
Yatin Manerkar

Automated Full-Stack Memory Model 
Verification with the Check suite

http://check.cs.princeton.edu/

Princeton University

ARM Cambridge, July 20th, 2018



What are Memory (Consistency) Models?

JVMLLVM IR PTX SPIR

Java 

Bytecode

C11/

C++11

Cuda OpenCL

x86

CPU

ARM

CPU

Power

CPU

Nvidia 

GPU

AMD 

GPU

…

…

…

Shared Virtual Memory

Memory Consistency Models (MCMs)

Specify rules and guarantees about the ordering and 
visibility of accesses to shared memory [Sorin et al., 2011].



What are Memory (Consistency) Models?

JVMLLVM IR PTX SPIR

Java 

Bytecode

C11/

C++11

Cuda OpenCL

x86

CPU

ARM

CPU

Power

CPU

Nvidia 

GPU

AMD 

GPU

…

…

…

Shared Virtual Memory

HLL MCMs

Memory Consistency Models (MCMs)

Specify rules and guarantees about the ordering and 
visibility of accesses to shared memory [Sorin et al., 2011].



What are Memory (Consistency) Models?

JVMLLVM IR PTX SPIR

Java 

Bytecode

C11/

C++11

Cuda OpenCL

x86

CPU

ARM

CPU

Power

CPU

Nvidia 

GPU

AMD 

GPU

…

…

…

Shared Virtual Memory

ISA-level MCMs

Memory Consistency Models (MCMs)

Specify rules and guarantees about the ordering and 
visibility of accesses to shared memory [Sorin et al., 2011].



Sequential Consistency (SC) - Interleaving Model

▪Defined by [Lamport 1979], execution is the same as if:

(R1) Memory ops of each processor appear in program order

(R2) Memory ops of all processors were executed in some total order 

(load reads the value of last store to its address in the total order)

Core 0

x=1

y=1

Core 1

r1=y

r2=x

x=1

y=1

r1=y

r2=x

x=1

r1=y

y=1

r2=x

x=1

r1=y

r2=x

y=1

r1=y

r2=x

x=1

y=1

r1=y

x=1

r2=x

y=1

r1=y

x=1

y=1

r2=x

Program (mp litmus test)

(all addrs initially 0)
Legal Executions

r1=1

r2=1 r1=0 r2=1

r1=0

r2=0

r1=1

r2=0

Illegal Outcome



Sequential Consistency (SC) - Interleaving Model

▪Defined by [Lamport 1979], execution is the same as if:

(R1) Memory ops of each processor appear in program order

(R2) Memory ops of all processors were executed in some total order 

(load reads the value of last store to its address in the total order)

Core 0

x=1

y=1

Core 1

r1=y

r2=x

x=1

y=1

r1=y

r2=x

x=1

r1=y

y=1

r2=x

x=1

r1=y

r2=x

y=1

r1=y

r2=x

x=1

y=1

r1=y

x=1

r2=x

y=1

r1=y

x=1

y=1

r2=x

Program (mp litmus test)

(all addrs initially 0)
Legal Executions

r1=1

r2=1 r1=0 r2=1

r1=0

r2=0

r1=1

r2=0

Illegal Outcome



Hardware Implements Weak Memory Models
▪Most processors don’t implement SC

• x86: Total Store Order (TSO): Relaxes Write->Read ordering

• ARMv8 and Power relax more orderings

▪Compilation to weak memory ISAs must maintain ordering guarantees

• [Owens et al. TPHOLS 2009], [Batty et al. POPL 2011, POPL 2012], [Wickerson et al. OOPSLA 2015], …

atomic<int> x = 0;
atomic<int> y = 0;

Thread 0 Thread 1

x = 1;
y = 1;

r1 = y;
r2 = x;

C11 Forbids: r1 = 1, r2 = 0

C11 Source Code



Hardware Implements Weak Memory Models
▪Most processors don’t implement SC

• x86: Total Store Order (TSO): Relaxes Write->Read ordering

• ARMv8 and Power relax more orderings

▪Compilation to weak memory ISAs must maintain ordering guarantees

• [Owens et al. TPHOLS 2009], [Batty et al. POPL 2011, POPL 2012], [Wickerson et al. OOPSLA 2015], …

atomic<int> x = 0;
atomic<int> y = 0;

Thread 0 Thread 1

x = 1;
y = 1;

r1 = y;
r2 = x;

C11 Forbids: r1 = 1, r2 = 0

C11 Source Code



Hardware Implements Weak Memory Models
▪Most processors don’t implement SC

• x86: Total Store Order (TSO): Relaxes Write->Read ordering

• ARMv8 and Power relax more orderings

▪Compilation to weak memory ISAs must maintain ordering guarantees

• [Owens et al. TPHOLS 2009], [Batty et al. POPL 2011, POPL 2012], [Wickerson et al. OOPSLA 2015], …

atomic<int> x = 0;
atomic<int> y = 0;

Thread 0 Thread 1

x = 1;
y = 1;

r1 = y;
r2 = x;

C11 Forbids: r1 = 1, r2 = 0

Initially, [x] = [y] = 0

Core 0 Core 1

stl #1, [x]
stl #1, [y]

lda r1, [y]
lda r2, [x]

ARMv8 forbids: r1 = 1, r2 = 0

ARMv8 Assembly Language

Compile

C11 Source Code



Hardware Implements Weak Memory Models
▪Most processors don’t implement SC

• x86: Total Store Order (TSO): Relaxes Write->Read ordering

• ARMv8 and Power relax more orderings

▪Compilation to weak memory ISAs must maintain ordering guarantees

• [Owens et al. TPHOLS 2009], [Batty et al. POPL 2011, POPL 2012], [Wickerson et al. OOPSLA 2015], …

atomic<int> x = 0;
atomic<int> y = 0;

Thread 0 Thread 1

x = 1;
y = 1;

r1 = y;
r2 = x;

C11 Forbids: r1 = 1, r2 = 0

Initially, [x] = [y] = 0

Core 0 Core 1

stl #1, [x]
stl #1, [y]

lda r1, [y]
lda r2, [x]

ARMv8 forbids: r1 = 1, r2 = 0

ARMv8 Assembly Language

Compile

C11 Source Code

Is the ARMv8 hardware correctly implementing 

the ARMv8 MCM?



MCM Verification is a Full-Stack Problem!

High-Level Languages (HLL)

Compiler

Architecture (ISA)

OS

▪Each layer has responsibilities for ensuring correct MCM operation

▪Need MCM checking tools at all layers of the computing stack!

Is compiler maintaining 
HLL guarantees?

Is the ISA-level MCM 
formally defined?

[Batty et al. POPL 2011, POPL 2012]

[Wickerson et al. OOPSLA 2015]
…

[Alglave et al. TOPLAS 2014]



MCM Verification is a Full-Stack Problem!

High-Level Languages (HLL)

Compiler

Architecture (ISA)

Microarchitecture

OS

Is hardware incorrectly 
reordering instructions?

Are virtual memory 
mappings correct?

Is RTL correctly 
implementing 

microarchitecture?

▪Each layer has responsibilities for ensuring correct MCM operation

▪Need MCM checking tools at all layers of the computing stack!

Is compiler maintaining 
HLL guarantees?

Is the ISA-level MCM 
formally defined?

Processor RTL

[Batty et al. POPL 2011, POPL 2012]

[Wickerson et al. OOPSLA 2015]
…

[Alglave et al. TOPLAS 2014]



MCM Verification is a Full-Stack Problem!

High-Level Languages (HLL)

Compiler

Architecture (ISA)

Microarchitecture

OS

Is hardware incorrectly 
reordering instructions?

Are virtual memory 
mappings correct?

Is RTL correctly 
implementing 

microarchitecture?

▪Each layer has responsibilities for ensuring correct MCM operation

▪Need MCM checking tools at all layers of the computing stack!

Is compiler maintaining 
HLL guarantees?

Is the ISA-level MCM 
formally defined?

Processor RTL

[Batty et al. POPL 2011, POPL 2012]

[Wickerson et al. OOPSLA 2015]
…

[Alglave et al. TOPLAS 2014]



MCM Verification is a Full-Stack Problem!

High-Level Languages (HLL)

Compiler

Architecture (ISA)

Microarchitecture

OS

Is hardware incorrectly 
reordering instructions?

Are virtual memory 
mappings correct?

Is RTL correctly 
implementing 

microarchitecture?

▪Each layer has responsibilities for ensuring correct MCM operation

▪Need MCM checking tools at all layers of the computing stack!

Is compiler maintaining 
HLL guarantees?

Is the ISA-level MCM 
formally defined?

Processor RTL

[Batty et al. POPL 2011, POPL 2012]

[Wickerson et al. OOPSLA 2015]
…

[Alglave et al. TOPLAS 2014]



Check Suite: Full-Stack Automated MCM Analysis

High-Level Languages (HLL)

Compiler

Architecture (ISA)

Microarchitecture

OS

▪ Suite of tools at various levels of computing stack

▪Automated Full-Stack MCM checking across litmus test suites

PipeCheck & CCICheck
[Lustig et al. MICRO 2014]
[Manerkar et al. MICRO 2015]

COATCheck
[Lustig et al. ASPLOS 2016]

TriCheck
[Trippel et al. ASPLOS 2017]

RTLCheck
[Manerkar et al. MICRO 2017]

Processor RTL



Check Suite: Full-Stack Automated MCM Analysis

High-Level Languages (HLL)

Compiler

Architecture (ISA)

Microarchitecture

OS

▪ Suite of tools at various levels of computing stack

▪Automated Full-Stack MCM checking across litmus test suites

PipeCheck & CCICheck
[Lustig et al. MICRO 2014]
[Manerkar et al. MICRO 2015]

COATCheck
[Lustig et al. ASPLOS 2016]

TriCheck
[Trippel et al. ASPLOS 2017]

RTLCheck
[Manerkar et al. MICRO 2017]

Processor RTL

Does microarchitecture 
correctly implement ISA MCM?



Check Suite: Full-Stack Automated MCM Analysis

High-Level Languages (HLL)

Compiler

Architecture (ISA)

Microarchitecture

OS

▪ Suite of tools at various levels of computing stack

▪Automated Full-Stack MCM checking across litmus test suites

PipeCheck & CCICheck
[Lustig et al. MICRO 2014]
[Manerkar et al. MICRO 2015]

COATCheck
[Lustig et al. ASPLOS 2016]

TriCheck
[Trippel et al. ASPLOS 2017]

RTLCheck
[Manerkar et al. MICRO 2017]

Processor RTL Does RTL like Verilog correctly 
implement microarchitecture?



Check Suite: Full-Stack Automated MCM Analysis

High-Level Languages (HLL)

Compiler

Architecture (ISA)

Microarchitecture

OS

▪ Suite of tools at various levels of computing stack

▪Automated Full-Stack MCM checking across litmus test suites

PipeCheck & CCICheck
[Lustig et al. MICRO 2014]
[Manerkar et al. MICRO 2015]

COATCheck
[Lustig et al. ASPLOS 2016]

TriCheck
[Trippel et al. ASPLOS 2017]

RTLCheck
[Manerkar et al. MICRO 2017]

Processor RTL

Do HLL, Compiler, and 
microarchitecture work 

together correctly?



Check Suite: Full-Stack Automated MCM Analysis

High-Level Languages (HLL)

Compiler

Architecture (ISA)

Microarchitecture

OS

▪ Suite of tools at various levels of computing stack

▪Automated Full-Stack MCM checking across litmus test suites

PipeCheck & CCICheck
[Lustig et al. MICRO 2014]
[Manerkar et al. MICRO 2015]

COATCheck
[Lustig et al. ASPLOS 2016]

TriCheck
[Trippel et al. ASPLOS 2017]

RTLCheck
[Manerkar et al. MICRO 2017]

Processor RTL

So far, tools have found bugs in:
• Widely-used gem5 Research simulator
• Cache coherence paper (TSO-CC)
• IBM XL C++ compiler (fixed in v13.1.5)
• In-design commercial processors
• RISC-V draft ISA specification
• Compiler mapping proofs
• C11 memory model
• Open-source processor RTL



Modelling Microarchitecture: Going below the ISA
▪Hardware enforces consistency model using smaller localized orderings

• In-order fetch/decode/execute…

• Orderings enforced by memory hierarchy

• …and many more

Lds.

L2
WB

Mem.

SB

L1

Exec.

Dec.

Fetch

WB

Mem.

SB

L1

Exec.

Dec.

Fetch

Memory Hierarchy



Modelling Microarchitecture: Going below the ISA
▪Hardware enforces consistency model using smaller localized orderings

• In-order fetch/decode/execute…

• Orderings enforced by memory hierarchy

• …and many more

Lds.

L2
WB

Mem.

SB

L1

Exec.

Dec.

Fetch

WB

Mem.

SB

L1

Exec.

Dec.

Fetch

Pipeline stages 
may be FIFO to 
ensure in-order 

execution

Memory Hierarchy



Modelling Microarchitecture: Going below the ISA
▪Hardware enforces consistency model using smaller localized orderings

• In-order fetch/decode/execute…

• Orderings enforced by memory hierarchy

• …and many more

Lds.

L2
WB

Mem.

SB

L1

Exec.

Dec.

Fetch

WB

Mem.

SB

L1

Exec.

Dec.

Fetch

Pipeline stages 
may be FIFO to 
ensure in-order 

execution

Memory Hierarchy

Do individual orderings correctly work together

to satisfy consistency model?



Microarchitectural Consistency Checking

Axiom “Decode_is_FIFO":
... EdgeExists ((i1, Decode), (i2, Decode))

=> AddEdge ((i1, Execute), (i2, Execute)).

Axiom "PO_Fetch":
... SameCore i1 i2 /\ ProgramOrder i1 i2 =>

AddEdge ((i1, Fetch), (i2, Fetch)).

Microarchitecture

Litmus Test

in µspec DSL



Microarchitectural Consistency Checking

Axiom “Decode_is_FIFO":
... EdgeExists ((i1, Decode), (i2, Decode))

=> AddEdge ((i1, Execute), (i2, Execute)).

Axiom "PO_Fetch":
... SameCore i1 i2 /\ ProgramOrder i1 i2 =>

AddEdge ((i1, Fetch), (i2, Fetch)).

Microarchitecture

Litmus Test

in µspec DSL

Each axiom specifies an ordering 
that µarch should respect



Microarchitectural Consistency Checking

Axiom “Decode_is_FIFO":
... EdgeExists ((i1, Decode), (i2, Decode))

=> AddEdge ((i1, Execute), (i2, Execute)).

Axiom "PO_Fetch":
... SameCore i1 i2 /\ ProgramOrder i1 i2 =>

AddEdge ((i1, Fetch), (i2, Fetch)).

Microarchitecture

Litmus Test

in µspec DSL



Microarchitectural Consistency Checking

Microarchitectural happens-before (µhb) graphs

Axiom “Decode_is_FIFO":
... EdgeExists ((i1, Decode), (i2, Decode))

=> AddEdge ((i1, Execute), (i2, Execute)).

Axiom "PO_Fetch":
... SameCore i1 i2 /\ ProgramOrder i1 i2 =>

AddEdge ((i1, Fetch), (i2, Fetch)).

Microarchitecture

Litmus Test

in µspec DSL



Microarchitectural Consistency Checking

Microarchitectural happens-before (µhb) graphs

Axiom “Decode_is_FIFO":
... EdgeExists ((i1, Decode), (i2, Decode))

=> AddEdge ((i1, Execute), (i2, Execute)).

Axiom "PO_Fetch":
... SameCore i1 i2 /\ ProgramOrder i1 i2 =>

AddEdge ((i1, Fetch), (i2, Fetch)).

Microarchitecture

Litmus Test

in µspec DSL

Microarch. verification checks that 
combination of axioms satisfies MCM



PipeCheck: Executions as µhb Graphs [Lustig et al. MICRO 2014]

Litmus Test mp

Core 0 Core 1



PipeCheck: Executions as µhb Graphs [Lustig et al. MICRO 2014]

WB

Mem.

SB

Mem 

Hier.

Exec.

Dec.

Fetch

Litmus Test mp

Core 0 Core 1

(i1)



PipeCheck: Executions as µhb Graphs [Lustig et al. MICRO 2014]

WB

Mem.

SB

Mem 

Hier.

Exec.

Dec.

Fetch

Litmus Test mp

Core 0 Core 1

(i1)



PipeCheck: Executions as µhb Graphs [Lustig et al. MICRO 2014]

WB

Mem.

SB

Mem 

Hier.

Exec.

Dec.

Fetch

Litmus Test mp

WB

Mem.

SB

Mem 

Hier.

Exec.

Dec.

Fetch

Core 0 Core 1

(i1) (i2)



PipeCheck: Executions as µhb Graphs [Lustig et al. MICRO 2014]

WB

Mem.

SB

Mem 

Hier.

Exec.

Dec.

Fetch

Litmus Test mp

WB

Mem.

SB

Mem 

Hier.

Exec.

Dec.

Fetch

Core 0 Core 1

(i1) (i2)



PipeCheck: Executions as µhb Graphs [Lustig et al. MICRO 2014]

WB

Mem.

SB

Mem 

Hier.

Exec.

Dec.

Fetch

Litmus Test mp

WB

Mem.

SB

Mem 

Hier.

Exec.

Dec.

Fetch

WB

Mem.

Exec.

Dec.

Fetch

WB

Mem.

Exec.

Dec.

Fetch

Core 0 Core 1

(i1) (i2) (i3) (i4)



PipeCheck: Executions as µhb Graphs [Lustig et al. MICRO 2014]

WB

Mem.

SB

Mem 

Hier.

Exec.

Dec.

Fetch

Litmus Test mp

WB

Mem.

SB

Mem 

Hier.

Exec.

Dec.

Fetch

WB

Mem.

Exec.

Dec.

Fetch

WB

Mem.

Exec.

Dec.

Fetch

Core 0 Core 1

(i1) (i2) (i3) (i4)



PipeCheck: Executions as µhb Graphs [Lustig et al. MICRO 2014]

WB

Mem.

SB

Mem 

Hier.

Exec.

Dec.

Fetch

Litmus Test mp

WB

Mem.

SB

Mem 

Hier.

Exec.

Dec.

Fetch

WB

Mem.

Exec.

Dec.

Fetch

WB

Mem.

Exec.

Dec.

Fetch

Core 0 Core 1

(i1) (i2) (i3) (i4)



▪Cycle in µhb graph => event has to 
happen before itself (impossible)

▪Cyclic graph → unobservable on µarch

▪Acyclic graph → observable on µarch

▪Exhaustively enumerate and check all 
possible execs of litmus test on µarch
• Implemented using fast SMT solvers

• Compare against ISA-level outcome from 
herd [Alglave et al. TOPLAS 2014]

PipeCheck: Microarchitectural Correctness

Litmus Test mp



▪Cycle in µhb graph => event has to 
happen before itself (impossible)

▪Cyclic graph → unobservable on µarch

▪Acyclic graph → observable on µarch

▪Exhaustively enumerate and check all 
possible execs of litmus test on µarch
• Implemented using fast SMT solvers

• Compare against ISA-level outcome from 
herd [Alglave et al. TOPLAS 2014]

PipeCheck: Microarchitectural Correctness

Litmus Test mp ISA-Level 
Outcome

Observable
(≥ 1 Graph Acyclic)

Not Observable
(All Graphs Cyclic)

Allowed OK
OK (stricter

than necessary)

Forbidden Consistency violation! OK



▪Cycle in µhb graph => event has to 
happen before itself (impossible)

▪Cyclic graph → unobservable on µarch

▪Acyclic graph → observable on µarch

▪Exhaustively enumerate and check all 
possible execs of litmus test on µarch
• Implemented using fast SMT solvers

• Compare against ISA-level outcome from 
herd [Alglave et al. TOPLAS 2014]

PipeCheck: Microarchitectural Correctness

Litmus Test mp ISA-Level 
Outcome

Observable
(≥ 1 Graph Acyclic)

Not Observable
(All Graphs Cyclic)

Allowed OK
OK (stricter

than necessary)

Forbidden Consistency violation! OK



▪Cycle in µhb graph => event has to 
happen before itself (impossible)

▪Cyclic graph → unobservable on µarch

▪Acyclic graph → observable on µarch

▪Exhaustively enumerate and check all 
possible execs of litmus test on µarch
• Implemented using fast SMT solvers

• Compare against ISA-level outcome from 
herd [Alglave et al. TOPLAS 2014]

PipeCheck: Microarchitectural Correctness

Litmus Test mp ISA-Level 
Outcome

Observable
(≥ 1 Graph Acyclic)

Not Observable
(All Graphs Cyclic)

Allowed OK
OK (stricter

than necessary)

Forbidden Consistency violation! OK



▪Cycle in µhb graph => event has to 
happen before itself (impossible)

▪Cyclic graph → unobservable on µarch

▪Acyclic graph → observable on µarch

▪Exhaustively enumerate and check all 
possible execs of litmus test on µarch
• Implemented using fast SMT solvers

• Compare against ISA-level outcome from 
herd [Alglave et al. TOPLAS 2014]

PipeCheck: Microarchitectural Correctness

Litmus Test mp ISA-Level 
Outcome

Observable
(≥ 1 Graph Acyclic)

Not Observable
(All Graphs Cyclic)

Allowed OK
OK (stricter

than necessary)

Forbidden Consistency violation! OK



▪Cycle in µhb graph => event has to 
happen before itself (impossible)

▪Cyclic graph → unobservable on µarch

▪Acyclic graph → observable on µarch

▪Exhaustively enumerate and check all 
possible execs of litmus test on µarch
• Implemented using fast SMT solvers

• Compare against ISA-level outcome from 
herd [Alglave et al. TOPLAS 2014]

PipeCheck: Microarchitectural Correctness

Litmus Test mp ISA-Level 
Outcome

Observable
(≥ 1 Graph Acyclic)

Not Observable
(All Graphs Cyclic)

Allowed OK
OK (stricter

than necessary)

Forbidden Consistency violation! OK

Abstracted memory hierarchy prevents 

verification of complex coherence issues!



CCICheck: Coherence vs Consistency

High-Level Languages (HLL)

Compiler

Architecture (ISA)

Microarchitecture

OS

Processor RTLProcessor RTL

▪Memory hierarchy is a collection of caches

• Coherence protocols ensure that all caches agree on the value 
of any variable

▪ CCICheck [Manerkar et al. MICRO 2015] shows that 
consistency verification often cannot simply treat 
memory hierarchy abstractly

• Nominated for Best Paper at MICRO 2015

Lds.

L2
WB

Mem.

SB

L1

Exec.

Dec.

Fetch

WB

Mem.

SB

L1

Exec.

Dec.

Fetch

Memory 

Hierarchy



CCICheck: Coherence vs Consistency

High-Level Languages (HLL)

Compiler

Architecture (ISA)

Microarchitecture

OS

Processor RTLProcessor RTL

▪Memory hierarchy is a collection of caches

• Coherence protocols ensure that all caches agree on the value 
of any variable

▪ CCICheck [Manerkar et al. MICRO 2015] shows that 
consistency verification often cannot simply treat 
memory hierarchy abstractly

• Nominated for Best Paper at MICRO 2015

Coherence Protocol (SWMR, DVI, etc.)

Lds.

L2
WB

Mem.

SB

L1

Exec.

Dec.

Fetch

WB

Mem.

SB

L1

Exec.

Dec.

Fetch



Coherence Protocol Example
▪ If P1 updates the value of x to 200, the stale value of x in other 

processors must be invalidated

▪ If P3 wants to subsequently read/write x, it must request the new value

▪ SWMR = Single-Writer Multiple Readers, DVI = Data Value Invariant

P1 P2 P3

x = 100 x = 100 x = 100

Processors

Caches



Coherence Protocol Example
▪ If P1 updates the value of x to 200, the stale value of x in other 

processors must be invalidated

▪ If P3 wants to subsequently read/write x, it must request the new value

▪ SWMR = Single-Writer Multiple Readers, DVI = Data Value Invariant

P1 P2 P3

x = 100 x = 100 x = 100

Processors

Caches

St x = 200



Coherence Protocol Example
▪ If P1 updates the value of x to 200, the stale value of x in other 

processors must be invalidated

▪ If P3 wants to subsequently read/write x, it must request the new value

▪ SWMR = Single-Writer Multiple Readers, DVI = Data Value Invariant

P1 P2 P3

x = 100 x = 100 x = 100

Processors

Caches

Invalidations

x = 100 x = 100

St x = 200



Coherence Protocol Example
▪ If P1 updates the value of x to 200, the stale value of x in other 

processors must be invalidated

▪ If P3 wants to subsequently read/write x, it must request the new value

▪ SWMR = Single-Writer Multiple Readers, DVI = Data Value Invariant

P1 P2 P3

x = 100 x = 100 x = 100

Processors

Caches x = 200 x = 100 x = 100



Coherence Protocol Example
▪ If P1 updates the value of x to 200, the stale value of x in other 

processors must be invalidated

▪ If P3 wants to subsequently read/write x, it must request the new value

▪ SWMR = Single-Writer Multiple Readers, DVI = Data Value Invariant

P1 P2 P3

x = 100 x = 100 x = 100

Processors

Caches x = 200 x = 100 x = 100

Request Data

Ld x



Coherence Protocol Example
▪ If P1 updates the value of x to 200, the stale value of x in other 

processors must be invalidated

▪ If P3 wants to subsequently read/write x, it must request the new value

▪ SWMR = Single-Writer Multiple Readers, DVI = Data Value Invariant

P1 P2 P3

x = 100 x = 100 x = 100

Processors

Caches x = 200 x = 100 x = 100x = 200

Ld x

Data Response



Motivating Example – “Peekaboo” [Sorin et al. Primer 2011]

▪Three optimizations: correct individually, but not in combination



Motivating Example – “Peekaboo” [Sorin et al. Primer 2011]

▪Three optimizations: correct individually, but not in combination

1. Prefetching



Motivating Example – “Peekaboo” [Sorin et al. Primer 2011]

▪Three optimizations: correct individually, but not in combination

1. Prefetching

2. Invalidation before use

• Invalidation can arrive before data

• Acknowledge Inv early rather than wait for data to arrive

• But repeated inv before use → livelock [Kubiatowicz et al. ASPLOS 1992]



Motivating Example – “Peekaboo” [Sorin et al. Primer 2011]

▪Three optimizations: correct individually, but not in combination

1. Prefetching

2. Invalidation before use

• Invalidation can arrive before data

• Acknowledge Inv early rather than wait for data to arrive

• But repeated inv before use → livelock [Kubiatowicz et al. ASPLOS 1992]

3. Livelock avoidance: allow destination core to perform one
operation on data when it arrives, even if already invalidated
[Sorin et al. Primer 2011]

• Does not break coherence

• Sometimes intentionally returns stale data



Motivating Example – “Peekaboo”
▪ Consider mp with the livelock-avoidance mechanism: 

Core 0 Core 1

x: Shared
y: Modified

x: Invalid
y: Invalid

[x] ← 1
[y] ← 1

r1 ← [y]
r2 ← [x]

Optimizations:

1. Prefetching
2. Invalidation-before-use
3. Livelock avoidance



Motivating Example – “Peekaboo”
▪ Consider mp with the livelock-avoidance mechanism: 

Core 0 Core 1

x: Shared
y: Modified

x: Invalid
y: Invalid

[x] ← 1
[y] ← 1

r1 ← [y]
r2 ← [x]

Prefetch x

Optimizations:

1. Prefetching
2. Invalidation-before-use
3. Livelock avoidance



Motivating Example – “Peekaboo”
▪ Consider mp with the livelock-avoidance mechanism: 

Core 0 Core 1

x: Shared
y: Modified

x: Invalid
y: Invalid

[x] ← 1
[y] ← 1

r1 ← [y]
r2 ← [x]

Prefetch x

Data (x = 0)

Optimizations:

1. Prefetching
2. Invalidation-before-use
3. Livelock avoidance



Motivating Example – “Peekaboo”
▪ Consider mp with the livelock-avoidance mechanism: 

Core 0 Core 1

x: Shared
y: Modified

x: Invalid
y: Invalid

[x] ← 1
[y] ← 1

r1 ← [y]
r2 ← [x]

Prefetch x

Data (x = 0)

Inv

Optimizations:

1. Prefetching
2. Invalidation-before-use
3. Livelock avoidance



Motivating Example – “Peekaboo”
▪ Consider mp with the livelock-avoidance mechanism: 

Core 0 Core 1

x: Shared
y: Modified

x: Invalid
y: Invalid

[x] ← 1
[y] ← 1

r1 ← [y]
r2 ← [x]

Prefetch x

Data (x = 0)

Inv

Inv-Ack

Optimizations:

1. Prefetching
2. Invalidation-before-use
3. Livelock avoidance



Motivating Example – “Peekaboo”
▪ Consider mp with the livelock-avoidance mechanism: 

Core 0 Core 1

x: Invalid
y: Invalid

r1 ← [y]
r2 ← [x]

Prefetch x

Data (x = 0)

Inv

Inv-Ack

x: Modified
y: Modified

[x] ← 1
[y] ← 1

Optimizations:

1. Prefetching
2. Invalidation-before-use
3. Livelock avoidance



Motivating Example – “Peekaboo”
▪ Consider mp with the livelock-avoidance mechanism: 

Core 0 Core 1

x: Invalid
y: Invalid

r1 ← [y]
r2 ← [x]

Prefetch x

Data (x = 0)

Inv

Inv-Ack

x: Modified
y: Modified

[x] ← 1
[y] ← 1

Optimizations:

1. Prefetching
2. Invalidation-before-use
3. Livelock avoidance



Motivating Example – “Peekaboo”
▪ Consider mp with the livelock-avoidance mechanism: 

Core 0 Core 1

x: Invalid
y: Invalid

r1 ← [y]
r2 ← [x]

Prefetch x

Data (x = 0)

Inv

Inv-Ack

x: Modified
y: Modified

Request y

[x] ← 1
[y] ← 1

Optimizations:

1. Prefetching
2. Invalidation-before-use
3. Livelock avoidance



Motivating Example – “Peekaboo”
▪ Consider mp with the livelock-avoidance mechanism: 

Core 0 Core 1Prefetch x

Data (x = 0)

Inv

Inv-Ack

Data (y = 1)

x: Modified
y: Shared

x: Invalid
y: Shared

Request y

[x] ← 1
[y] ← 1

r1 = 1
r2 ← [x]

Optimizations:

1. Prefetching
2. Invalidation-before-use
3. Livelock avoidance



Motivating Example – “Peekaboo”
▪ Consider mp with the livelock-avoidance mechanism: 

Core 0 Core 1Prefetch x

Inv

Inv-Ack

Data (y = 1)

x: Modified
y: Shared

x: Invalid
y: Shared

Request y

[x] ← 1
[y] ← 1

r1 = 1
r2 ← [x]

Data (x = 0)

Optimizations:

1. Prefetching
2. Invalidation-before-use
3. Livelock avoidance



Motivating Example – “Peekaboo”
▪ Consider mp with the livelock-avoidance mechanism: 

Core 0 Core 1Prefetch x

Inv

Inv-Ack

Data (y = 1)

x: Modified
y: Shared

x: Invalid
y: Shared

Request y

[x] ← 1
[y] ← 1

r1 = 1
r2 = 0

Data (x = 0)

Optimizations:

1. Prefetching
2. Invalidation-before-use
3. Livelock avoidance



The Coherence-Consistency Interface (CCI)

▪CCI = coherence protocol guarantees to microarch. + 
orderings microarch. expects from coherence protocol

+

=

Expected CoherenceSWMR, DVI, No Stale Data

Consistency



The Coherence-Consistency Interface (CCI)

▪CCI = coherence protocol guarantees to microarch. + 
orderings microarch. expects from coherence protocol

+

=

Expected CoherenceSWMR, DVI, No Stale Data

Consistency



The Coherence-Consistency Interface (CCI)

▪CCI = coherence protocol guarantees to microarch. + 
orderings microarch. expects from coherence protocol

+

=

Expected CoherenceSWMR, DVI, No Stale Data

Consistency



The Coherence-Consistency Interface (CCI)

▪CCI = coherence protocol guarantees to microarch. + 
orderings microarch. expects from coherence protocol

+

=

Expected CoherenceSWMR, DVI, No Stale Data

Consistency



The Coherence-Consistency Interface (CCI)

▪CCI = coherence protocol guarantees to microarch. + 
orderings microarch. expects from coherence protocol

+

=

Expected CoherenceSWMR, DVI, No Stale Data

Consistency



The Coherence-Consistency Interface (CCI)

▪CCI = coherence protocol guarantees to microarch. + 
orderings microarch. expects from coherence protocol

+

=

Expected Coherence

Consistency

SWMR, DVI, No Livelock



The Coherence-Consistency Interface (CCI)

▪CCI = coherence protocol guarantees to microarch. + 
orderings microarch. expects from coherence protocol

+

=

Expected Coherence

Consistency

SWMR, DVI, No Livelock



The Coherence-Consistency Interface (CCI)

▪CCI = coherence protocol guarantees to microarch. + 
orderings microarch. expects from coherence protocol

+

=

Expected CoherenceSWMR, DVI, No Livelock

CCI Mismatch
Consistency 
Violation!



ViCL: Value in Cache Lifetime
▪Need a way to model cache occupancy and coherence events for:

• Coherence protocol optimizations (eg: Peekaboo)

• Partial incoherence and lazy coherence (GPUs, etc)

▪A ViCL is a 4-tuple:

(cache_id, address, data_value, generation_id)

▪ cache_id and generation_id uniquely identify each cache line

▪A ViCL 4-tuple maps on to the period of time over which the cache 
line serves the data value for the address



ViCLs in µhb Graphs
▪ViCLs start at a ViCL Create event 

and end at a ViCL Expire event

• Correspond to nodes in µhb graphs

• Axioms over these nodes and 
edges enforce coherence and data 
movement orderings

▪Use pipeline model from 
PipeCheck, but add ViCL nodes 
and edges

Litmus Test co-mp



ViCLs in µhb Graphs
▪ViCLs start at a ViCL Create event 

and end at a ViCL Expire event

• Correspond to nodes in µhb graphs

• Axioms over these nodes and 
edges enforce coherence and data 
movement orderings

▪Use pipeline model from 
PipeCheck, but add ViCL nodes 
and edges

Litmus Test co-mp



ViCLs in µhb Graphs
▪ViCLs start at a ViCL Create event 

and end at a ViCL Expire event

• Correspond to nodes in µhb graphs

• Axioms over these nodes and 
edges enforce coherence and data 
movement orderings

▪Use pipeline model from 
PipeCheck, but add ViCL nodes 
and edges

Litmus Test co-mp



ViCLs in µhb Graphs
▪ViCLs start at a ViCL Create event 

and end at a ViCL Expire event

• Correspond to nodes in µhb graphs

• Axioms over these nodes and 
edges enforce coherence and data 
movement orderings

▪Use pipeline model from 
PipeCheck, but add ViCL nodes 
and edges

Litmus Test co-mp



ViCLs in µhb Graphs
▪ViCLs start at a ViCL Create event 

and end at a ViCL Expire event

• Correspond to nodes in µhb graphs

• Axioms over these nodes and 
edges enforce coherence and data 
movement orderings

▪Use pipeline model from 
PipeCheck, but add ViCL nodes 
and edges

Litmus Test co-mp



µhb Graph for the Peekaboo Problem
▪Additional nodes represent ViCL

requests and invalidations

▪ Solution: Invalidated data only 
usable if accessing load/store is 
oldest in program order at time of 
request [Sorin et al. Primer 2011]

▪TSO-CC protocol [Elver and 
Nagarajan HPCA 2014] was 
vulnerable to variant of Peekaboo!

• Now fixed



µhb Graph for the Peekaboo Problem
▪Additional nodes represent ViCL

requests and invalidations

▪ Solution: Invalidated data only 
usable if accessing load/store is 
oldest in program order at time of 
request [Sorin et al. Primer 2011]

▪TSO-CC protocol [Elver and 
Nagarajan HPCA 2014] was 
vulnerable to variant of Peekaboo!

• Now fixed



µhb Graph for the Peekaboo Problem
▪Additional nodes represent ViCL

requests and invalidations

▪ Solution: Invalidated data only 
usable if accessing load/store is 
oldest in program order at time of 
request [Sorin et al. Primer 2011]

▪TSO-CC protocol [Elver and 
Nagarajan HPCA 2014] was 
vulnerable to variant of Peekaboo!

• Now fixed



µhb Graph for the Peekaboo Problem
▪Additional nodes represent ViCL

requests and invalidations

▪ Solution: Invalidated data only 
usable if accessing load/store is 
oldest in program order at time of 
request [Sorin et al. Primer 2011]

▪TSO-CC protocol [Elver and 
Nagarajan HPCA 2014] was 
vulnerable to variant of Peekaboo!

• Now fixed



µhb Graph for the Peekaboo Problem
▪Additional nodes represent ViCL

requests and invalidations

▪ Solution: Invalidated data only 
usable if accessing load/store is 
oldest in program order at time of 
request [Sorin et al. Primer 2011]

▪TSO-CC protocol [Elver and 
Nagarajan HPCA 2014] was 
vulnerable to variant of Peekaboo!

• Now fixed



CCICheck Takeaways
▪Coherence & consistency often closely coupled in implementations

▪ In such cases, coherence & consistency cannot be verified separately

▪CCICheck: CCI-aware microarchitectural MCM checking

• Uses ViCL (Value in Cache Lifetime) abstraction

▪Discovered bug in TSO-CC lazy coherence protocol



Hardware

ISA-level MCMs in the Hardware-Software Stack

New ISA-level MCM

High-Level Languages (HLLs)



Hardware

ISA-level MCMs in the Hardware-Software Stack

New ISA-level MCM

High-Level Languages (HLLs)

Which orderings 
must be guaranteed 

by hardware?



Hardware

ISA-level MCMs in the Hardware-Software Stack

New ISA-level MCM

High-Level Languages (HLLs)

Which orderings does 
the compiler need to 

enforce?

Which orderings 
must be guaranteed 

by hardware?



Hardware

ISA-level MCMs in the Hardware-Software Stack

New ISA-level MCM

High-Level Languages (HLLs)

Which orderings does 
the compiler need to 

enforce?

Which orderings 
must be guaranteed 

by hardware?

TriCheck checks that HLL, compiler, ISA, and 

hardware align on MCM requirements



TriCheck: Layers of the Stack are Intertwined

High-Level Languages (HLL)

Compiler

Architecture (ISA)

Microarchitecture

OS

Processor RTLProcessor RTL

▪ ISA-level MCMs should allow microarchitectural 
optimizations but also be compatible with HLLs

▪TriCheck [Trippel et al. ASPLOS 2017] enables 
holistic analysis of HLL memory model, ISA-level 
MCM, compiler mappings, and microarchitectures

• Mapping: translation of HLL synchronization primitives to 
one or more assembly language instructions

▪Also useful for checking HLL compiler mappings to 
ISA-level MCMs

▪ Selected as one of 12 “Top Picks of Comp. Arch. 
Conferences” for 2017



TriCheck: Comparing HLL to Microarchitecture
HLL to ISA 
Compiler 
Mapping

HLL Litmus 
Test Variants

HLL 
Model

e.g. C11

µspec 
Microarch. 

Model

Four Primary Inputs



TriCheck: Comparing HLL to Microarchitecture
HLL to ISA 
Compiler 
Mapping

HLL Litmus 
Test Variants

HLL 
Model

e.g. C11

µspec 
Microarch. 

Model

Examine all C11 
memory_order

combinations 
(release, acquire, 
relaxed, seq_cst) 
for HLL litmus tests



TriCheck: Comparing HLL to Microarchitecture
HLL to ISA 
Compiler 
Mapping

HLL Litmus 
Test Variants

ISA-level 
litmus tests

HLL 
Model

e.g. C11

µspec 
Microarch. 

Model

Translate HLL Litmus Tests 
to ISA-level litmus tests



TriCheck: Comparing HLL to Microarchitecture
HLL to ISA 
Compiler 
Mapping

HLL Outcome
Forbidden/Allowed?

HLL Litmus 
Test Variants

Herd
[Alglave et al. 
TOPLAS 2014]

ISA-level 
litmus tests

HLL 
Model

e.g. C11

µspec 
Microarch. 

Model

Use Herd to 
check HLL 
outcomes



TriCheck: Comparing HLL to Microarchitecture
HLL to ISA 
Compiler 
Mapping

HLL Outcome
Forbidden/Allowed?

Microarch. Outcome
Observable/Unobservable?

HLL Litmus 
Test Variants

Herd
[Alglave et al. 
TOPLAS 2014]

µhb Analysis 
with Check

ISA-level 
litmus tests

HLL 
Model

e.g. C11

µspec 
Microarch. 

Model

Use µhb analysis to 
check microarch. 

outcomes



TriCheck: Comparing HLL to Microarchitecture
HLL to ISA 
Compiler 
Mapping

HLL Outcome
Forbidden/Allowed?

Microarch. Outcome
Observable/Unobservable?

HLL Litmus 
Test Variants

Herd
[Alglave et al. 
TOPLAS 2014]

µhb Analysis 
with Check

ISA-level 
litmus tests

?

HLL 
Model

e.g. C11

µspec 
Microarch. 

Model

Compare HLL and 
microarch. outcomes



TriCheck: Comparing HLL to Microarchitecture
HLL to ISA 
Compiler 
Mapping

HLL Outcome
Forbidden/Allowed?

Microarch. Outcome
Observable/Unobservable?

HLL Litmus 
Test Variants

Herd
[Alglave et al. 
TOPLAS 2014]

µhb Analysis 
with Check

ISA-level 
litmus tests

?

HLL 
Model

e.g. C11

µspec 
Microarch. 

Model

Compare HLL and 
microarch. outcomes

Forbidden Observable



TriCheck: Comparing HLL to Microarchitecture
HLL to ISA 
Compiler 
Mapping

HLL Outcome
Forbidden/Allowed?

Microarch. Outcome
Observable/Unobservable?

HLL Litmus 
Test Variants

Herd
[Alglave et al. 
TOPLAS 2014]

µhb Analysis 
with Check

ISA-level 
litmus tests

HLL 
Model

e.g. C11

µspec 
Microarch. 

Model

Compare HLL and 
microarch. outcomes

Forbidden ObservableBUG!



TriCheck: Comparing HLL to Microarchitecture
HLL to ISA 
Compiler 
Mapping

HLL Outcome
Forbidden/Allowed?

Microarch. Outcome
Observable/Unobservable?

HLL Litmus 
Test Variants

Herd
[Alglave et al. 
TOPLAS 2014]

µhb Analysis 
with Check

ISA-level 
litmus tests

HLL 
Model

e.g. C11

µspec 
Microarch. 

Model

Forbidden ObservableBUG!

If bugs found, iterate
by changing the 

inputs and re-run



Using TriCheck for ISA MCM Design: RISC-V
▪Ran TriCheck on draft RISC-V ISA MCM with

• C11 HLL MCM [Batty et al. POPL 2011] [Batty et al. POPL 2016]

• Compiler mappings based on RISC-V manual

• Variety of microarchitectures that relaxed various memory orderings

− All legal according to draft RISC-V spec

− Ranging from SC microarchitecture to one with reorderings allowed by ARM/Power

▪Draft RISC-V MCM for Base ISA incapable of correctly compiling C11:

• C11 outcome forbidden, but impossible to forbid on hardware

• RISC-V fences too weak to restore orderings that implementations could relax



Current RISC-V Status
▪ In response to our findings, RISC-V Memory Model Working Group 

was formed (we are members)

• Mandate to create an MCM for RISC-V that satisfies community needs

▪Working Group has developed an MCM proposal that fixes the 
aforementioned bugs (and other issues)

▪MCM proposal recently passed the 45-day public feedback period!

• Well on its way to being included in the next version of the RISC-V ISA spec



TriCheck: Analysing Compiler Mappings
HLL to ISA 
Compiler 
Mapping

HLL Outcome
Forbidden/Allowed?

Microarch. Outcome
Observable/Unobservable?

HLL Litmus 
Test Variants

Herd
[Alglave et al. 
TOPLAS 2014]

µhb Analysis 
with Check

ISA-level 
litmus tests

?

HLL 
Model

e.g. C11

µspec 
Microarch. 

Model

Fix HLL model, 
microarch model, 

and ISA-level MCM



TriCheck: Analysing Compiler Mappings
HLL to ISA 
Compiler 
Mapping

HLL Outcome
Forbidden/Allowed?

Microarch. Outcome
Observable/Unobservable?

HLL Litmus 
Test Variants

Herd
[Alglave et al. 
TOPLAS 2014]

µhb Analysis 
with Check

ISA-level 
litmus tests

HLL 
Model

e.g. C11

µspec 
Microarch. 

Model

Forbidden ObservableBUG!



Checking C11 Mappings to ARMv7/Power
▪Ran TriCheck on microarch. with reordering similar to ARMv7/Power

• Utilised “trailing-sync” compiler mapping [Batty et al. POPL 2012]

• Discovered 2 cases where C11 outcome forbidden, but allowed by hardware!

• Deduced that the mapping must be flawed

▪Mapping was supposedly proven correct [Batty et al. POPL 2012]

• Traced the loophole in the proof [Manerkar et al. CoRR’16]

▪Problem: C11 model slightly too strong for mappings

• C11 has happens-before (ℎ𝑏) ordering and total order on all SC accesses (𝑠𝑐)

• ℎ𝑏 and 𝑠𝑐 orders must agree with each other

• Trailing-sync mapping does not guarantee this for our counterexamples



Current state of C11
▪ “Leading-sync” mapping [McKenney and Silvera 2011]

• Counterexample discovered concurrently to us [Lahav et al. PLDI 2017]

▪Both mappings currently broken

▪Possible solutions under discussion by C11 memory model committee:

• RC11 [Lahav et al. PLDI 2017]: remove req. that 𝑠𝑐 and ℎ𝑏 orders agree

− Current mappings work, but reduces intuition in an already complicated C11 model

• Adding extra fences to mappings

− low performance, requires recompilation, counterexample pattern not common



TriCheck Takeaways
▪Both HLL memory models and microarchitectural optimizations 

influence the design of ISA-level MCMs

▪TriCheck enables holistic analysis of HLL memory model, ISA-level 
MCM, compiler mappings, and microarchitectural implementations

▪TriCheck discovered numerous issues with draft RISC-V MCM

• Influenced the design of the new RISC-V MCM

▪Discovered two counterexamples to C11 -> ARMv7/Power compiler 
mappings

• Mappings were previously “proven” correct; isolated flaw in proof



29

Coherence Protocol (SWMR, DVI, etc.)

Lds.

L2
WB

Mem.

SB

L1

Exec.

Dec.

Fetch

WB

Mem.

SB

L1

Exec.

Dec.

Fetch

Memory Consistency Checking for RTL

Microarchitecture Checking



29

RTL implementation

Coherence Protocol (SWMR, DVI, etc.)

Lds.

L2
WB

Mem.

SB

L1

Exec.

Dec.

Fetch

WB

Mem.

SB

L1

Exec.

Dec.

Fetch

[RTL Image: Christopher Batten]

How to ensure RTL maintains orderings?

Memory Consistency Checking for RTL

Microarchitecture Checking



29

RTL implementation

Coherence Protocol (SWMR, DVI, etc.)

Lds.

L2
WB

Mem.

SB

L1

Exec.

Dec.

Fetch

WB

Mem.

SB

L1

Exec.

Dec.

Fetch

[RTL Image: Christopher Batten]

How to ensure RTL maintains orderings?

Memory Consistency Checking for RTL

✓
Microarchitecture Checking



29

RTL implementation

Coherence Protocol (SWMR, DVI, etc.)

Lds.

L2
WB

Mem.

SB

L1

Exec.

Dec.

Fetch

WB

Mem.

SB

L1

Exec.

Dec.

Fetch

[RTL Image: Christopher Batten]

How to ensure RTL maintains orderings?

Memory Consistency Checking for RTL

✓



Microarchitecture Checking



RTLCheck: Checking RTL Implementations

High-Level Languages (HLL)

Compiler

Architecture (ISA)

Microarchitecture

OS

▪RTLCheck [Manerkar et al. MICRO 2017] enables 
checking microarchitectural axioms against an 
implementation’s Verilog RTL for litmus test suites

▪This helps ensure that the RTL maintains orderings 
required for consistency

▪ Selected as an Honorable Mention from the “Top Picks 
of Comp. Arch. Conferences” for 2017

Processor RTL



RTL Verification is Maturing…

▪…but usually ignores memory consistency!

▪Often use SystemVerilog Assertions (SVA)



RTL Verification is Maturing…

▪…but usually ignores memory consistency!

▪Often use SystemVerilog Assertions (SVA)

No MCM verification

ISA-Formal [Reid et al. CAV 2016]
-Instr. Operational Semantics



RTL Verification is Maturing…

▪…but usually ignores memory consistency!

▪Often use SystemVerilog Assertions (SVA)

No MCM verification

ISA-Formal [Reid et al. CAV 2016]
-Instr. Operational Semantics

No multicore MCM verification (?)

DOGReL [Stewart et al. DIFTS 2014]
-Memory subsystem transactions



RTL Verification is Maturing…

▪…but usually ignores memory consistency!

▪Often use SystemVerilog Assertions (SVA)

No MCM verification

ISA-Formal [Reid et al. CAV 2016]
-Instr. Operational Semantics

No multicore MCM verification (?)

DOGReL [Stewart et al. DIFTS 2014]
-Memory subsystem transactions

Needs Bluespec design and manual proofs!

Kami
[Vijayaraghavan et al. CAV 2015] [Choi et al. ICFP 2017]
-MCM correctness for all programs, but…



RTL Verification is Maturing…

▪…but usually ignores memory consistency!

▪Often use SystemVerilog Assertions (SVA)

No MCM verification

ISA-Formal [Reid et al. CAV 2016]
-Instr. Operational Semantics

No multicore MCM verification (?)

DOGReL [Stewart et al. DIFTS 2014]
-Memory subsystem transactions

Needs Bluespec design and manual proofs!

Kami
[Vijayaraghavan et al. CAV 2015] [Choi et al. ICFP 2017]
-MCM correctness for all programs, but…

Lack of automated memory 

consistency verification at RTL!



RTLCheck: Checking RTL Consistency Orderings

RTL 
Design

µspec 
Microarch. 

Axioms

Litmus 
Test

Mapping 
Functions

Temporal SystemVerilog
Assertions (SVA)

Cadence JasperGold
(RTL Verifier)

RTLCheck

Proven?



RTLCheck: Checking RTL Consistency Orderings

RTL 
Design

µspec 
Microarch. 

Axioms

Litmus 
Test

Mapping 
Functions

Temporal SystemVerilog
Assertions (SVA)

Cadence JasperGold
(RTL Verifier)

RTLCheck

Proven?

User-provided 
mapping functions
translate microarch. 

primitives to RTL 
equivalents



RTLCheck: Checking RTL Consistency Orderings

RTL 
Design

µspec 
Microarch. 

Axioms

Litmus 
Test

Mapping 
Functions

Temporal SystemVerilog
Assertions (SVA)

Cadence JasperGold
(RTL Verifier)

RTLCheck

Proven?

RTLCheck automatically 
translates µarch. 

ordering axioms to 
temporal properties



RTLCheck: Checking RTL Consistency Orderings

RTL 
Design

µspec 
Microarch. 

Axioms

Litmus 
Test

Mapping 
Functions

Temporal SystemVerilog
Assertions (SVA)

Cadence JasperGold
(RTL Verifier)

RTLCheck

Proven?

Properties may be proven
or counterexample found



Meaning can be Lost in Translation!

小心地滑



Meaning can be Lost in Translation!

小心地滑
(Caution: Slippery Floor)



Meaning can be Lost in Translation!

[Image: Barbara Younger]
[Inspiration: Tae Jun Ham]

小心地滑
(Caution: Slippery Floor)



RTLCheck: Checking Consistency at RTL

Axiomatic
Microarch. 
Analysis



RTLCheck: Checking Consistency at RTL

Axiomatic
Microarch. 
Analysis

Temporal
RTL Verification 

(SVA, etc)

Core[0].DX

Core[0].WB

Core[1].DX

Core[1].WB

clk

Core[1].LData

St x

St x

St y

St y

Ld y

Ld y

Ld x

Ld x

0x1 0x1

Core[0].SData 0x1 0x1

2 3 4 5 6 7



RTLCheck: Checking Consistency at RTL

Axiomatic
Microarch. 
Analysis

Temporal
RTL Verification 

(SVA, etc)

Core[0].DX

Core[0].WB

Core[1].DX

Core[1].WB

clk

Core[1].LData

St x

St x

St y

St y

Ld y

Ld y

Ld x

Ld x

0x1 0x1

Core[0].SData 0x1 0x1

2 3 4 5 6 7

Abstract nodes 
and happens-
before edges



RTLCheck: Checking Consistency at RTL

Axiomatic
Microarch. 
Analysis

Temporal
RTL Verification 

(SVA, etc)

Core[0].DX

Core[0].WB

Core[1].DX

Core[1].WB

clk

Core[1].LData

St x

St x

St y

St y

Ld y

Ld y

Ld x

Ld x

0x1 0x1

Core[0].SData 0x1 0x1

2 3 4 5 6 7

Abstract nodes 
and happens-
before edges

Concrete
signals and 
clock cycles



RTLCheck: Checking Consistency at RTL

Axiomatic
Microarch. 
Analysis

Temporal
RTL Verification 

(SVA, etc)

Core[0].DX

Core[0].WB

Core[1].DX

Core[1].WB

clk

Core[1].LData

St x

St x

St y

St y

Ld y

Ld y

Ld x

Ld x

0x1 0x1

Core[0].SData 0x1 0x1

2 3 4 5 6 7

Axiomatic/Temporal Mismatch!

Abstract nodes 
and happens-
before edges

Concrete
signals and 
clock cycles



Core 0 Core 1

(i1) x = 1; (i3) r1 = y;

(i2) y = 1; (i4) r2 = x;

mp (Message Passing)

Outcome Filtering in Axiomatic Analysis
▪Outcome Filtering: Restrict test outcome to one particular outcome

• Allows for more efficient verification

▪Axiomatic models make outcome filtering easy



Core 0 Core 1

(i1) x = 1; (i3) r1 = y;

(i2) y = 1; (i4) r2 = x;

mp (Message Passing)

Outcome Filtering in Axiomatic Analysis
▪Outcome Filtering: Restrict test outcome to one particular outcome

• Allows for more efficient verification

▪Axiomatic models make outcome filtering easy

Outcome: r1 = 1, r2 = 1

Execution examined as a whole, 
so outcome can be enforced!



Core 0 Core 1

(i1) x = 1; (i3) r1 = y;

(i2) y = 1; (i4) r2 = x;

mp (Message Passing)

Outcome Filtering in Axiomatic Analysis
▪Outcome Filtering: Restrict test outcome to one particular outcome

• Allows for more efficient verification

▪Axiomatic models make outcome filtering easy

Outcome: r1 = 1, r2 = 1

Execution examined as a whole, 
so outcome can be enforced!



Core 0 Core 1

(i1) x = 1; (i3) r1 = y;

(i2) y = 1; (i4) r2 = x;

mp (Message Passing)

Outcome Filtering in Axiomatic Analysis
▪Outcome Filtering: Restrict test outcome to one particular outcome

• Allows for more efficient verification

▪Axiomatic models make outcome filtering easy

Outcome: r1 = 1, r2 = 1

Execution examined as a whole, 
so outcome can be enforced!



Outcome Filtering in Temporal Verification
▪ Filtering executions by outcome requires expensive global analysis

• Not done by many SVA verifiers, including JasperGold!

mp

Core 0 Core 1

(i1) x = 1; (i3) r1 = y;

(i2) y = 1; (i4) r2 = x;

Is r1 = 1, r2 = 0 possible?



Outcome Filtering in Temporal Verification
▪ Filtering executions by outcome requires expensive global analysis

• Not done by many SVA verifiers, including JasperGold!

mp

(i1) x = 1

Step 1

Core 0 Core 1

(i1) x = 1; (i3) r1 = y;

(i2) y = 1; (i4) r2 = x;

Is r1 = 1, r2 = 0 possible?



Outcome Filtering in Temporal Verification
▪ Filtering executions by outcome requires expensive global analysis

• Not done by many SVA verifiers, including JasperGold!

mp

(i1) x = 1

Step 1 Step 2

(i2) y = 1 (i3) r1 = y = 1

Step 3

(i4) r2 = x = 1

Step 4

Core 0 Core 1

(i1) x = 1; (i3) r1 = y;

(i2) y = 1; (i4) r2 = x;

Is r1 = 1, r2 = 0 possible?



Outcome Filtering in Temporal Verification
▪ Filtering executions by outcome requires expensive global analysis

• Not done by many SVA verifiers, including JasperGold!

mp

(i1) x = 1

Step 1 Step 2

(i2) y = 1 (i3) r1 = y = 1

Step 3

(i4) r2 = x = 0?

(i4) r2 = x = 1

Step 4

Core 0 Core 1

(i1) x = 1; (i3) r1 = y;

(i2) y = 1; (i4) r2 = x;

Is r1 = 1, r2 = 0 possible?



Outcome Filtering in Temporal Verification
▪ Filtering executions by outcome requires expensive global analysis

• Not done by many SVA verifiers, including JasperGold!

mp

(i1) x = 1

Step 1 Step 2

(i2) y = 1 (i3) r1 = y = 1

Step 3

(i4) r2 = x = 0?

(i4) r2 = x = 1

Step 4

Core 0 Core 1

(i1) x = 1; (i3) r1 = y;

(i2) y = 1; (i4) r2 = x;

Is r1 = 1, r2 = 0 possible?

(i3) r1 = y = 0

… …

…
…

Need to examine all 
possible paths from 

current step to end of 
execution: too expensive!



Outcome Filtering in Temporal Verification
▪ Filtering executions by outcome requires expensive global analysis

• Not done by many SVA verifiers, including JasperGold!

mp

(i1) x = 1

Step 1 Step 2

(i2) y = 1 (i3) r1 = y = 1

Step 3

(i4) r2 = x = 0?

(i4) r2 = x = 1

Step 4

Core 0 Core 1

(i1) x = 1; (i3) r1 = y;

(i2) y = 1; (i4) r2 = x;

Is r1 = 1, r2 = 0 possible?

(i3) r1 = y = 0

… …

…
…

Need to examine all 
possible paths from 

current step to end of 
execution: too expensive!

SVA Verifier Approximation: Only check if 
constraints hold up to current step

Makes Outcome Filtering impossible!



Core 0 Core 1

(i1) x = 1; (i3) r1 = y;

(i2) y = 1; (i4) r2 = x;

SC Forbids: r1 = 1, r2 = 0

Axiom "Read_Values":
Every load either reads BeforeAllWrites OR reads FromLatestWrite

µspec Analysis Uses Outcome Filtering

Note: Axioms abstracted for brevity

mp



Core 0 Core 1

(i1) x = 1; (i3) r1 = y;

(i2) y = 1; (i4) r2 = x;

SC Forbids: r1 = 1, r2 = 0

Axiom "Read_Values":
Every load either reads BeforeAllWrites OR reads FromLatestWrite

µspec Analysis Uses Outcome Filtering

Note: Axioms abstracted for brevity

mp



Core 0 Core 1

(i1) x = 1; (i3) r1 = y;

(i2) y = 1; (i4) r2 = x;

SC Forbids: r1 = 1, r2 = 0

Axiom "Read_Values":
Every load either reads BeforeAllWrites OR reads FromLatestWrite

µspec Analysis Uses Outcome Filtering

Note: Axioms abstracted for brevity

mp

No write for load 
to read from!



Core 0 Core 1

(i1) x = 1; (i3) r1 = y;

(i2) y = 1; (i4) r2 = x;

SC Forbids: r1 = 1, r2 = 0

Axiom "Read_Values":
Every load either reads BeforeAllWrites OR reads FromLatestWrite

µspec Analysis Uses Outcome Filtering

Note: Axioms abstracted for brevity

mp

Outcome Filtering leads to simpler axioms!



Core[0].Commit

Core[1].Commit

clk

Core[1].LData

Core[0].SData

Temporal Outcome Filtering Fails!
Filtered Read_Values:
Unless Load returns non-zero value,

Load happens before all stores to its address

Core 0 Core 1

(i1) x = 1; (i3) r1 = y;

(i2) y = 1; (i4) r2 = x;

SC Forbids: r1 = 1, r2 = 0

mp

Note: Axioms/properties abstracted for brevity

Time (cycles)



After 3 cycles:

Core[0].Commit

Core[1].Commit

clk

Core[1].LData

Core[0].SData

St x

0x1

3

Temporal Outcome Filtering Fails!
Filtered Read_Values:
Unless Load returns non-zero value,

Load happens before all stores to its address

Core 0 Core 1

(i1) x = 1; (i3) r1 = y;

(i2) y = 1; (i4) r2 = x;

SC Forbids: r1 = 1, r2 = 0

mp

21

Note: Axioms/properties abstracted for brevity

Time (cycles)



After 3 cycles:
Store happens before load!

Property Violated?Core[0].Commit

Core[1].Commit

clk

Core[1].LData

Core[0].SData

St x

0x1

3

Temporal Outcome Filtering Fails!
Filtered Read_Values:
Unless Load returns non-zero value,

Load happens before all stores to its address

Core 0 Core 1

(i1) x = 1; (i3) r1 = y;

(i2) y = 1; (i4) r2 = x;

SC Forbids: r1 = 1, r2 = 0

mp

21

Note: Axioms/properties abstracted for brevity

Time (cycles)



After 6 cycles:
Load does not read 0

No Violation!

After 3 cycles:
Store happens before load!

Property Violated?Core[0].Commit

Core[1].Commit

clk

Core[1].LData

Core[0].SData

St x

0x1

3

St y

0x1

4

Ld y

0x1

5

Ld x

0x1

6

Temporal Outcome Filtering Fails!
Filtered Read_Values:
Unless Load returns non-zero value,

Load happens before all stores to its address

Core 0 Core 1

(i1) x = 1; (i3) r1 = y;

(i2) y = 1; (i4) r2 = x;

SC Forbids: r1 = 1, r2 = 0

mp

21

Note: Axioms/properties abstracted for brevity

Time (cycles)



After 6 cycles:
Load does not read 0

No Violation!
But SVA verifiers don’t check 

future cycles!

After 3 cycles:
Store happens before load!

Property Violated?Core[0].Commit

Core[1].Commit

clk

Core[1].LData

Core[0].SData

St x

0x1

3

St y

0x1

4

Ld y

0x1

5

Ld x

0x1

6

Temporal Outcome Filtering Fails!
Filtered Read_Values:
Unless Load returns non-zero value,

Load happens before all stores to its address

Core 0 Core 1

(i1) x = 1; (i3) r1 = y;

(i2) y = 1; (i4) r2 = x;

SC Forbids: r1 = 1, r2 = 0

mp

21

Note: Axioms/properties abstracted for brevity

Time (cycles)



After 6 cycles:
Load does not read 0

No Violation!
But SVA verifiers don’t check 

future cycles!

After 3 cycles:
Store happens before load!

Property Violated?Core[0].Commit

Core[1].Commit

clk

Core[1].LData

Core[0].SData

St x

0x1

3

Temporal Outcome Filtering Fails!
Filtered Read_Values:
Unless Load returns non-zero value,

Load happens before all stores to its address

Core 0 Core 1

(i1) x = 1; (i3) r1 = y;

(i2) y = 1; (i4) r2 = x;

SC Forbids: r1 = 1, r2 = 0

mp

21

Note: Axioms/properties abstracted for brevity

Counterexample flagged despite 
hardware doing nothing wrong!

Time (cycles)



Property to check:
mapNode(Ld x → St x, Ld x == 0) or mapNode(St x → Ld x, Ld x == 1);

▪Don’t simplify axioms; translate all cases

▪Tag each case with appropriate load value constraints

• reflect the data constraints required for edge(s)

Solution: Load Value Constraints

Axiom "Read_Values":
Every load either reads BeforeAllWrites OR reads FromLatestWrite

Core 0 Core 1

(i1) x = 1; (i3) r1 = y;

(i2) y = 1; (i4) r2 = x;

SC Forbids: r1 = 1, r2 = 0

mp

Note: Axioms and properties abstracted for brevity



Property to check:
mapNode(Ld x → St x, Ld x == 0) or mapNode(St x → Ld x, Ld x == 1);

▪Don’t simplify axioms; translate all cases

▪Tag each case with appropriate load value constraints

• reflect the data constraints required for edge(s)

Solution: Load Value Constraints

Axiom "Read_Values":
Every load either reads BeforeAllWrites OR reads FromLatestWrite

Core 0 Core 1

(i1) x = 1; (i3) r1 = y;

(i2) y = 1; (i4) r2 = x;

SC Forbids: r1 = 1, r2 = 0

mp

Note: Axioms and properties abstracted for brevity



Property to check:
mapNode(Ld x → St x, Ld x == 0) or mapNode(St x → Ld x, Ld x == 1);

▪Don’t simplify axioms; translate all cases

▪Tag each case with appropriate load value constraints

• reflect the data constraints required for edge(s)

Solution: Load Value Constraints

Axiom "Read_Values":
Every load either reads BeforeAllWrites OR reads FromLatestWrite

Core 0 Core 1

(i1) x = 1; (i3) r1 = y;

(i2) y = 1; (i4) r2 = x;

SC Forbids: r1 = 1, r2 = 0

mp

Note: Axioms and properties abstracted for brevity



Property to check:
mapNode(Ld x → St x, Ld x == 0) or mapNode(St x → Ld x, Ld x == 1);

▪Don’t simplify axioms; translate all cases

▪Tag each case with appropriate load value constraints

• reflect the data constraints required for edge(s)

Solution: Load Value Constraints

Axiom "Read_Values":
Every load either reads BeforeAllWrites OR reads FromLatestWrite

Core 0 Core 1

(i1) x = 1; (i3) r1 = y;

(i2) y = 1; (i4) r2 = x;

SC Forbids: r1 = 1, r2 = 0

mp

Note: Axioms and properties abstracted for brevity



Multi-V-scale: a Multicore Case Study
Core 0 Core 1 Core 2 Core 3

Arbiter

Memory

WB

DX

IF

WB

DX

IF

WB

DX

IF

WB

DX

IF



Multi-V-scale: a Multicore Case Study
Core 0 Core 1 Core 2 Core 3

Arbiter

Memory

WB

DX

IF

WB

DX

IF

WB

DX

IF

WB

DX

IF

3-stage 
in-order 
pipelines



Multi-V-scale: a Multicore Case Study
Core 0 Core 1 Core 2 Core 3

Arbiter

Memory

WB

DX

IF

WB

DX

IF

WB

DX

IF

WB

DX

IF

Arbiter 
enforces that 
only one core 

can access 
memory at any 

time



▪ V-scale memory internally writes 
stores to wdata register

▪ wdata pushed to memory when 
subsequent store occurs

▪ Akin to single-entry store buffer

▪ When two stores are sent to 
memory in successive cycles, 
first of two stores is dropped by 
memory!

▪ Fixed bug by eliminating wdata

▪ V-scale has since been 
deprecated by RISC-V Foundation

Bug Discovered in V-scale
Core 0 Core 1 Core 2 Core 3

Arbiter

WB

DX

IF

WB

DX

IF

WB

DX

IF

WB

DX

IF

Memory

wdata

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Mem array

Stores

x = 1

y = 1



▪ V-scale memory internally writes 
stores to wdata register

▪ wdata pushed to memory when 
subsequent store occurs

▪ Akin to single-entry store buffer

▪ When two stores are sent to 
memory in successive cycles, 
first of two stores is dropped by 
memory!

▪ Fixed bug by eliminating wdata

▪ V-scale has since been 
deprecated by RISC-V Foundation

Bug Discovered in V-scale
Core 0 Core 1 Core 2 Core 3

Arbiter

WB

DX

IF

WB

DX

IF

WB

DX

IF

WB

DX

IF

Memory

wdata

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Mem array

Stores

x = 1

y = 1



▪ V-scale memory internally writes 
stores to wdata register

▪ wdata pushed to memory when 
subsequent store occurs

▪ Akin to single-entry store buffer

▪ When two stores are sent to 
memory in successive cycles, 
first of two stores is dropped by 
memory!

▪ Fixed bug by eliminating wdata

▪ V-scale has since been 
deprecated by RISC-V Foundation

Bug Discovered in V-scale
Core 0 Core 1 Core 2 Core 3

Arbiter

WB

DX

IF

WB

DX

IF

WB

DX

IF

WB

DX

IF

Memory

wdata

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Mem array

Stores

x = 1y = 1



RTLCheck Takeaways
▪Microarchitectural models must be validated against RTL

▪RTLCheck: Automated translation of microarch. axioms into 
equivalent temporal SVA properties for litmus test suites

• Translation is complicated by the axiomatic-temporal mismatch

• JasperGold was able to prove 90% of properties/test in 11 hours runtime

▪ Last piece of the Check suite; now have tools at all levels of the stack!



Conclusion

High-Level Languages (HLL)

Compiler

Architecture (ISA)

Microarchitecture

OS

▪The Check suite provides automated full-stack 
MCM checking of implementations

▪ Litmus-test based verification to concentrate on 
error-prone cases

▪Can check:

• Implementation of HLL requirements

• Virtual memory implementation

• HLL Compiler mappings

• Microarchitectural Orderings (including coherence)

• and even RTL (Verilog)!

▪All tools are open-source and publicly available!

Processor RTL



With Thanks to…

▪Collaborators:

• Margaret Martonosi

• Daniel Lustig

• Caroline Trippel

• Michael Pellauer

• Aarti Gupta

▪ Funding:

• Princeton Wallace Memorial Honorific Fellowship

• STARnet C-FAR (Center for Future Architectures Research)

• JUMP ADA Center (Applications Driving Architectures)

• National Science Foundation



Questions?

http://check.cs.princeton.edu/

http://www.cs.princeton.edu/~manerkar

• Yatin A. Manerkar, Daniel Lustig, Margaret Martonosi, and Michael Pellauer. RTLCheck: Verifying the Memory Consistency of 
RTL Designs. The 50th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), October 2017.

• Yatin A. Manerkar, Caroline Trippel, Daniel Lustig, Michael Pellauer, and Margaret Martonosi. Counterexamples and Proof 
Loophole for the C/C++ to POWER and ARMv7 Trailing-Sync Compiler Mappings. CoRR abs/1611.01507, November 2016.

• Caroline Trippel, Yatin A. Manerkar, Daniel Lustig, Michael Pellauer, and Margaret Martonosi. TriCheck: Memory Model 
Verification at the Trisection of Software, Hardware, and ISA. The 22nd International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), April 2017.

• Yatin A. Manerkar, Daniel Lustig, Michael Pellauer, and Margaret Martonosi. CCICheck: Using µhb Graphs to Verify the 
Coherence-Consistency Interface. The 48th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), 
December 2015.



Coherence and Consistency

Conceptual

Coherence Consistency

▪Most coherence protocols are not that simple!

• Partial incoherence (e.g. GPUs) [Wickerson et al. OOPSLA 2016]

• Lazy coherence (e.g. TSO-CC) [Elver and Nagarajan HPCA 2014]

▪CCI: Coherence-Consistency Interface



Coherence and Consistency

Conceptual

Real 
Implementations

Coherence and consistency often interwoven

Coherence Consistency

▪Most coherence protocols are not that simple!

• Partial incoherence (e.g. GPUs) [Wickerson et al. OOPSLA 2016]

• Lazy coherence (e.g. TSO-CC) [Elver and Nagarajan HPCA 2014]

▪CCI: Coherence-Consistency Interface



Coherence and Consistency

Conceptual

Real 
Implementations

Coherence and consistency often interwoven

Verifiers can’t ignore 
consistency 

implications!

Coherence Consistency

Verifiers can’t assume 
abstract 

coherence/memory 
hierarchy!

▪Most coherence protocols are not that simple!

• Partial incoherence (e.g. GPUs) [Wickerson et al. OOPSLA 2016]

• Lazy coherence (e.g. TSO-CC) [Elver and Nagarajan HPCA 2014]

▪CCI: Coherence-Consistency Interface



Coherence and Consistency

Conceptual

Real 
Implementations

Coherence and consistency often interwoven

Verifiers can’t ignore 
consistency 

implications!

Coherence Consistency

Verifiers can’t assume 
abstract 

coherence/memory 
hierarchy!

C
C
I

▪Most coherence protocols are not that simple!

• Partial incoherence (e.g. GPUs) [Wickerson et al. OOPSLA 2016]

• Lazy coherence (e.g. TSO-CC) [Elver and Nagarajan HPCA 2014]

▪CCI: Coherence-Consistency Interface



Issue with Draft RISC-V MCM: Cumulativity
▪Consider this litmus test variant (WRC):

• C11 atomics can specify memory orderings: REL = release, ACQ = acquire

▪RISC-V lacked cumulative fences to enforce this ordering:

• (x5 and x6 contain addresses of x and y)

Thread 0 Thread 1 Thread 2

St (x, 1, REL) r0 = Ld (x, ACQ) r1 = Ld (y, ACQ)

St (y, 1, REL) r2 = Ld (x, ACQ)

Forbidden by C11: r0 = 1, r1 = 1, r2 = 0

Core 0 Core 1 Core 2

sw x1, (x5) lw x2, (x5) lw x3, (x6)

fence r, rw fence r, rw

fence rw, w lw x4, (x5)

sw x2, (x6)

Allowed by draft RISC-V: x1 = 1, x2 = 1, x3 = 1, x4 = 0



Issue with Draft RISC-V MCM: Cumulativity
▪Consider this litmus test variant (WRC):

• C11 atomics can specify memory orderings: REL = release, ACQ = acquire

▪RISC-V lacked cumulative fences to enforce this ordering:

• (x5 and x6 contain addresses of x and y)

Thread 0 Thread 1 Thread 2

St (x, 1, REL) r0 = Ld (x, ACQ) r1 = Ld (y, ACQ)

St (y, 1, REL) r2 = Ld (x, ACQ)

Forbidden by C11: r0 = 1, r1 = 1, r2 = 0

Core 0 Core 1 Core 2

sw x1, (x5) lw x2, (x5) lw x3, (x6)

fence r, rw fence r, rw

fence rw, w lw x4, (x5)

sw x2, (x6)

Allowed by draft RISC-V: x1 = 1, x2 = 1, x3 = 1, x4 = 0



Issue with Draft RISC-V MCM: Cumulativity
▪Consider this litmus test variant (WRC):

• C11 atomics can specify memory orderings: REL = release, ACQ = acquire

▪RISC-V lacked cumulative fences to enforce this ordering:

• (x5 and x6 contain addresses of x and y)

Thread 0 Thread 1 Thread 2

St (x, 1, REL) r0 = Ld (x, ACQ) r1 = Ld (y, ACQ)

St (y, 1, REL) r2 = Ld (x, ACQ)

Forbidden by C11: r0 = 1, r1 = 1, r2 = 0

Core 0 Core 1 Core 2

sw x1, (x5) lw x2, (x5) lw x3, (x6)

fence r, rw fence r, rw

fence rw, w lw x4, (x5)

sw x2, (x6)

Allowed by draft RISC-V: x1 = 1, x2 = 1, x3 = 1, x4 = 0



Issue with Draft RISC-V MCM: Cumulativity
▪Consider this litmus test variant (WRC):

• C11 atomics can specify memory orderings: REL = release, ACQ = acquire

▪RISC-V lacked cumulative fences to enforce this ordering:

• (x5 and x6 contain addresses of x and y)

Thread 0 Thread 1 Thread 2

St (x, 1, REL) r0 = Ld (x, ACQ) r1 = Ld (y, ACQ)

St (y, 1, REL) r2 = Ld (x, ACQ)

Forbidden by C11: r0 = 1, r1 = 1, r2 = 0

Core 0 Core 1 Core 2

sw x1, (x5) lw x2, (x5) lw x3, (x6)

fence r, rw fence r, rw

fence rw, w lw x4, (x5)

sw x2, (x6)

Allowed by draft RISC-V: x1 = 1, x2 = 1, x3 = 1, x4 = 0



Issue with Draft RISC-V MCM: Cumulativity
▪Consider this litmus test variant (WRC):

• C11 atomics can specify memory orderings: REL = release, ACQ = acquire

▪RISC-V lacked cumulative fences to enforce this ordering:

• (x5 and x6 contain addresses of x and y)

Thread 0 Thread 1 Thread 2

St (x, 1, REL) r0 = Ld (x, ACQ) r1 = Ld (y, ACQ)

St (y, 1, REL) r2 = Ld (x, ACQ)

Forbidden by C11: r0 = 1, r1 = 1, r2 = 0

Core 0 Core 1 Core 2

sw x1, (x5) lw x2, (x5) lw x3, (x6)

fence r, rw fence r, rw

fence rw, w lw x4, (x5)

sw x2, (x6)

Allowed by draft RISC-V: x1 = 1, x2 = 1, x3 = 1, x4 = 0



Issue with Draft RISC-V MCM: Cumulativity
▪Consider this litmus test variant (WRC):

• C11 atomics can specify memory orderings: REL = release, ACQ = acquire

▪RISC-V lacked cumulative fences to enforce this ordering:

• (x5 and x6 contain addresses of x and y)

Thread 0 Thread 1 Thread 2

St (x, 1, REL) r0 = Ld (x, ACQ) r1 = Ld (y, ACQ)

St (y, 1, REL) r2 = Ld (x, ACQ)

Forbidden by C11: r0 = 1, r1 = 1, r2 = 0

Core 0 Core 1 Core 2

sw x1, (x5) lw x2, (x5) lw x3, (x6)

fence r, rw fence r, rw

fence rw, w lw x4, (x5)

sw x2, (x6)

Allowed by draft RISC-V: x1 = 1, x2 = 1, x3 = 1, x4 = 0



ARMv7/Power Trailing-Sync Counterexample
▪Consider this litmus test variant (IRIW):

• Total order over all SC atomic accesses is required

▪With the trailing-sync mapping, this compiles to the following:

• Allowed on Power [Sarkar et al. PLDI 2011] and ARMv7 [Alglave et al. TOPLAS 
2014]

Thread 0 Thread 1 Thread 2 Thread 3

St (x, 1, SC) St (y, 1, SC) r0 = Ld (x, ACQ) r2 = Ld (y, ACQ)

r1 = Ld (y, SC) r3 = Ld (x, SC)

Forbidden by C11: r0 = 1, r1 = 0, r2 = 1, r3 = 0

Core 0 Core 1 Core 2 Core 3

str 1, [x] str 1, [y] ldr r1, [x] ldr r3, [y]

ctrlisb/ctrlisync ctrlisb/ctrlisync

ldr r2, [y] ldr r4, [x]

Allowed by Power/ARMv7: r1 = 1, r2 = 0, r3 = 1, r4 = 0



ARMv7/Power Trailing-Sync Counterexample
▪Consider this litmus test variant (IRIW):

• Total order over all SC atomic accesses is required

▪ SC total order must respect happens-before i.e. (sb U sw)+

Thread 0 Thread 1 Thread 2 Thread 3

St (x, 1, SC) St (y, 1, SC) r0 = Ld (x, ACQ) r2 = Ld (y, ACQ)

r1 = Ld (y, SC) r3 = Ld (x, SC)

Forbidden by C11: r0 = 1, r1 = 0, r2 = 1, r3 = 0

[Generated with CPPMEM from Cambridge]



ARMv7/Power Trailing-Sync Counterexample
▪Consider this litmus test variant (IRIW):

• Total order over all SC atomic accesses is required

▪ SC total order must respect happens-before i.e. (sb U sw)+

Thread 0 Thread 1 Thread 2 Thread 3

St (x, 1, SC) St (y, 1, SC) r0 = Ld (x, ACQ) r2 = Ld (y, ACQ)

r1 = Ld (y, SC) r3 = Ld (x, SC)

Forbidden by C11: r0 = 1, r1 = 0, r2 = 1, r3 = 0

[Generated with CPPMEM from Cambridge]



ARMv7/Power Trailing-Sync Counterexample
▪Consider this litmus test variant (IRIW):

• Total order over all SC atomic accesses is required

▪ SC total order must respect happens-before i.e. (sb U sw)+

Thread 0 Thread 1 Thread 2 Thread 3

St (x, 1, SC) St (y, 1, SC) r0 = Ld (x, ACQ) r2 = Ld (y, ACQ)

r1 = Ld (y, SC) r3 = Ld (x, SC)

Forbidden by C11: r0 = 1, r1 = 0, r2 = 1, r3 = 0

[Generated with CPPMEM from Cambridge]



ARMv7/Power Trailing-Sync Counterexample
▪Consider this litmus test variant (IRIW):

• Total order over all SC atomic accesses is required

▪ SC total order must respect happens-before i.e. (sb U sw)+

Thread 0 Thread 1 Thread 2 Thread 3

St (x, 1, SC) St (y, 1, SC) r0 = Ld (x, ACQ) r2 = Ld (y, ACQ)

r1 = Ld (y, SC) r3 = Ld (x, SC)

Forbidden by C11: r0 = 1, r1 = 0, r2 = 1, r3 = 0

[Generated with CPPMEM from Cambridge]

c: Wsc x = 1 d: Wsc y = 1

f: Rsc y = 0 h: Rsc x = 0



ARMv7/Power Trailing-Sync Counterexample
▪Consider this litmus test variant (IRIW):

• Total order over all SC atomic accesses is required

▪ SC reads must be before later SC writes

Thread 0 Thread 1 Thread 2 Thread 3

St (x, 1, SC) St (y, 1, SC) r0 = Ld (x, ACQ) r2 = Ld (y, ACQ)

r1 = Ld (y, SC) r3 = Ld (x, SC)

Forbidden by C11: r0 = 1, r1 = 0, r2 = 1, r3 = 0

[Generated with CPPMEM from Cambridge]

c: Wsc x = 1 d: Wsc y = 1

f: Rsc y = 0 h: Rsc x = 0



ARMv7/Power Trailing-Sync Counterexample
▪Consider this litmus test variant (IRIW):

• Total order over all SC atomic accesses is required

▪ SC reads must be before later SC writes

Thread 0 Thread 1 Thread 2 Thread 3

St (x, 1, SC) St (y, 1, SC) r0 = Ld (x, ACQ) r2 = Ld (y, ACQ)

r1 = Ld (y, SC) r3 = Ld (x, SC)

Forbidden by C11: r0 = 1, r1 = 0, r2 = 1, r3 = 0

[Generated with CPPMEM from Cambridge]

c: Wsc x = 1 d: Wsc y = 1

f: Rsc y = 0 h: Rsc x = 0

• Cycle in the SC order implies outcome is forbidden
• But compiled code allows the behaviour!



What went wrong?
▪ It was thought that program order and coherence edges directly 

between SC accesses were all that needed enforcing [Batty et al. 
POPL 2012]

▪But ℎ𝑏 edges can arise between SC accesses through the transitive 
composition of edges to and from a non-SC intermediate access

▪Occurs in IRIW counterexample:



What went wrong?
▪ It was thought that program order and coherence edges directly 

between SC accesses were all that needed enforcing [Batty et al. 
POPL 2012]

▪But ℎ𝑏 edges can arise between SC accesses through the transitive 
composition of edges to and from a non-SC intermediate access

▪Occurs in IRIW counterexample:



What went wrong?
▪ It was thought that program order and coherence edges directly 

between SC accesses were all that needed enforcing [Batty et al. 
POPL 2012]

▪But ℎ𝑏 edges can arise between SC accesses through the transitive 
composition of edges to and from a non-SC intermediate access

▪Occurs in IRIW counterexample:



▪Need to restrict executions to those of litmus test

▪Three classes of assumptions:

• Memory initialization

− Instr. mem and data mem

• Register initialization

• Value assumptions

− Load value assumptions: loads return correct value (when they occur)

− Final value assumptions: Required final values of memory are respected

▪RTLCheck generates SystemVerilog Assumptions to constrain executions

• Utilises user-provided program mapping function

Assumption Generation



▪Covering trace: execution where assumption condition is enforced

• Eg: execution where load of x returns 0

• Must obey all assumptions

▪Covering final value assum. == finding forbidden execution!

• No covering trace => equivalent to verifying overall test!

▪Quicker verification for some tests

• Expect benefit to be largest for small designs

Assumption Generation



▪Why generate final value assumptions if test has no final conditions?

▪Answer: Covering traces can lead to faster verification

▪These are traces where assumption condition occurs and can be 
enforced

The Benefits of Final Value Assumptions

Core[0].DX

Core[0].WB

Core[1].DX

Core[1].WB

clk

Core[1].LData

St x

St x

St y

St y

Ld y

Ld y

Ld x

Ld x

0x1 0x1

Core[0].SData 0x1 0x1

2 3 4 5 6 7



▪Why generate final value assumptions if test has no final conditions?

▪Answer: Covering traces can lead to faster verification

▪These are traces where assumption condition occurs and can be 
enforced

The Benefits of Final Value Assumptions

Core[0].DX

Core[0].WB

Core[1].DX

Core[1].WB

clk

Core[1].LData

St x

St x

St y

St y

Ld y

Ld y

Ld x

Ld x

0x1 0x1

Core[0].SData 0x1 0x1

2 3 4 5 6 7

Covering trace for final val
assumption is complete 
execution of litmus test



▪Why generate final value assumptions if test has no final conditions?

▪Answer: Covering traces can lead to faster verification

▪These are traces where assumption condition occurs and can be 
enforced

The Benefits of Final Value Assumptions

Core[0].DX

Core[0].WB

Core[1].DX

Core[1].WB

clk

Core[1].LData

St x

St x

St y

St y

Ld y

Ld y

Ld x

Ld x

0x1 0x1

Core[0].SData 0x1 0x1

2 3 4 5 6 7

Covering trace for final val
assumption is complete 
execution of litmus test

Covering trace must also obey other 
assumptions, including load val assumptions

(For mp, Ld y = 1 and Ld x = 0)



▪Why generate final value assumptions if test has no final conditions?

▪Answer: Covering traces can lead to faster verification

▪These are traces where assumption condition occurs and can be 
enforced

The Benefits of Final Value Assumptions

Core[0].DX

Core[0].WB

Core[1].DX

Core[1].WB

clk

Core[1].LData

St x

St x

St y

St y

Ld y

Ld y

Ld x

Ld x

0x1 0x1

Core[0].SData 0x1 0x1

2 3 4 5 6 7

Covering trace for final val
assumption is complete 
execution of litmus test

Covering trace must also obey other 
assumptions, including load val assumptions

(For mp, Ld y = 1 and Ld x = 0)

Thus, covering trace for mp final val
assumption (full execution with Ld y=1

and Ld x=0) is equivalent to finding 
forbidden execution of mp!



▪Two configurations (Hybrid and Full_Proof), avg. runtime 6.2 hrs

• See paper for configuration details

Results: Time to Prove Properties

0

2

4

6

8

10

12

sa
fe

0
0

6 lb
sa

fe
0

0
7

m
p

sa
fe

0
2

2
sa

fe
0

1
0

ss
l

sa
fe

0
0

0
sa

fe
0

0
8

n
4

n
5

co
-m

p
sa

fe
0

0
1

w
rc sb

sa
fe

0
1

8
p

o
d

w
r0

0
0

sa
fe

0
0

3
m

p
+s

ta
le

ld
sa

fe
0

1
2

sa
fe

0
0

2
sa

fe
0

1
4

iw
p

23
b

sa
fe

0
0

9
sa

fe
0

2
9

sa
fe

0
2

7
rw

c
n

2
rf

i0
1

3
sa

fe
0

3
0

sa
fe

0
1

1
rf

i0
1

5
rf

i0
0

3
sa

fe
0

2
1

ir
iw n

7
iw

p
24

p
o

d
w

r0
0

1
sa

fe
0

1
7

rf
i0

1
2

n
6

sa
fe

0
1

9
rf

i0
0

1
rf

i0
0

0
rf

i0
1

1
sa

fe
0

2
6

sa
fe

0
0

4
sa

fe
0

1
6

rf
i0

0
2

rf
i0

0
5

rf
i0

1
4

rf
i0

0
4

rf
i0

0
6

n
1

am
d

3
co

-i
ri

w
M

e
an

Ti
m

e
 (

h
o

u
rs

)

Hybrid Full_Proof



▪Two configurations (Hybrid and Full_Proof), avg. runtime 6.2 hrs

• See paper for configuration details

Results: Time to Prove Properties

0

2

4

6

8

10

12

sa
fe

0
0

6 lb
sa

fe
0

0
7

m
p

sa
fe

0
2

2
sa

fe
0

1
0

ss
l

sa
fe

0
0

0
sa

fe
0

0
8

n
4

n
5

co
-m

p
sa

fe
0

0
1

w
rc sb

sa
fe

0
1

8
p

o
d

w
r0

0
0

sa
fe

0
0

3
m

p
+s

ta
le

ld
sa

fe
0

1
2

sa
fe

0
0

2
sa

fe
0

1
4

iw
p

23
b

sa
fe

0
0

9
sa

fe
0

2
9

sa
fe

0
2

7
rw

c
n

2
rf

i0
1

3
sa

fe
0

3
0

sa
fe

0
1

1
rf

i0
1

5
rf

i0
0

3
sa

fe
0

2
1

ir
iw n

7
iw

p
24

p
o

d
w

r0
0

1
sa

fe
0

1
7

rf
i0

1
2

n
6

sa
fe

0
1

9
rf

i0
0

1
rf

i0
0

0
rf

i0
1

1
sa

fe
0

2
6

sa
fe

0
0

4
sa

fe
0

1
6

rf
i0

0
2

rf
i0

0
5

rf
i0

1
4

rf
i0

0
4

rf
i0

0
6

n
1

am
d

3
co

-i
ri

w
M

e
an

Ti
m

e
 (

h
o

u
rs

)

Hybrid Full_Proof

Complete quickly due to 
covering traces



▪Two configurations (Hybrid and Full_Proof), avg. runtime 6.2 hrs

• See paper for configuration details

Results: Time to Prove Properties

0

2

4

6

8

10

12

sa
fe

0
0

6 lb
sa

fe
0

0
7

m
p

sa
fe

0
2

2
sa

fe
0

1
0

ss
l

sa
fe

0
0

0
sa

fe
0

0
8

n
4

n
5

co
-m

p
sa

fe
0

0
1

w
rc sb

sa
fe

0
1

8
p

o
d

w
r0

0
0

sa
fe

0
0

3
m

p
+s

ta
le

ld
sa

fe
0

1
2

sa
fe

0
0

2
sa

fe
0

1
4

iw
p

23
b

sa
fe

0
0

9
sa

fe
0

2
9

sa
fe

0
2

7
rw

c
n

2
rf

i0
1

3
sa

fe
0

3
0

sa
fe

0
1

1
rf

i0
1

5
rf

i0
0

3
sa

fe
0

2
1

ir
iw n

7
iw

p
24

p
o

d
w

r0
0

1
sa

fe
0

1
7

rf
i0

1
2

n
6

sa
fe

0
1

9
rf

i0
0

1
rf

i0
0

0
rf

i0
1

1
sa

fe
0

2
6

sa
fe

0
0

4
sa

fe
0

1
6

rf
i0

0
2

rf
i0

0
5

rf
i0

1
4

rf
i0

0
4

rf
i0

0
6

n
1

am
d

3
co

-i
ri

w
M

e
an

Ti
m

e
 (

h
o

u
rs

)

Hybrid Full_Proof

Max runtime 11 hours (if 
some properties unproven)



▪Full_Proof generally better (90%/test) than Hybrid (81%/test)

▪On average, Full_Proof can prove more properties in same time

Results: Proven Properties

0

10

20

30

40

50

60

70

80

90

100

sa
fe

0
0

6 lb
sa

fe
0

0
7

sa
fe

0
0

0
n

4
sa

fe
0

1
1

sa
fe

0
1

6
sa

fe
0

3
0

rf
i0

0
0

sa
fe

0
1

7
sa

fe
0

1
9

sa
fe

0
0

4
sa

fe
0

2
1

rf
i0

1
1

rf
i0

0
6

n
1

rf
i0

1
2

n
7

co
-i

ri
w

rf
i0

0
5

sa
fe

0
0

2
n

2
ir

iw
rf

i0
0

2
sa

fe
0

1
2

rf
i0

0
3

sa
fe

0
0

3
sa

fe
0

1
4

sa
fe

0
0

1
iw

p
2

4
rf

i0
1

5
rf

i0
0

1
sa

fe
0

2
6

sa
fe

0
2

7
p

o
d

w
r0

0
1

sa
fe

0
0

8
rf

i0
1

4
n

6
n

5
w

rc
sa

fe
0

1
8

rw
c

sa
fe

0
0

9
rf

i0
0

4
am

d
3

m
p

+s
ta

le
ld

rf
i0

1
3

m
p

sa
fe

0
2

2
sa

fe
0

1
0

ss
l

co
-m

p sb
p

o
d

w
r0

0
0

iw
p

23
b

sa
fe

0
2

9
M

e
an

%
 P

ro
ve

n
 P

ro
p

e
rt

ie
s

Hybrid Full_Proof



▪Full_Proof generally better (90%/test) than Hybrid (81%/test)

▪On average, Full_Proof can prove more properties in same time

Results: Proven Properties

0

10

20

30

40

50

60

70

80

90

100

sa
fe

0
0

6 lb
sa

fe
0

0
7

sa
fe

0
0

0
n

4
sa

fe
0

1
1

sa
fe

0
1

6
sa

fe
0

3
0

rf
i0

0
0

sa
fe

0
1

7
sa

fe
0

1
9

sa
fe

0
0

4
sa

fe
0

2
1

rf
i0

1
1

rf
i0

0
6

n
1

rf
i0

1
2

n
7

co
-i

ri
w

rf
i0

0
5

sa
fe

0
0

2
n

2
ir

iw
rf

i0
0

2
sa

fe
0

1
2

rf
i0

0
3

sa
fe

0
0

3
sa

fe
0

1
4

sa
fe

0
0

1
iw

p
2

4
rf

i0
1

5
rf

i0
0

1
sa

fe
0

2
6

sa
fe

0
2

7
p

o
d

w
r0

0
1

sa
fe

0
0

8
rf

i0
1

4
n

6
n

5
w

rc
sa

fe
0

1
8

rw
c

sa
fe

0
0

9
rf

i0
0

4
am

d
3

m
p

+s
ta

le
ld

rf
i0

1
3

m
p

sa
fe

0
2

2
sa

fe
0

1
0

ss
l

co
-m

p sb
p

o
d

w
r0

0
0

iw
p

23
b

sa
fe

0
2

9
M

e
an

%
 P

ro
ve

n
 P

ro
p

e
rt

ie
s

Hybrid Full_Proof

Hybrid better for only a few tests


