact Program_Order_Fetch {
all disj e0, e1 : Event |
ProgramOrder[e0, e1] =>
EdgeExists[e0, Fetch, e1, Fetch, uhb_inter]

}

fact In_Order_Decode {
all disj e0, e1 : Event |
EdgeExists[e0, Fetch, e1, Fetch, uhb_inter] =>
EdgeExists[e0, Decode, e1, Decode, uhb_inter]

}

Includes new exploits!
(SpectrePrime, MeltdownPrime)

[CheckMate: Automated Exploit Program Generation for Hardware Security Verification. Caroline Trippel, Daniel Lustig, and
Margaret Martonosi. In Proceedings of the 51st International Symposium on Microarchitecture (MICRO), October 2018.]

Security Analysis with CheckMate [Trippel et al. MICRO 2018]

38

▪Work by another member of our research group (Caroline Trippel)

▪Her key insight: µhb graphs can be used for reasoning about security!

CheckMate
Hardware Exploit

Prog. Synthesis

Microarchitecture + OS Specification in Alloy

Exploit Pattern Specification

prime probe

ViCL Create

ViCL Expire

Attacker T0 on C0 Attacker T1 on C1

R [VA1]à0 R [VA1]à0

R [VA0] à r1

W [f(r1)=VA1] à 0

R [VA1]à0

VA to PA Mapping: VA1:(PA1:A), VA0:(PA0:V)

VA to Cache Index Mapping: VA1:IDX0, VA0:IDX1

Attacker T0 on C0 Attacker T1 on C1

R [VA1]à0 W [VA1]à0

R [VA0] à r1

W [f(r1)=VA1] à 0

R [VA1]à0

VA to PA Mapping: VA1:(PA1:A), VA0:(PA0:V)
VA to Cache Index Mapping: VA1:IDX0, VA0:IDX1

Attacker T0 on C0

CLFLUSH [VA2]à0

R [VA1] à r1

R [f(r1)=VA2] à 0

R [VA2]à0

A to PA Mapping: VA2:(PA1:A), VA1:(PA0:V)
VA to Cache Index Mapping: VA2:IDX0, VA1:IDX1

Victim T0 on C0 Attacker T1 on C1

R [VA1]à0

W [VA0] à r1

R [VA1]à0

VA to PA Mapping: VA1:(PA1:A), VA0:(PA0:V)
VA to Cache Index Mapping: VA1:IDX0, VA0:IDX0

Victim T0 on C0 Attacker T1 on C1

W [VA1]à0

R [VA0] à r1

R [VA1]à0

VA to PA Mapping: VA1:(PA1:A), VA0:(PA0:V)
VA to Cache Index Mapping: VA1:IDX0, VA0:IDX0

Victim T0 on C0 Attacker T1 on C1

R [VA1]à0

R [VA0] à r1

R [VA1]à0

VA to PA Mapping: VA1:(PA1:A), VA0:(PA0:V)

VA to Cache Index Mapping: VA1:IDX0, VA0:IDX0

Exploits synthesized from µhb analysis

fact Program_Order_Fetch {
all disj e0, e1 : Event |
ProgramOrder[e0, e1] =>
EdgeExists[e0, Fetch, e1, Fetch, uhb_inter]

}

fact In_Order_Decode {
all disj e0, e1 : Event |
EdgeExists[e0, Fetch, e1, Fetch, uhb_inter] =>
EdgeExists[e0, Decode, e1, Decode, uhb_inter]

}

ViCL abstraction [Manerkar

et al. MICRO 2015] used to
model cache behaviour

Includes new exploits!
(SpectrePrime, MeltdownPrime)

[CheckMate: Automated Exploit Program Generation for Hardware Security Verification. Caroline Trippel, Daniel Lustig, and
Margaret Martonosi. In Proceedings of the 51st International Symposium on Microarchitecture (MICRO), October 2018.]

Ongoing Work: Verifying Distributed Systems

39

▪ Joint work with Themis Melissaris

▪Distributed systems have some similarities to shared-memory systems

• Distributed protocols (e.g. Paxos) similar to cache coherence protocols

• Replicated data store consistency models similar to MCMs

Ongoing Work: Verifying Distributed Systems

39

▪ Joint work with Themis Melissaris

▪Distributed systems have some similarities to shared-memory systems

• Distributed protocols (e.g. Paxos) similar to cache coherence protocols

• Replicated data store consistency models similar to MCMs Tran 1 Tran 2

Tran_start

Op
1

Op
2

Tran_end

W x 1 W y 1

R y 0 R x 0

Ongoing Work: Verifying Distributed Systems

39[Cartoon by Julia Evans]

▪ Joint work with Themis Melissaris

▪Distributed systems have some similarities to shared-memory systems

• Distributed protocols (e.g. Paxos) similar to cache coherence protocols

• Replicated data store consistency models similar to MCMs

▪Also have features with no shared-memory analogue!

• Correctness in the presence of node failures

• Eventual consistency [Vogels CACM 2009]

Tran 1 Tran 2

Tran_start

Op
1

Op
2

Tran_end

W x 1 W y 1

R y 0 R x 0

Talk Outline
▪Overview and Motivation

▪Background on MCM Specification and Verification

▪PipeProof: All-Program Microarchitectural MCM Verification

▪RTLCheck: MCM Verification of Verilog RTL

▪Expanding to other domains

▪Conclusion

40

▪Complexity of computing hardware is increasing

• Ubiquitous parallelism and increased heterogeneity

▪Automated formal verification helps engineers handle this complexity

• Give engineers the ability to formally verify their systems themselves

• PipeProof: Automated All-Program Microarchitectural MCM Verification

• RTLCheck: Per-Program MCM Verification of RTL Designs

▪Techniques for MCM analysis applicable to other domains

• e.g. Security [Trippel et al. MICRO 2018] and distributed systems

Conclusions

41

Collaborators

42

Margaret Martonosi Daniel Lustig
(NVIDIA)

Aarti Gupta Michael Pelluaer
(NVIDIA)

Caroline Trippel Sharad Malik Hongce Zhang

Yatin A. Manerkar

Automated Formal

Memory Consistency Verification

of Hardware

http://www.cs.princeton.edu/~manerkar

Princeton University

June 23rd, 2019

43

Backup Slides

44

Chain Invariants
▪Abstractly represent repeated ISA-level patterns

▪ Sometimes needed for refinement loop to terminate

▪ Inductively proven by PipeProof before their use in proof algorithms

▪Example: checking for edge from i1 to i5 (TC abstraction support
proof) Abstract Counterexample

i1 i3 i4
fr

i5
po

45

Chain Invariants
▪Abstractly represent repeated ISA-level patterns

▪ Sometimes needed for refinement loop to terminate

▪ Inductively proven by PipeProof before their use in proof algorithms

▪Example: checking for edge from i1 to i5 (TC abstraction support
proof) Repeating ISA-Level Pattern

i1 i3 i4
fr

i5
po

i1 i3 i4
fr

i2
po

i5
po

45

Chain Invariants
▪Abstractly represent repeated ISA-level patterns

▪ Sometimes needed for refinement loop to terminate

▪ Inductively proven by PipeProof before their use in proof algorithms

▪Example: checking for edge from i1 to i5 (TC abstraction support
proof) Repeating ISA-Level Pattern

i1 i3 i4
fr

i5
po

i1 i3 i4
fr

i2
po

i5
po

Can continue
decomposing

in this way
forever!

45

Chain Invariants
▪Abstractly represent repeated ISA-level patterns

▪ Sometimes needed for refinement loop to terminate

▪ Inductively proven by PipeProof before their use in proof algorithms

▪Example: checking for edge from i1 to i5 (TC abstraction support
proof) Chain Invariant Applied

i1 i3 i4
fr

i5
po

i1 i3 i4
fr

i2
po

i5
po

i1 i4
fr

i2
po_plus

i5

-po_plus = arbitrary
number of repetitions of po
-Next edge peeled off will
be something other than po

45

Covering Sets Optimization
▪Must verify across all possible transitive connections

▪ Each decomposition creates a new set of transitive connections
• Can quickly lead to a case explosion

▪ The Covering Sets Optimization eliminates redundant transitive
connections

x

y

i1

z

in

IF

EX

WB

fr

x

y

i1

z

in

IF

EX

WB

fr

BA

Covering Sets Optimization
▪Must verify across all possible transitive connections

▪ Each decomposition creates a new set of transitive connections
• Can quickly lead to a case explosion

▪ The Covering Sets Optimization eliminates redundant transitive
connections

x

y

i1

z

in

IF

EX

WB

fr

x

y

i1

z

in

IF

EX

WB

fr

BA

Graph A has an edge
from x→z (tran conn.)

Covering Sets Optimization
▪Must verify across all possible transitive connections

▪ Each decomposition creates a new set of transitive connections
• Can quickly lead to a case explosion

▪ The Covering Sets Optimization eliminates redundant transitive
connections

x

y

i1

z

in

IF

EX

WB

fr

x

y

i1

z

in

IF

EX

WB

fr

BA

Graph B has edges from
y→z (tran conn.) and
x→z (by transitivity)

Graph A has an edge
from x→z (tran conn.)

Covering Sets Optimization
▪Must verify across all possible transitive connections

▪ Each decomposition creates a new set of transitive connections
• Can quickly lead to a case explosion

▪ The Covering Sets Optimization eliminates redundant transitive
connections

x

y

i1

z

in

IF

EX

WB

fr

x

y

i1

z

in

IF

EX

WB

fr

BA

Graph B has edges from
y→z (tran conn.) and
x→z (by transitivity)

Graph A has an edge
from x→z (tran conn.)

Correctness of A => Correctness of B (since B contains A’s tran conn.)
Checking B explicitly is redundant!

Memoization Optimization
▪Base PipeProof algorithm examines some cycles multiple times

▪Memoization eliminates redundant checks of cycles that have already
been verified

i1

fr

i2

i3

i4

rf

po po

Memoization Optimization
▪Base PipeProof algorithm examines some cycles multiple times

▪Memoization eliminates redundant checks of cycles that have already
been verified

i1 in

IF

EX

WB

fr

Some
Tran.
Conn.

i1

fr

i2

i3

i4

rf

po po

fr

Memoization Optimization
▪Base PipeProof algorithm examines some cycles multiple times

▪Memoization eliminates redundant checks of cycles that have already
been verified

i1 in

IF

EX

WB

fr

Some
Tran.
Conn.

i1

fr

i2

i3

i4

rf

po po

i1 in

IF

EX

WB

po

Some
Tran.
Conn.

po po

Memoization Optimization
▪Base PipeProof algorithm examines some cycles multiple times

▪Memoization eliminates redundant checks of cycles that have already
been verified

i1 in

IF

EX

WB

fr

Some
Tran.
Conn.

i1 in

IF

EX

WB

rf

Some
Tran.
Conn.

i1

fr

i2

i3

i4

rf

po po

i1 in

IF

EX

WB

po

Some
Tran.
Conn.rf

Same cycle is checked 3 times!

Memoization Optimization
▪Base PipeProof algorithm examines some cycles multiple times

▪Memoization eliminates redundant checks of cycles that have already
been verified

i1 in

IF

EX

WB

fr

Some
Tran.
Conn.

i1 in

IF

EX

WB

rf

Some
Tran.
Conn.

i1

fr

i2

i3

i4

rf

po po

i1 in

IF

EX

WB

po

Some
Tran.
Conn.rf

Procedure: If all ISA-level cycles containing edge ri have been checked,
do not peel off ri edges when checking subsequent cycles

Same cycle is checked 3 times!

Filtering Invalid Decompositions
▪When decomposing a transitive connection, the decomposition should

guarantee the transitive connections of its parent abstract cexes.

▪Decompositions that do not do this are invalid and filtered out

p

i1

r

q

in

IF

EX

WB

fr

?AbsCounterX

p

i1 in-1

IF

EX

WB

rf

r

q

in

fr
Invalid Decomposition

The Adequate Model Over-Approximation
▪Addition of an instruction can make unobservable execution observable!

▪Need to work with over-approximation of microarchitectural constraints

▪PipeProof sets all exists clauses to true as its over-approximation

t

i1 i2

IF

EX

WB

fr

v

i3
co

SubsetExec

u

t

i1 i2

IF

EX

WB

fr

v

i3

SubsetWithExternal

u

i4
rf

co

PipeProof Block Diagram
Microarchitecture

Ordering Spec.
ISA-Level

MCM Spec.

PipeProof

ISA Edge ->
Microarch. Mapping

Result: All-Program MCM Correctness Proof?
Counterexample found?

Chain
Invariants

Transitive Chain
Abstraction

Support Proof

Microarch.
Correctness

Proof

Cex. Generation

Proof of
Chain Invariants

FailFail

PassPass

PipeProof Block Diagram
Microarchitecture

Ordering Spec.
ISA-Level

MCM Spec.

PipeProof

ISA Edge ->
Microarch. Mapping

Result: All-Program MCM Correctness Proof?
Counterexample found?

Chain
Invariants

Transitive Chain
Abstraction

Support Proof

Microarch.
Correctness

Proof

Cex. Generation

Proof of
Chain Invariants

FailFail

PassPass

PipeProof Block Diagram
Microarchitecture

Ordering Spec.
ISA-Level

MCM Spec.

PipeProof

ISA Edge ->
Microarch. Mapping

Result: All-Program MCM Correctness Proof?
Counterexample found?

Chain
Invariants

Transitive Chain
Abstraction

Support Proof

Microarch.
Correctness

Proof

Cex. Generation

Proof of
Chain Invariants

FailFail

PassPass

Links ISA-
level and

µarch
executions

PipeProof Block Diagram
Microarchitecture

Ordering Spec.
ISA-Level

MCM Spec.

PipeProof

ISA Edge ->
Microarch. Mapping

Result: All-Program MCM Correctness Proof?
Counterexample found?

Chain
Invariants

Transitive Chain
Abstraction

Support Proof

Microarch.
Correctness

Proof

Cex. Generation

Proof of
Chain Invariants

FailFail

PassPass

Represent
repeated
ISA-level
patterns

PipeProof Block Diagram
Microarchitecture

Ordering Spec.
ISA-Level

MCM Spec.

PipeProof

ISA Edge ->
Microarch. Mapping

Result: All-Program MCM Correctness Proof?
Counterexample found?

Chain
Invariants

Transitive Chain
Abstraction

Support Proof

Microarch.
Correctness

Proof

Cex. Generation

Proof of
Chain Invariants

FailFail

PassPass

If design can’t be verified, a counterexample (a forbidden
execution that is observable) is often returned

PipeProof Block Diagram
Microarchitecture

Ordering Spec.
ISA-Level

MCM Spec.

PipeProof

ISA Edge ->
Microarch. Mapping

Result: All-Program MCM Correctness Proof?
Counterexample found?

Chain
Invariants

Transitive Chain
Abstraction

Support Proof

Microarch.
Correctness

Proof

Cex. Generation

Proof of
Chain Invariants

FailFail

PassPass
Supporting

proofs provide
foundation for

correctness
proof

Mapping ISA-Level Edges to Microarchitecture
▪Translate each edge in ISA-level cycle to microarchitectural constraints

▪Do so with user-provided Mapping Axioms

▪Example: Mapping of 𝑝𝑜 edges

Axiom "Mapping_po":
forall microop "i",
forall microop "j",
(HasDependency po i j =>

AddEdge ((i, Fetch), (j, Fetch), "po_arch", "blue")).

i1 i2

IF

EX

WB

po

Mapping ISA-Level Edges to Microarchitecture
▪Translate each edge in ISA-level cycle to microarchitectural constraints

▪Do so with user-provided Mapping Axioms

▪Example: Mapping of 𝑝𝑜 edges

Axiom "Mapping_po":
forall microop "i",
forall microop "j",
(HasDependency po i j =>

AddEdge ((i, Fetch), (j, Fetch), "po_arch", "blue")).

i1 i2

IF

EX

WB

po

Mapping ISA-Level Edges to Microarchitecture
▪Translate each edge in ISA-level cycle to microarchitectural constraints

▪Do so with user-provided Mapping Axioms

▪Example: Mapping of 𝑝𝑜 edges

Axiom "Mapping_po":
forall microop "i",
forall microop "j",
(HasDependency po i j =>

AddEdge ((i, Fetch), (j, Fetch), "po_arch", "blue")).

i1 i2

IF

EX

WB

po

Blue edges between EX and WB stages added by
other FIFO axioms (refer to µspec file)

▪Open question as to whether a set of litmus tests is complete

(i1) (i2)

IF

EX

WB

(i3) (i4) (i1) (i2)

IF

EX

WB

(i3) (i4)

Cyclic => Still unobservable Acyclic => BUG!

Core 0 Core 1

x = 1;
y = 1;

r1 = y;
r2 = x;

Forbid: r1 = 1, r2 = 0

mp Litmus Test

Core 0 Core 1

x = 1;
r1 = y;

y = 1;
r2 = x;

Forbid: r1 = 0, r2 = 0

sb Litmus Test

po porf

fr

po pofr

fr

57

Can “litmus tests” provide complete coverage?

▪Open question as to whether a set of litmus tests is complete

(i1) (i2)

IF

EX

WB

(i3) (i4) (i1) (i2)

IF

EX

WB

(i3) (i4)

Cyclic => Still unobservable Acyclic => BUG!

Core 0 Core 1

x = 1;
y = 1;

r1 = y;
r2 = x;

Forbid: r1 = 1, r2 = 0

mp Litmus Test

Core 0 Core 1

x = 1;
r1 = y;

y = 1;
r2 = x;

Forbid: r1 = 0, r2 = 0

sb Litmus Test

po porf

fr

po pofr

fr

57

Can “litmus tests” provide complete coverage?

Different tests catch different bugs!

To catch all bugs, must verify across all programs!

Property to check:
mapNode(Ld x → St x, Ld x == 0) or mapNode(St x → Ld x, Ld x == 1);

▪Don’t filter based on outcome

• Translate all possible outcomes

▪Tag each case with appropriate load value constraints

• reflect the data constraints required for edge(s)

▪Ongoing work: Precisely formalise the µspec/SVA mismatch

• How much is fundamental? How much is due to SVA verifier approximation?

Solution: Load Value Constraints

Axiom "Read_Values":
Every load either reads BeforeAllWrites OR reads FromLatestWrite

Core 0 Core 1

(i1) x = 1; (i3) r1 = y;

(i2) y = 1; (i4) r2 = x;

SC Forbids: r1 = 1, r2 = 0

mp

Note: Axioms and properties abstracted for brevity

Property to check:
mapNode(Ld x → St x, Ld x == 0) or mapNode(St x → Ld x, Ld x == 1);

▪Don’t filter based on outcome

• Translate all possible outcomes

▪Tag each case with appropriate load value constraints

• reflect the data constraints required for edge(s)

▪Ongoing work: Precisely formalise the µspec/SVA mismatch

• How much is fundamental? How much is due to SVA verifier approximation?

Solution: Load Value Constraints

Axiom "Read_Values":
Every load either reads BeforeAllWrites OR reads FromLatestWrite

Core 0 Core 1

(i1) x = 1; (i3) r1 = y;

(i2) y = 1; (i4) r2 = x;

SC Forbids: r1 = 1, r2 = 0

mp

Note: Axioms and properties abstracted for brevity

Property to check:
mapNode(Ld x → St x, Ld x == 0) or mapNode(St x → Ld x, Ld x == 1);

▪Don’t filter based on outcome

• Translate all possible outcomes

▪Tag each case with appropriate load value constraints

• reflect the data constraints required for edge(s)

▪Ongoing work: Precisely formalise the µspec/SVA mismatch

• How much is fundamental? How much is due to SVA verifier approximation?

Solution: Load Value Constraints

Axiom "Read_Values":
Every load either reads BeforeAllWrites OR reads FromLatestWrite

Core 0 Core 1

(i1) x = 1; (i3) r1 = y;

(i2) y = 1; (i4) r2 = x;

SC Forbids: r1 = 1, r2 = 0

mp

Note: Axioms and properties abstracted for brevity

Property to check:
mapNode(Ld x → St x, Ld x == 0) or mapNode(St x → Ld x, Ld x == 1);

▪Don’t filter based on outcome

• Translate all possible outcomes

▪Tag each case with appropriate load value constraints

• reflect the data constraints required for edge(s)

▪Ongoing work: Precisely formalise the µspec/SVA mismatch

• How much is fundamental? How much is due to SVA verifier approximation?

Solution: Load Value Constraints

Axiom "Read_Values":
Every load either reads BeforeAllWrites OR reads FromLatestWrite

Core 0 Core 1

(i1) x = 1; (i3) r1 = y;

(i2) y = 1; (i4) r2 = x;

SC Forbids: r1 = 1, r2 = 0

mp

Note: Axioms and properties abstracted for brevity

Core 0

Memory

WB

DX

IF

Multi-V-scale: a Multicore Case Study

59

Core 0

Memory

WB

DX

IF

3-stage
in-order
RISC-V

pipeline

Multi-V-scale: a Multicore Case Study

59

Core 0 Core 1 Core 2 Core 3

Arbiter

Memory

WB

DX

IF

WB

DX

IF

WB

DX

IF

WB

DX

IF

Arbiter
enforces that
only one core

can access
memory at any

time

Multi-V-scale: a Multicore Case Study

59

▪When two stores are sent
to memory in successive
cycles, first of two stores
is dropped by memory!

▪Bug would occur even in
single-core V-scale

▪ Fixed bug by eliminating
intermediate wdata reg

Core 0 Core 1 Core 2 Core 3

Arbiter

WB

DX

IF

WB

DX

IF

WB

DX

IF

WB

DX

IF

Memory

wdata

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Mem array

Stores

x = 1

y = 1

Bug Discovered in V-scale Mem. Implementation

60

▪When two stores are sent
to memory in successive
cycles, first of two stores
is dropped by memory!

▪Bug would occur even in
single-core V-scale

▪ Fixed bug by eliminating
intermediate wdata reg

Core 0 Core 1 Core 2 Core 3

Arbiter

WB

DX

IF

WB

DX

IF

WB

DX

IF

WB

DX

IF

Memory

wdata

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Mem array

Stores

x = 1

y = 1

Bug Discovered in V-scale Mem. Implementation

60

▪When two stores are sent
to memory in successive
cycles, first of two stores
is dropped by memory!

▪Bug would occur even in
single-core V-scale

▪ Fixed bug by eliminating
intermediate wdata reg

Core 0 Core 1 Core 2 Core 3

Arbiter

WB

DX

IF

WB

DX

IF

WB

DX

IF

WB

DX

IF

Memory

wdata

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Mem array

Stores

x = 1y = 1

Bug Discovered in V-scale Mem. Implementation

60

