Yatin Manerkar

Princeton University

ARM Cambridge, July 20t", 2018

http://check.cs.princeton.edu/

Memory Consistency Models (MCMs)
Specify rules and guarantees about the ordering and
visibility of accesses to shared memory [Sorin et al., 2011].

C11/ Java Cuda OpenCL
C++11 Bytecode

l l l l

LLVM IR JVM PTX SPIR

Nvidia AMD
GPU GPU
v v v

Shared Virtual Memory

Memory Consistency Models (MCMs)
Specify rules and guarantees about the ordering and
visibility of accesses to shared memory [Sorin et al., 2011].

C11/ Java Cuda OpenCL (

C++11 Bytecode
v v v v

LLVM IR JVM PTX SPIR

Nvidia AMD
GPU GPU
v v v

Shared Virtual Memory

Memory Consistency Models (MCMs)
Specify rules and guarantees about the ordering and
visibility of accesses to shared memory [Sorin et al., 2011].

C11/ Java Cuda OpenCL
C++11 Bytecode

l l l l

LLVM IR JVM PTX SPIR

X86 ARM Power Nvidia AMD o
CPU CPU CPU GPU GPU

Shared Virtual Memory

» Defined by [Lamport 1979], execution Is the same as If:
(R1) Memory ops of each processor appear in program order

(R2) Memory ops of all processors were executed in some total order

(load reads the value of last store to its address in the total order)

Program (mp litmus test)
(all addrs initially 0)

Core O Core 1 Xx=1 ri=y
Xx=1 rl=y y=1 r2=x
y=1 r2=x ri=y x=1
ri=1 r1=0
r2=1 r2=0

1
|
1
|
1
|
1
|
1
|
1
| —_ —_
L r2=x y=1
|
1
|
1
|
1
|
1
|
1
|

Legal Executions lllegal Outcome
x=1 x=1 rl=y rl=y
rl=y ri=y x=1 x=1 ri=1
r2=x y=1 r2=x y=1 r2=0

y=1

r2=x y=1 r2=x

» Defined by [Lamport 1979], execution Is the same as If:
(R1) Memory ops of each processor appear in program order

(R2) Memory ops of all processors were executed in some total order

(load reads the value of last store to its address in the total order)

Program (mp litmus test)
(all addrs initially 0)

Core O Core 1 Xx=1 ri=y

Xx=1 rl=y y=1 r2=x

y=1 r2=x ri=y x=1
ri=1 r1=0
r2=1 r2=0

1
|
1
|
1
|
1
|
1
|
1
| —_ —_
L r2=x y=1
|
1
|
1
|
1
|
1
|
1
|

Legal Executions lllegal Outcome
x=1 x=1 rl=y rl=y
rl=y ri=y x=1 x=1 ri=1
r2=x y=1 r2=x y=1 r2=0

y=1

r2=x y=1 r2=x

" Most processors don’t implement SC
» x86: Total Store Order (TSO): Relaxes Write->Read ordering

* ARMv8 and Power relax more orderings

" Compilation to weak memory ISAs must maintain ordering guarantees

* [Owens et al. TPHOLS 2009], [Batty et al. POPL 2011, POPL 2012], [Wickerson et al. OOPSLA 2015], ...

C11 Source Code

atomic<int> x = 0;
atomic<int> y = 0;

Thread 0 Thread 1
X = 1, r\l - y,
y = 1, r\2 - X,

" Most processors don’t implement SC
» x86: Total Store Order (TSO): Relaxes Write->Read ordering

* ARMv8 and Power relax more orderings

" Compilation to weak memory ISAs must maintain ordering guarantees

* [Owens et al. TPHOLS 2009], [Batty et al. POPL 2011, POPL 2012], [Wickerson et al. OOPSLA 2015], ...

C11 Source Code

int> x = 0;
atomickint> y = 0;

Thread 0 Thread 1
X = 1, r\l - y,
y = 1, r\2 - X,

" Most processors don’t implement SC
» x86: Total Store Order (TSO): Relaxes Write->Read ordering

* ARMv8 and Power relax more orderings

" Compilation to weak memory ISAs must maintain ordering guarantees

* [Owens et al. TPHOLS 2009], [Batty et al. POPL 2011, POPL 2012], [Wickerson et al. OOPSLA 2015], ...

C11 Source Code

atomic<int> x = 0; ARMv8 Assembly Language
atomic<int> y = 0; Initially, [x] = [y] = ©
Thread © Thread 1 Core © Core 1
X = 1; rl = vy; > stl #1, [x] 1da r1, [y]
y = 1; r2 = X; stl #1, [y] lda r2, [x]
Cl1 Forbids: rl1 =1, r2 = 0 ARMv8 forbids: rl =1, r2 = 0

Is the ARMvS8 hardware correctly implementing

the ARMv8 MCM?

MCM Verification 1s a Full-Stack Problem!

Is compiler maintaining
HLL guarantees?

High-Level Languages (HLL)

[Batty et al. POPL 2011, POPL 2012]
[Alglave et al. TOPLAS 2014] _
[Wickerson et al. OOPSLA 2015] Compiler

Is the ISA-level MCM

Architecture (ISA) formally defined?

= Fach layer has responsibilities for ensuring correct MCM operation

" Need MCM checking tools at all layers of the computing stack!

MCM Verification I1s a Full-Stack Problem!

Is compiler maintaining
HLL guarantees?

High-Level Languages (HLL)

[Batty et al. POPL 2011, POPL 2012]
[Alglave et al. TOPLAS 2014]

: Are virtual memory
[Wickerson et al. OOPSLA 2015] Compiler

mappings correct?

Is the ISA-level MCM

Architecture (ISA) formally defined?

Is hardware incorrectly

Microarchitecture .. L s
reordering instructions?

Is RTL correctly
PrOCESSOI’ RTL implementing
microarchitecture?

" Each layer has responsibilities for ensuring correct MCM operation

" Need MCM checking tools at all layers of the computing stack!

MCM Verification I1s a Full-Stack Problem!

Is compiler maintaining
HLL guarantees?

High-Level Languages (HLL)

[Batty et al. POPL 2011, POPL 2012]
[Alglave et al. TOPLAS 2014]

: Are virtual memory
[Wickerson et al. OOPSLA 2015] Compiler

mappings correct?

Is the ISA-level MCM
formally defined?

)) Is hardware incorrectly
Microarchitecture .. L s
reordering instructions?

Is RTL correctly
PrOCESSOI’ RTL implementing
microarchitecture?

Architecture (ISA)

" Each layer has responsibilities for ensuring correct MCM operation

" Need MCM checking tools at all layers of the computing stack!

MCM Verification I1s a Full-Stack Problem!

Is compiler maintaining
HLL guarantees?

High-Level Languages (HLL)

[Batty et al. POPL 2011, POPL 2012]
[Alglave et al. TOPLAS 2014]

: Are virtual memory
[Wickerson et al. OOPSLA 2015] Compiler

mappings correct?

Is the ISA-level MCM

Architecture (ISA) formally defined?

Is hardware incorrectly

Microarchitecture .. L s
reordering instructions?

Is RTL correctly
Processor RTL

implementing
microarchitecture?

" Each layer has responsibilities for ensuring correct MCM operation

" Need MCM checking tools at all layers of the computing stack!

Check Suite: Full-Stack Automated MCM Analysis

High-Level Languages (HLL)

TriCheck

[Trippel et al. ASPLOS 2017]
Compiler

COATCheck

[Lustig et al. ASPLOS 2016]
Architecture (ISA)

PipeCheck & CCICheck

[Lustig et al. MICRO 2014]
Microarchitecture [Manerkar et al. MICRO 2015]
RTLCheck

[Manerkar et al. MICRO 2017]
Processor RTL

= Suite of tools at various levels of computing stack

= Automated Full-Stack MCM checking across litmus test suites

Check Suite: Full-Stack Automated MCM Analysis

High-Level Languages (HLL)

TriCheck
[Trippel et al. ASPLOS 2017]
Compiler

COATCheck
[Lustig et al. ASPLOS 2016]

Architecture (ISA))
(I5A)) Does microarchitecture
. correctly implement ISA MCM?

Microarchitecture [Manerkar et al. MICRO 2015]

RTLCheck
[Manerkar et al. MICRO 2017]

Processor RTL

= Suite of tools at various levels of computing stack

= Automated Full-Stack MCM checking across litmus test suites

Check Suite: Full-Stack Automated MCM Analysis

High-Level Languages (HLL)

TriCheck

[Trippel et al. ASPLOS 2017]
Compiler

COATCheck

[Lustig et al. ASPLOS 2016]
Architecture (ISA)

PipeCheck & CCICheck

[Lustig et al. MICRO 2014]
[Manerkar et al. MICRO 2015]

RTLCheck
[Manerkar et al. MICRO 2017]

Microarchitecture

Processor RTL

Does RTL like Verilog correctly
implement microarchitecture?
= Suite of tools at various levels of computing stack

= Automated Full-Stack MCM checking across litmus test suites

Check Suite: Full-Stack Automated MCM Analysis

Do HLL, Compiler, and

. microarchitecture work
TriCheck ¢ th tv?
Trippel et al. ASPLOS 2017 OBELNEr Correctly:

COATCheck
[Lustig et al. ASPLOS 2016]

High-Level Languages (HLL)

Compiler

Architecture (ISA)

PipeCheck & CCICheck
[Lustig et al. MICRO 2014]
Microarchitecture [Manerkar et al. MICRO 2015]

RTLCheck
[Manerkar et al. MICRO 2017]
Processor RTL

= Suite of tools at various levels of computing stack

= Automated Full-Stack MCM checking across litmus test suites

Architecture (ISA)

Microarchitecture

Processor RTL

TriCheck
[Trippel et al. ASPLOS 2017]

COATCheck
[Lustig et al. ASPLOS 2016]

PipeCheck & CCICheck
[Lustig et al. MICRO 2014]
[Manerkar et al. MICRO 2015]

RTLCheck
[Manerkar et al. MICRO 2017]

So far, tools have found bugs in:

* Widely-used gemb5 Research simulator
e Cache coherence paper (TSO-CC)

* IBM XL C++ compiler (fixed in v13.1.5)
* In-design commercial processors

e RISC-V draft ISA specification

e Compiler mapping proofs

e C11 memory model

* (Open-source processor RTL

= Suite of tools at various levels of computing stack

= Automated Full-Stack MCM checking across litmus test suites

" Hardware enforces consistency model using smaller localized orderings
* In-order fetch/decode/execute...
* Orderings enforced by memory hierarchy

e ..and many more

_Fetch | _Fetch |
e e T
\ Exlec. J \ EXleC. J
_Mem. : | - Mem.
WB Memory Hierarchy T WB
I I

Modelling Microarchitecture: Going below the ISA

" Hardware enforces consistency model using smaller localized orderings

* In-order fetch/decode/execute...

* Orderings enforced by memory hierarchy

e ..and many more

: Feltch |

: D?c. |

: EXleC. |

: Melm. L
-~ WB

—

Lds.
SB SB

Memory Hierarchy

Pipeline stages

may be FIFO to

ensure in-order
execution

Do individual orderings correctly work together

to satisfy consistency model?

Microarchitecture in pspec DSL

Axiom “Decode is FIFO":
EdgeExists ((il, Decode), (i2, Decode))
=> AddEdge ((il, Execute), (i2, Execute)).

Axiom "PO Fetch":
. SameCore il i2 /\ ProgramOrder il i2 =>
AddEdge ((il, Fetch), (i2, Fetch)).

+

Litmus Test

Core 0 Core 1
(i1) [x] <=1 | (i3) r1 « [y]
(i2) [y] « 1 | (i4) r2 « [x]
Under SC: Forbid r1=1, r2=0

Microarchitectural Consistency Checking

Microarchitecture in pspec DSL

{Axiom “Decode is FIFO":
. EdgeExists ((il, Decode), (i2, Decode))
=> AddEdge ((il, Execute), (i2, Execute)).

Axiom "PO Fetch":
. SameCore il i2 /\ PjpogramOrder il i2 =>
AddEdge ((il, FegkLh), (i2, Fetch)).

Each axiom specifies an ordering
that parch should respect

Microarchitecture in pspec DSL

Axiom “Decode is FIFO":
EdgeExists ((il, Decode), (i2, Decode))
=> AddEdge ((il, Execute), (i2, Execute)).

Axiom "PO Fetch":
. SameCore il i2 /\ ProgramOrder il i2 =>
AddEdge ((il, Fetch), (i2, Fetch)).

+

Litmus Test

Core 0 Core 1
(i1) [x] <=1 | (i3) r1 « [y]
(i2) [y] « 1 | (i4) r2 « [x]
Under SC: Forbid r1=1, r2=0

Microarchitecture in pspec DSL

Axiom “Decode is FIFO":
. EdgeExists ((il, Decode), (i2, Decode))

=> AddEdge ((il, Execute), (i2, Execute)).

Axiom "PO Fetch":
. SameCore il i2 /\ ProgramOrder il i2 =>
AddEdge ((il, Fetch), (i2, Fetch)).

OOOOO

POTOG0000
G O0000

+

Litmus Test

Core 0 Core 1
(i1) [x] <=1 | (i3) r1 « [y]
(i2) [y] « 1 | (i4) r2 « [x]
Under SC: Forbid r1=1, r2=0

PO
ODOOO

RO VROV

POTOOOT00

/ \
b- <

Microarchitectural happens-before (uhb) graphs

Microarchitectural Consistency Checking

Microarchitecture in pspec DSL

Axiom “Decode is FIFO":
. EdgeExists ((il, Decode), (i2, Decode))
=> AddEdge ((il, Execute), (i2, Execute)).

Axiom "PO Fetch":
. SameCore il i2 /\ ProgramOrder il i2 =>

AddEdge ((il, Fetch), (i2, Fetch)).

Microarch. verification checks that
combination of axioms satisfies MCM

...........

<O

GO V0000
Cf’"f‘

.....................

Y
o
g
Y Y
i
RS
Yy Y

O-FO 000000

OIOOOO
Y Y Y
QOO

Core 0 Core 1

Litmus Test mp

Core 0 Core 1

(i1) St [x] « 1 | (i3) Ld r1 « |y]
(i2) St [y] < 1 | (i4) Ld r2 + [x]

Under TSO: Forbid r1=1, r2=0

Core 1

Litmus Test mp

Core 0 Core 1

(i1) St [x] « 1 | (i3) Ld r1 « |y]
(i2) St [y] < 1 | (i4) Ld r2 + [x]

Under TSO: Forbid r1=1, r2=0

Core 1

!
Dec D
_Exec. | X

SB

MemHier

2 =
0,010,060, 0, 0,0, 0N

Compl.
Litmus Test mp

Core 0 Core 1

(i1) St [x] « 1 | (i3) Ld r1 « |y]
(i2) St [y] < 1 | (i4) Ld r2 + [x]

H % .
W |3 :
0 : :

Under TSO: Forbid r1=1, r2=0

PipeCheck: Executions as hb Graphs [Lustig et al. MICRO 2014]

CoreO

(i1)
Fetch

(i2)

o

: Dec. Fetch:
! !
Exec. Dec. |
(l l N
- Mem. | Exec.
! |
- WB Mem.

Core 1

(i1)

SB

MemHier

= 2
010,00, 0,0, 0,0

Compl.

Litmus Test mp

Core 0 Core 1
(i1) St [x] « 1 | (i3) Ld r1 « [y]
(i2) St [y] <« 1 | (i4) Ld r2 «+ [x]

Under TSO: Forbid r1=1, r2=0

PipeCheck: Executions as hb Graphs [Lustig et al. MICRO 2014]

Core 0 Core 1

(i1) (i2)

Fetch
: Dec.]&Fetch:

! !

(B)
Exec./\ | Dec. |
! |
Mem. \ Exec. |

Y

£/
O =

|

|

I
Y

|

|

I
Y

OO« I<O<Q &

M

|
1
.
*Y

MemHier

QOO0

Compl.

Litmus Test mp

Core 0 Core 1

(i1) St [x] « 1 | (i3) Ld r1 « [y]
(i2) St [y] <« 1 | (i4) Ld r2 + [x]

|

1

|

1

|

1

|

1

|

1

|

1

|

1

|

1

|

Y [
) | | . : .

WB Mem. | W

. J I
wB | SB

) |

1

|

1

‘ |

| 1

|

1

|

1

|

1

|

1

|

Under TSO: Forbid r1=1, r2=0

PipeCheck: Executions as hb Graphs [Lustig et al. MICRO 2014]

Core 0 Core 1

(i1) St [x] « 1 | (i3) Ld r1 « [y]
(i2) St [y] <« 1 | (i4) Ld r2 + [x]

CoreO ! Core 1
. . - . (i1) (i2) (i3) (i4)
i @ (3 (i4)
Fetch | F Q;Q Q,Q
- N I
E3venh QR QY
— P!
Exec. Dec. | i X Q— - - —)—Q Q. - - _,..Q
— S |
wen o) AT v QoG QoG
_ ! ! T N
 WB Mem. i Exlec. D?c.) W Q - _,_Q O‘ . "'O
'l Mem. Exec. | SB Q_ - _}Q
— [K
' WB Mem. | MemHier Q) Q
1 ,
: WB Compl. O O
: : Litmus Test mp
|
|
1
|
1

Under TSO: Forbid r1=1, r2=0

PipeCheck: Executions as hb Graphs [Lustig et al. MICRO 2014]

Core 0 Corel
(i1) (i2) (i3) (i4)
Fetch

(i1) (i2) (i3) (i4)

”jjij

Fetch
!

Dec. |
!

Exec. |

~ Dec.
!

Exec.
}

Mem.

 Dec.

Fetch | M
|

l

Q

Q_

v
Dec. | W (;)----;..

@

@

O

! !
_WB \{ Mem. | 1 >0
l Mem. Exec. | SB -
| - g
[WB Mem. | MemHier

WB Compl.

Litmus Test mp

Core 0 Core 1

(i1) St [x] « 1 | (i3) Ld r1 « [y]
(i2) St [y] <« 1 | (i4) Ld r2 + [x]

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
If
1| Exec.
I\
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Under TSO: Forbid r1=1, r2=0

PipeCheck: Executions as hb Graphs [Lustig et al. MICRO 2014]

CoreO

(i1)
Fetch

(i2)

~ Dec.

o

Fetch

|

|

Exec.

Dec. |

|

|

Mem.

Exec. |

|

|

 WB

o ' o

Mem.

Core 1

(i3) (i4)

 Dec.

Fetch |
!

l

Exec. Dec. |
I | I
Mem. Exec. |
! S
- WB Mem.

WB

M

W

SB
MemHier

Compl.

(i2) (i3)

(i4)

Litmus Test mp

Core 0

Core 1

(1) St [x] < 1
(i2) St [y] « 1

(i3) Ld r1 « |y|
(i4) Ld r2 « [x]

Under TSO: Forbid r1=1, r2=0

W
SB

MemHier Q
Compl. O

->»

@
@
_,Q
~Q

s’
&
!

Litmus Test mp

Core 0

Core 1

(1) [x] < 1
(i2) [y] « 1

(i3) 1 — [y]
(i4) r2 « [x]

Under SC: Forbid r1=1, r2=0

" Cycle in phb graph => event has to
happen before itself (impossible)

" Cyclic graph - unobservable on parch
" Acyclic graph — observable on parch

" Exhaustively enumerate and check all
possible execs of litmus test on parch

* Implemented using fast SMT solvers

 Compare against ISA-level outcome from
herd [Alglave et al. TOPLAS 2014]

PipeCheck: Microarchitectural Correctness
(i1) (i2) (i3) (i4)

" Cycle in uhb graph => event has to
happen before itself (impossible)

" Cyclic graph — unobservable on parch
" Acyclic graph — observable on parch
" Exhaustively enumerate and check all

possible execs of litmus test on parch

* Implemented using fast SMT solvers

 Compare against ISA-level outcome from
Compl. () O herd [Alglave et al. TOPLAS 2014]

Litmus Test mp

SB

MemHier

ISA-Level Observable Not Observable

Core 0 Core 1

Outcome (=2 1 Graph Acyclic) (All Graphs Cyclic)

(i1) [x] « 1 | (i3) r1 « [y]
[x]

OK (stricter
(i2) [y] « 1 | (i4)r2 « [x

Allowed OK

than necessary)

Under SC: Forbid r1=1, r2=0

Forbidden | Consistency violation! OK

PipeCheck: Microarchitectural Correctness
(i1) (i2) (i3) (i4)

" Cycle in uhb graph => event has to
happen before itself (impossible)

" Cyclic graph — unobservable on parch
" Acyclic graph — observable on parch
" Exhaustively enumerate and check all

possible execs of litmus test on parch

* Implemented using fast SMT solvers

 Compare against ISA-level outcome from
Compl. () O herd [Alglave et al. TOPLAS 2014]

Litmus Test mp

SB

MemHier

ISA-Level Observable Not Observable

Core 0 Core 1 Outcome (2 1 Graph Acyclic) (All Graphs Cyclic)
(i1) [x] «= 1 | (i3) r1 « [y] lowed OK (stricter
(i2) [y] « 1 | (i4) 12 « [x] Allowe than necessary)
Under SC: Forbid r1=1, r2=0 Forbidden oK

PipeCheck: Microarchitectural Correctness
(i1)

SB

MemHier

(i2) (i3)

Compl. O i O

Litmus Test mp

Core 0 Core 1
(i1) [x] « 1 | (i3) r1 « [y]
(i2) [y] <1 | (i4) r2 « [x]
Under SC: Forbid r1=1, r2=0

(i4)

" Cycle in uhb graph => event has to
happen before itself (impossible)

" Cyclic graph — unobservable on parch
" Acyclic graph — observable on parch

" Exhaustively enumerate and check all
possible execs of litmus test on parch

* Implemented using fast SMT solvers

 Compare against ISA-level outcome from
herd [Alglave et al. TOPLAS 2014]

ISA-Level Observable Not Observable

Outcome (=2 1 Graph Acyclic) (All Graphs Cyclic)

OK (stricter
than necessary)

OK

Allowed OK

Forbidden | Consistency violation!

PipeCheck: Microarchitectural Correctness
(i1)

(i2)

(i3)

Compl. O O
Litmus Test mp
Core 0 Core 1
(i1) [x] « 1 | (i3) r1 « [y]
(i2) [y] <1 | (i4) r2 « [x]

Under SC: Forbid r1=1, r2=0

(i4)

" Cycle in uhb graph => event has to
happen before itself (impossible)

" Cyclic graph — unobservable on parch
" Acyclic graph — observable on parch

" Exhaustively enumerate and check all
possible execs of litmus test on parch

* Implemented using fast SMT solvers

 Compare against ISA-level outcome from
herd [Alglave et al. TOPLAS 2014]

ISA-Level Observable Not Observable

Outcome (=2 1 Graph Acyclic) (All Graphs Cyclic)

OK (stricter

Allowed OK
than necessary)

Forbidden | Consistency violation! OK

Abstracted memory hierarchy prevents

verification of complex coherence issues!

" Memory hierarchy is a collection of caches

* Coherence protocols ensure that all caches agree on the value
of any variable

= CCICheck [Manerkar et al. MICRO 2015] shows that

consistency verification often cannot simply treat
memory hierarchy abstractly
* Nominated for Best Paper at MICRO 2015
Microarchitecture
_ Lds. _

SB SB
[[

Memory
Hierarchy

CCICheck: Coherence vs Consistency

" Memory hierarchy is a collection of caches

* Coherence protocols ensure that all caches agree on the value
of any variable

= CCICheck [Manerkar et al. MICRO 2015] shows that
consistency verification often cannot simply treat
Architecture (ISA) memory hierarchy abstractly

* Nominated for Best Paper at MICRO 2015

Microarchitecture

Lds.

SB

] v

L1 [L1 Rt

il I
L2

Coherence Protocol (SWMR, DVI, etc.)

Coherence Protocol Example

" |f P1 updates the value of x to 200, the stale value of x in other
processors must be invalidated

= [f P3 wants to subsequently read/write x, it must request the new value
" SWMR = Single-Writer Multiple Readers, DVI = Data Value Invariant

Processors

Caches

Coherence Protocol Example

" |f P1 updates the value of x to 200, the stale value of x in other
processors must be invalidated

= [f P3 wants to subsequently read/write x, it must request the new value
" SWMR = Single-Writer Multiple Readers, DVI = Data Value Invariant

Processors

Caches

Coherence Protocol Example

" |f P1 updates the value of x to 200, the stale value of x in other
processors must be invalidated

= [f P3 wants to subsequently read/write x, it must request the new value
" SWMR = Single-Writer Multiple Readers, DVI = Data Value Invariant

Processors

Caches

Invalidations

Coherence Protocol Example

" |f P1 updates the value of x to 200, the stale value of x in other
processors must be invalidated

= [f P3 wants to subsequently read/write x, it must request the new value
" SWMR = Single-Writer Multiple Readers, DVI = Data Value Invariant

Processors P2 P3

Caches

Coherence Protocol Example

" |f P1 updates the value of x to 200, the stale value of x in other
processors must be invalidated

= [f P3 wants to subsequently read/write x, it must request the new value
" SWMR = Single-Writer Multiple Readers, DVI = Data Value Invariant

Processors

Caches

Request Data

Coherence Protocol Example

" |f P1 updates the value of x to 200, the stale value of x in other
processors must be invalidated

= [f P3 wants to subsequently read/write x, it must request the new value
" SWMR = Single-Writer Multiple Readers, DVI = Data Value Invariant

Processors

Caches

Data Response

" Three optimizations: correct individually, but not in combination

" Three optimizations: correct individually, but not in combination

1. Prefetching

" Three optimizations: correct individually, but not in combination
1. Prefetching

2. Invalidation before use
* Invalidation can arrive before data
 Acknowledge Inv early rather than wait for data to arrive

 Butrepeated inv before use = livelock [kubiatowicz et al. AspLOS 1992]

" Three optimizations: correct individually, but not in combination
1. Prefetching

2. Invalidation before use
* Invalidation can arrive before data
 Acknowledge Inv early rather than wait for data to arrive

 Butrepeated inv before use = livelock [kubiatowicz et al. AspLOS 1992]

3. Livelock avoidance: allow destination core to perform one

operation on data when it arrives, even if already invalidated
[Sorin et al. Primer 2011]

e Does not break coherence

 Sometimes intentionally returns stale data

Motivating Example — "Peekaboo”

" Consider mp with the livelock-avoidance mechanism:

CoreO

X: Shared
v: Modified

[x] < 1
lyl < 1

Core 0 Core 1

(i1) [x] <=1 | (i3) r1 « [y]
(i2) [y] « 1 | (i4) r2 « [x]

Under SC: Forbid r1=1, r2=

-

Optimizations:

1. Prefetching
2. Invalidation-before-use
3. Livelock avoidance

Core 1

x: Invalid
v: Invalid

rl < [y]
r2 < [X]

Motivating Example — "Peekaboo”

" Consider mp with the livelock-avoidance mechanism:

Core 0 Core 1

(i1) [x] <=1 | (i3) r1 « [y]
(i2) [y] « 1 | (i4) r2 « [x]

Under SC: Forbid r1=1, r2=

-

Core 0 Prefetch x

X: Shared
v: Modified

[x] < 1
lyl < 1

Optimizations:

1. Prefetching
2. Invalidation-before-use
3. Livelock avoidance

Core 1

x: Invalid
v: Invalid

rl < [y]
r2 < [X]

Motivating Example — "Peekaboo”

" Consider mp with the livelock-avoidance mechanism:

Core 0 Core 1 Optimizations:
(i) [x] — 1 | (i3)r1 « [y]
(i2) [y] <1 | (i4) r2 « [x]
Under SC: Forbid r1=1, r2=

1. Prefetching
2. Invalidation-before-use
3. Livelock avoidance

-

Prefetch x

Core O Core 1

x: Shared Data (x =0) x: Invalid
v: Modified v: Invalid

[x] &1 rl < [v]
ly] < 1 YRSEN

Motivating Example — "Peekaboo”

" Consider mp with the livelock-avoidance mechanism:

Core 0 Core 1 Optimizations:
(i) [x] — 1 | (i3)r1 « [y]
(i2) [y] <1 | (i4) r2 « [x]
Under SC: Forbid r1=1, r2=

1. Prefetching
2. Invalidation-before-use
3. Livelock avoidance

-

Core 0 Prefetch x

Core 1

x: Shared Data (x = 0) x: Invalid

Motivating Example — "Peekaboo”

" Consider mp with the livelock-avoidance mechanism:

Core 0 Core 1 Optimizations:
(i) [x] — 1 | (i3)r1 « [y]
(i2) [y] <1 | (i4) r2 « [x]
Under SC: Forbid r1=1, r2=

1. Prefetching
2. Invalidation-before-use
3. Livelock avoidance

-

Core 0 Prefetch x

Core 1

x: Shared Data (x = 0) x: Invalid

Inv-Ack

Motivating Example — "Peekaboo”

" Consider mp with the livelock-avoidance mechanism:

Core 0 Core 1 Optimizations:
(i) [x] — 1 | (i3)r1 « [y]
(i2) [y] <1 | (i4) r2 « [x]
Under SC: Forbid r1=1, r2=

1. Prefetching
2. Invalidation-before-use
3. Livelock avoidance

-

Core 0 Prefetch x

Core 1

x: Modified Data (x = 0) x: Invalid

Inv-Ack

Motivating Example — "Peekaboo”

" Consider mp with the livelock-avoidance mechanism:

Core 0 Core 1 Optimizations:
(i) [x] — 1 | (i3)r1 « [y]
(i2) [y] <1 | (i4) r2 « [x]
Under SC: Forbid r1=1, r2=

1. Prefetching
2. Invalidation-before-use
3. Livelock avoidance

-

Prefetch x

CoreO

x: Modified Data (x = 0) x: Invalid

Core 1

Inv-Ack

Motivating Example — "Peekaboo”

" Consider mp with the livelock-avoidance mechanism:

Core 0 Core 1 Optimizations:
(i) [x] — 1 | (i3)r1 « [y]
(i2) [y] <1 | (i4) r2 « [x]
Under SC: Forbid r1=1, r2=

1. Prefetching
2. Invalidation-before-use
3. Livelock avoidance

-

Prefetch x

CoreO

x: Modified Data (x = 0) x: Invalid

Core 1

Motivating Example — "Peekaboo”

" Consider mp with the livelock-avoidance mechanism:

CoreO

x: Modified
y: Shared

Core 0 Core 1

() [x] — 1 | (i3)rl —
2)[y] « 1 | (i4)r2 —

ly]
[

x]

Under SC: Forbid r1=1, r2=0

Prefetch x

Data (x = 0)

Inv-Ack

Request y

Data (y = 1)

Optimizations:

1. Prefetching
2. Invalidation-before-use
3. Livelock avoidance

Core 1

x: Invalid

Motivating Example — "Peekaboo”

" Consider mp with the livelock-avoidance mechanism:

CoreO

x: Modified
y: Shared

Core 0 Core 1

(i1) [x] <=1 | (i3) 11 « [y]
(i2) [y] <=1 | (i4)r2 < [x]

Under SC: Forbid r1=1, r2=0

Inv-Ack

Request y

Data (y = 1)

Optimizations:

1. Prefetching
2. Invalidation-before-use
3. Livelock avoidance

Core 1

x: Invalid

Motivating Example — "Peekaboo”

" Consider mp with the livelock-avoidance mechanism:

Core 0 Core 1 Optimizations:
(i1) [x] « 1 | (i3)rl « [y]
(i2) [y] <1 | (i4) r2 « [x]
Under SC: Forbid r1=1, r2=0

1. Prefetching
2. Invalidation-before-use
3. Livelock avoidance

Core O Prefetch x Core 1

x: Modified Data =) x: Invalid
y: Shared v: Shared

Inv-Ack

Request y

Data (y = 1)

The Coherence-Consistency Interface (CCl)

= CCl = coherence protocol guarantees to microarch. +

h + Expected Coherence

The Coherence-Consistency Interface (CCl)

= CCl = coherence protocol guarantees to microarch. +

@ + Expected Coherence

The Coherence-Consistency Interface (CCl)

= CCl = coherence protocol guarantees to microarch. +

- e
o o tosuoss + (g coweny

The Coherence-Consistency Interface (CCl)

= CCl = coherence protocol guarantees to microarch. +

h + Expected Coherence

The Coherence-Consistency Interface (CCl)

= CCl = coherence protocol guarantees to microarch. +

H + Expected Coherence

The Coherence-Consistency Interface (CCl)

= CCl = coherence protocol guarantees to microarch. +

H + Expected Coherence

The Coherence-Consistency Interface (CCl)

= CCl = coherence protocol guarantees to microarch. +

Sy +
|

Expected Coherence

The Coherence-Consistency Interface (CCl)

= CCl = coherence protocol guarantees to microarch. +
Expected Coherence

Violation!

" Need a way to model cache occupancy and coherence events for:
e Coherence protocol optimizations (eg: Peekaboo)

 Partial incoherence and lazy coherence (GPUs, etc)
" AVIiCLis a 4-tuple:
(cache_id, address, data_value, generation_id)

" cache_id and generation_id uniquely identify each cache line

" A VIiCL 4-tuple maps on to the period of time over which the cache
line serves the data value for the address

—
-
'—1

S

—
[y
o

—

= \/iCLs start at a VICL Create event

po

FetchStage Q *Q and end at a ViCL Expire event
DecodeStage Q Q * Correspond to nodes in phb graphs
ExecuteStage --—

: Q >© e Axioms over these nodes and
MemoryStage (;} - - ->Q edges enforce coherence and data
WritebackStage Q— - - -)-Q movement Orderiﬂgs
StoreBuffer () - - - =" Use pipeline model from
Completed () () PipeCheck, but add ViCL nodes

L1 ViCL Create

O>

\'r,}]_)ll.[; and edges

.

L1 ViCL Expire SW

Q

L2 ViCL Create SourcedFrom Litmus Test co-mp

Core 0 Core 1

L2 ViCL Expire

O

(D) St] < 1| (3) Ld 1l « [x]
(i2) St [x] « 2 | (i4) Ld 12 « [x]

In T'SO: r1=2, r2=2 Allowed

ExecugeStage

MemorfStage
WritebackStadw
StoreBuffer
Completed

L1 ViCL Create
L1 ViCL Expire

L2 ViCL Create

L2 ViCL Expire

"Q\(?
\ lID

= ViCLs start at a ViCL Create event
""""" and end at a ViCL Expire event
e Correspond to nodes in phb graphs

e Axioms over these nodes and
edges enforce coherence and data
movement orderings

@@éoo

" Use pipeline model from
PipeCheck, but add ViCL nodes

and edges

é\rﬂ_)upa
O v

SourcedFrom)
Litmus Test co-mp

Core 0 Core 1

O

) St < 1| (3) Ld rl « [x]
(i2) St [x] « 2 | (i4) Ld r2 « [x]

In T'SO: r1=2, r2=2 Allowed

= \/iCLs start at a VICL Create event

FetchStage and end at a ViCL Expire event
DecodeStage I
tag e Correspond to nodes in phb graphs
ExecuteStage .
8 * Axioms over these nodes and
MemoryStage

edges enforce coherence and data

WritebackStage movement orderin gS

StoreBuffer = Use pipeline model from
Completed PipeCheck, but add ViCL nodes
L1 ViCL Create and edges
L1 ViCL Expire
L2 ViCL Create SourcedFrom Litmus Test co-mp

Core 0 Core 1

L2 ViCL Expire

O

) St < 1| (3) Ld rl « [x]
(i2) St [x] « 2 | (i4) Ld r2 « [x]

In T'SO: r1=2, r2=2 Allowed

—
-
'—1

—

—
[
o

—

—_——
[
Qo

o

—
=

S

= \/iCLs start at a VICL Create event

po

PipeCheck, but add ViCL nodes

L1 ViCL Create a nd edges

:/
-
7

FetichStage Q "Q Q """"" "Q and end at a ViCL Expire event
DecodeStage -—- - - .
e Q "Q Q ’Q e Correspond to nodes in puhb graphs
ExecuteStage --=> ————D _
: Q Q Q Q e Axioms over these nodes and
MemoryStage Q . "'Q edges enforce coherence and data
WritebackStage (;} - - ->Q movement orderings
StoreBuffer 50 " Use pipeline model from
Completed O’ i .
oDy)
()

L1 ViCL Expire ()5

L2 ViCL Create SourcedFrom Litmus Test co-mp

L2 ViCL Expire Core 0 Core 1
(i1) St [x| «+— 1 | (i3) Ld r1 « [x]
(i2) St [x] < 2 | (i4) Ld r2 « [x]

In T'SO: r1=2, r2=2 Allowed

FetchStage
DecodeStage
ExecuteStage
MemoryStage
WritebackStage
StoreBuffer
Completed

L1 ViCL Create
L1 ViCL Expire

L2 ViCL Create

L2 ViCL Expire

—
it
'—1

Qu—

O>

Q

OO0

Q000000

po

—_—
[y
b2

p—

Y

I
I
I

Y

I
I
I

Y

O<O<O<O<O

A
1

\

NoDuj

\

S
y

O<C

SourcedFrom

= \/|CLs start at a VICL Create event
and end at a ViCL Expire event

e Correspond to nodes in phb graphs

e Axioms over these nodes and
edges enforce coherence and data
movement orderings

" Use pipeline model from
PipeCheck, but add ViCL nodes
and edges

Litmus Test co-mp

Core 0 Core 1

) St < 1| (3) Ld rl « [x]
(i2) St [x] « 2 | (i4) Ld r2 « [x]

In T'SO: r1=2, r2=2 Allowed

= Additional nodes represent ViCL
FetchStage Q """"" ’Q Q """"" *Q requests and invalidations

Preoissiese Q>Q Q79 wsolution: Invalidated data only

Q usable if accessing load/store is
oldest in program order at time of
request [Sorin et al. Primer 2011]

® TSO-CC protocol [Elver and
Nagarajan HPCA 2014] was
vulnerable to variant of Peekaboo!

ExecuteStage
MemoryStage
WritebackStage
StoreBuffer

Completed

L1 ViCL Request

—Q V0000
>() .

Sourced A

D

L1 ViCL Create

(N
\/
[’“\

* Now fixed Core 0 Core 1

L1 ViCL Invalidate

Y InvSharers /

Y
L1 ViCL Expire O O O

(i1) [x] «= 1 | (i3) rl « [y]
(i2) [y] <=1 | (i4) r2 « [x]

OOz

Under SC: Forbid r1=1, r2=0

| | = Additional nodes represent ViCL
FetchStage Q """"" *Q requests and invalidations

DecodeStage

7@ =Solution: Invalidated data only
@ usable if accessing load/store is
oldest in program order at time of

ExecuteStage

MemoryStage

WritebackStage . .
S O request [Sorin et al. Primer 2011]
StoreBuffer
® TSO-CC protocol [Elver and
Completed

Nagarajan HPCA 2014] was
% vulnerable to variant of Peekaboo!

L1 ViCL Request

—Q 00000

g
X

L1 ViCL Create

A ° I
L1 ViCL Invalidate vL ‘ vi O/ Now fixed : Core 0 : Core 1
' ' Y InvSharers p ¥ (11) [X] — 1 (13) r] « [y]
mvickepre O O O O (i2) [y] — 1 | (i4)r2 [x]
Under SC: Forbid r1=1, r2=0

| = Additional nodes represent ViCL
FetchStage Q """"" ’Q Q """"" *Q requests and invalidations

ecodeStage -==> --——D
Jeees Q Q Q = Solution: Invalidated data only
e usable if accessing load/store is
oldest in program order at time of

ExecuteStage

MemoryStage

—Q V0000
>() .

WritebackStage --=> - . .
) Q O request [Sorin et al. Primer 2011]
StoreBuffer
Completed ® TSO-CC protocol [Elver and
| Nagarajan HPCA 2014] was
L1 ViCL Request O | bl _ f P k b |
Sourced A vulneraple to variant or Peekaboo!
.1 ViCL Create C) <>—> b)
L1 ViCL Invalidate \H—L é) NOW ﬂxed Core 0 Core 1
' | Y Y lll\-’SllELI'(?l'H/ (11) [X] — 1 (13) r] « [y]
L1 VICL Expll'(} O O O O (12) [y] «— 1 (14) I'2 «— [X]
Under SC: Forbid r1=1, r2=0

= Additional nodes represent ViCL
requests and invalidations

FetchStage Q }Q

DecodeStage

= Solution: Invalidated data only
usable if accessing load/store is
oldest in program order at time of

ExecuteStage

MemoryStage

—Q V0000
>() .

WritebackStage -—-=> . .
) Q request [Sorin et al. Primer 2011]
StoreBuffer
Completed ® TSO-CC protocol [Elver and
| Nagarajan HPCA 2014] was
L1 ViCL Request | bl _ f P k b |
Sourced A vulneraple to variant or Peekaboo!
.1 ViCL Create C)\<>—> O)
L1 ViCL Invalidate T é ’ NOW flxed Core 0 Core 1
' | Y Y lll\-’SllELI'(?l'H/ (11) [X] — 1 (13) r] « [y]
mvickepre O O O O (i2) [y] — 1 | (i4)r2 [x]
Under SC: Forbid r1=1, r2=0

= Additional nodes represent ViCL
requests and invalidations

FetchStage Q

DecodeStage

= Solution: Invalidated data only
usable if accessing load/store is
oldest in program order at time of
request [Sorin et al. Primer 2011]

® TSO-CC protocol [Elver and
Nagarajan HPCA 2014] was
vulnerable to variant of Peekaboo!

Q_
ExecuteStage Q—
MemoryStage Q—
WritebackStage Q—
StoreBuffer
Completed @
A

L1 ViCL Request

()

L1 ViCL Create

* Now fixed Core 0 Core 1

L1 ViCL Invalidate

Y InvSharers /

Y
L1 ViCL Expire O O O

(i1) [x] «= 1 | (i3) rl « [y]
(i2) [y] <=1 | (i4) r2 « [x]

Under SC: Forbid r1=1, r2=0

" Coherence & consistency often closely coupled in implementations
" |n such cases, coherence & consistency cannot be verified separately

" CCICheck: CCl-aware microarchitectural MCM checking

e Uses VICL (Value in Cache Lifetime) abstraction

" Discovered bug in TSO-CC lazy coherence protocol

ISA-level MCMs in the Hardware Software Stack

|

New ISA-level MCM

l

Hardware

ISA-level MCMs in the Hardware Software Stack

|

New ISA-level MCM
[

Which orderings
must be guaranteed
by hardware?

Hardware

High-Level Languages (HLLs)
. 2

Which orderings does

the compiler need to

enforce?
]

[
Which orderings

must be guaranteed
by hardware?

¥

Hardware

TriCheck checks that HLL, compiler, ISA, and

hardware aligh on MCM requirements

TriCheck: Layers of the Stack are Intertwined

= [SA-level MCMs should allow microarchitectural
optimizations but also be compatible with HLLs

High-Level Languages (HLL)

Compiler " TriCheck [Trippel et al. ASPLOS 2017] enables
holistic analysis of HLL memory model, ISA-level
Architecture (ISA) MCM, compiler mappings, and microarchitectures

 Mapping: translation of HLL synchronization primitives to
Microarchitecture one or more assembly language instructions

= Also useful for checking HLL compiler mappings to
ISA-level MCMs

= Selected as one of 12 “Top Picks of Comp. Arch.
Conferences” for 2017

HLL HLL to ISA pspec
Model HLL Litmus Compiler Microarch.
e.g. C11 Test Variants Mapping Model

Four Primary Inputs

TriCheck: Comparing HLL to Microarchitecture

HLL !
Model HLL Litmus

Test Variants

Examine all C11
memory_order
combinations

(release, acquire,
relaxed, seq cst)
for HLL litmus tests

HLL to ISA
Compiler

puspec
Microarch.
Model

TnCheck Comparlng HLL to I\/Ilcroarck

HLL to ISA
Comp||er ISA-level
litmus tests

HLL !
Model HLL Litmus
Test Variants

Translate HLL Litmus Tests
to ISA-level litmus tests

|

itecture

puspec
Microarch.
Model

HLL HLL to ISA ' uspec
Model HLL Litmus :> Compiler :> ISA-level Microarch.
Test Variants . litmus tests
e.g. C11 Mapping Model

Herd Use Herd to

[Alglave et al. check HLL
TOPLAS 2014] Outcomes

‘IIIIIIII

4........

HLL Outcome
Forbidden/Allowed?

HLL HLL to ISA ' uspec
Model HLL Litmus :> Compiler :> ISA-level Microarch.
Test Variants . litmus tests
e.g. C11 Mapping _ Model

\ 4 . \
Herd Use phb analysis to
: phb Analysis
[Alglave et al. check microarch. with Check
TOPLAS 2014] Outcomes
v v
HLL Outcome Microarch. Outcome

Forbidden/Allowed? Observable/Unobservable?

HLL HLL to ISA ' uspec
Model HLL Litmus :> Compiler :> ISA-level Microarch.
Test Variants . litmus tests
e.g. C11 Mapping _ Model

Herd
[Alglave et al.

‘IIIIIIII
‘IIIIIIIII

phb Analysis
with Check

TOPLAS 2014]
: Compare HLL and .
microarch. outcomes :
v

HLL Outcome | | Microarch. Outcome
Forbidden/Allowed? | | Observable/Unobservable?

D P
)

HLL | HLL to ISA = uspec
Model HLL Litmus :> Compiler :> ISA-level Microarch.
Test Variants . litmus tests
e.g. C11 Mapping _ Model
\ 4 \
Herd :
[Alglave et al. uh.t;:gzlyslis
TOPLAS 2014] WItR SREC
: Compare HLL and -
: microarch. outcomes :
v ? v
HLL Outcome | | Microarch. Outcome
Forbidden | | Observable

HLL | HLL to ISA = uspec
Model HLL Litmus :> Compiler :> ISA-level Microarch.
Test Variants . litmus tests
e.g. C11 Mapping _ Model
\ 4 \
Herd .
[Alglave et al. uh.t;:gzlyslis
TOPLAS 2014] WIER Shec
: Compare HLL and -
: microarch. outcomes :
v v
HLL Outcome m Microarch. Outcome
Forbidden Observable

HLL
Model
e.g. C11

‘IIIIIIII

Herd
[Alglave et al.
TOPLAS 2014]

4........

HLL to ISA

HLL Litmus JJ Compiler
g =

If bugs found, iterate

|:> ISA-level H
litmus tests

‘IIIIIIIII

by changing the rhb Analysis
inputs and re-run with Check

HLL Outcome
Forbidden

v

pUspec
Microarch.
Model

Microarch. Outcome
Observable

" Ran TriCheck on draft RISC-V ISA MCM with
 C11 HLL MCM [Batty et al. POPL 2011] [Batty et al. POPL 2016]
 Compiler mappings based on RISC-V manual

* Variety of microarchitectures that relaxed various memory orderings
— All legal according to draft RISC-V spec

— Ranging from SC microarchitecture to one with reorderings allowed by ARM/Power

" Draft RISC-V MCM for Base ISA incapable of correctly compiling C11:
e C11 outcome forbidden, but impossible to forbid on hardware

* RISC-V fences too weak to restore orderings that implementations could relax

" In response to our findings, RISC-V Memory Model Working Group
was formed (we are members)

* Mandate to create an MCM for RISC-V that satisfies community needs

» Working Group has developed an MCM proposal that fixes the
aforementioned bugs (and other issues)

" MCM proposal recently passed the 45-day public feedback period!
* Well on its way to being included in the next version of the RISC-V ISA spec

TriCheck: Analysing Compiler I\/Iapplngs

= HLL to ISA uspec
') ISA-level Microarch.
Iitmus tests Model
Fix HLL model,
microarch model, .
\ and ISA-level MCM \ 4
Herd
phb Analysis
[Alglave et al. with Check
? v
HLL Outcome] Microarch. Outcome
Forbidden/Allowed? I Observable/Unobservable?

HLL
Model
e.g. Cl11

HLL Litmus JJ:>
Test Variants

‘IIIIIIII

Herd
[Alglave et al.
TOPLAS 2014]

4........

HLL Outcome
Forbidden

HLL to ISA
Compiler
Mapping

|:> ISA-level H
litmus tests

phb Analysis
with Check

<IIIIIIIII

v

pUspec
Microarch.
Model

Microarch. Outcome
Observable

» Ran TriCheck on microarch. with reordering similar to ARMv7/Power
e Utilised “trailing-sync” compiler mapping [Batty et al. POPL 2012]
* Discovered 2 cases where C11 outcome forbidden, but allowed by hardware!

* Deduced that the mapping must be flawed

" Mapping was supposedly proven correct [Batty et al. POPL 2012]
e Traced the loophole in the proof [Manerkar et al. CoRR’16]

" Problem: C11 model slightly too strong for mappings
* C11 has happens-before (hb) ordering and total order on all SC accesses (sc)
* hb and sc orders must agree with each other
* Trailing-sync mapping does not guarantee this for our counterexamples

" “Leading-sync” mapping [McKenney and Silvera 2011]

* Counterexample discovered concurrently to us [Lahav et al. PLDI 2017]
=" Both mappings currently broken

" Possible solutions under discussion by C11 memory model committee:
 RC11 [Lahav et al. PLDI 2017]: remove req. that sc and hb orders agree

— Current mappings work, but reduces intuition in an already complicated C11 model

* Adding extra fences to mappings

— low performance, requires recompilation, counterexample pattern not common

" Both HLL memory models and microarchitectural optimizations
influence the design of ISA-level MCMs

" TriCheck enables holistic analysis of HLL memory model, ISA-level
MCM, compiler mappings, and microarchitectural implementations

= TriCheck discovered numerous issues with draft RISC-V MCM
* Influenced the design of the new RISC-V MCM

" Discovered two counterexamples to C11 -> ARMv7/Power compiler
mappings

* Mappings were previously “proven” correct; isolated flaw in proof

Core 0 Core 1

(il) (i2) (i3) (i4)
x], 1 St[y], 1

9 o0
?—»(P DecodeExecute 9—»?

‘&Dyj

Microarchitecture Checking

Memory Consistency Checking for RTL

(i1) (i2) (i3)

" *_.D

i

[[
e
1
N

R | [RTL Image: Christopher Batten]

Memory Consistency Checking for RTL

(i1) (i2) (i
L

[RTL Image: Christopher Batten]

Memory Consistency Checking for RTL

(i1) (i2) (i
L

[RTL Image: Christopher Batten]

" RTLCheck [Manerkar et al. MICRO 2017] enables
checking microarchitectural axioms against an
implementation’s Verilog RTL for litmus test suites

" This helps ensure that the RTL maintains orderings
required for consistency

= Selected as an Honorable Mention from the “Top Picks
of Comp. Arch. Conferences” for 2017

Microarchitecture

Processor RTL

 ..but usually ignores memory consistency!

" Often use SystemVerilog Assertions (SVA)

m _..but usually ignores memory consistency!
" Often use SystemVerilog Assertions (SVA)

/ISA-FormaI [Reid et al. CAV 2016?

-Instr. Operational Semantics

\{ No MCM verification L

 ..but usually ignores memory consistency!

" Often use SystemVerilog Assertions (SVA)

/ISA-FormaI [Reid et al. CAV 2016? /DOGReL [Stewart et al. DIFTS 2014] A
-Instr. Operational Semantics -Memory subsystem transactions
i No MCM verification L LNO multicore MCM verification (?)J

 ..but usually ignores memory consistency!

" Often use SystemVerilog Assertions (SVA)

/ISA-FormaI [Reid et al. CAV 2016? fDOGReL [Stewart et al. DIFTS 2014] A
-Instr. Operational Semantics -Memory subsystem transactions
i No MCM verification L LNO multicore MCM verification (?)J

Kami
[Vijayaraghavan et al. CAV 2015] [Choi et al. ICFP 2017]
-MCM correctness for all programs, but...

[Needs Bluespec design and manual proofs! J

Lack of automated memory

consistency verification at RTL!

RTLCheck: Checking RTL Consistency Orderings

: pspec .
RTL Litmus Microarch. Mapping

Design Test . Functions
Axioms

RTLCheck

Temporal SystemVerilog
Assertions (SVA)

Cadence JasperGold

P ?
(RTL Verifier) roven

RTLCheck: Checking RTL Consistency Orderings

: pspec .
RTL Litmus Microarch. Mapping

Design Test . Functions
Axioms

RTLCheck

User-provided
mapping functions

translate microarch.
primitives to RTL
equivalents

Temporal SystemVerilog
Assertions (SVA)

Cadence JasperGold

P ?
(RTL Verifier) roven

RTLCheck: Checkinc

: puspec ,
Hitmus Microarch. Mapping

Test . Functions
Axioms

RTLCheck

RTL Consistency Orderings

RTL

Design

RTLCheck automatically
translates parch.

ordering axioms to
temporal properties

Temporal SystemVerilog
Assertions (SVA)

Cadence JasperGold

P ?
(RTL Verifier) roven

RTLCheck: Checking RTL Consistency Orderings
RTL Litmus .p.spec Mapping

Esﬂ Test M:xric:)a:;zh. Functions

RTLCheck

Temporal SystemVerilog

Assertions (SVA) Properties may be proven
or counterexample found
| Cadence JasperGold l Proven?

GUREOIED)]

INDM DR

(Caution: Slippery Floor)

Meaning can be Lost in Translation!

DB R
(Caution: Slippery Floor)

[Image: Barbara Younger]
[Inspiration: Tae Jun Ham]

Axiomatic
Microarch.
Analysis

(i1)
St [x]

Cﬁ”ﬁ

.1

Core 0

(i2

)
St [yl 1 Ld[y]l]=1 1d

Fetch

(? DecodeExecute 9—)
Ck\iffijgb——>

(i1) (i2) (i3) (i4)
AXi ti St[x].1 Stlyl.1 Ld[y]=1 Ld[x]=0
.Xloma 1C ? - ?
Microarch. % 9
An a 1yS i S ?_>? DecodeExecute ?—b?

H H

Core[@].DX X X

Tempor‘al Core[@].WB L a

RTL Verification core(0].503t2 et R N R
(SVA, etc) Core[1].DX aE GED aTE) arE) aEm

Core[1].WB D D

core[1].pata X XK |

Axiomatic
Microarch.
Analysis

Temporal
RTL Verification
(SVA, etc)

Core[0].DX

Core[9].WB

Core[@].SData

Core[1].DX

Core[1].WB

Core[1].LData

st x ¥ sty ¥ ¥

| X stxNsty¥ N
N oo N o1 ¥ N
D N 4TE7? aTEY

X N N LdyXN Ldx;

X X X ox1 X oxi)

Abstract nodes
and happens-
before edges

Axiomatic Abstract nodes

Fetch

Analysis

Microarch. i g) and happens-
T X

before edges

Core[@].DX X X

Tempor\al Core[0].WB N I X7 G G Concrete
RTL Verlification Core[@].SData --- Signals and
(SVA, etc) SRS a— - X clock cycles

| | : . :
Core[1].WB D D

core[1].pata X XK |

Axiomatic Abstract nodes
Fetch
Microarch. i ? and happens-

Analysis ?_’? s [O——>Q) before edges
O—) Writeback O—)
O A0

Axiomatic/Temporal Mismatch! (--------
4 D

ad LU
coretor.on KN Y

Temporal Concrete
RTL Verification| s ¥y — signals and

(SVA, etc) corear-ox - N N T clock cycles

» Qutcome Filtering: Restrict test outcome to one particular outcome

e Allows for more efficient verification

= Axiomatic models make outcome filtering easy

mp (Message Passing)

Core © Core 1
(11) x = 1; [(i3) rl = y;
(i2) vy = 1; |(id4) r2 = x;

Outcome Filtering in Axiomatic Analysis
= Qutcome Filtering: Restrict test outcome to one particular outcome

e Allows for more efficient verification

= Axiomatic models make outcome filtering easy

mp (Message Passing)

Core O Core 1
(11) x = 1; [(i3) rl = y;
(i2) vy = 1; |(id4) r2 = x;

Outcome: r1 =1, r2 =1

Execution examined as a whole,
so outcome can be enforced!

Outcome Filtering in Axiomatic Analysis
= Qutcome Filtering: Restrict test outcome to one particular outcome

e Allows for more efficient verification

= Axiomatic models make outcome filtering easy

mp (Message Passing)

Core O Core 1
(i1) x = 1

; | G3) rl = y;
(i2) y = 1,/(’:4) r2 = X;

Outcome: r1 =1, r2 =1

Execution examined as a whole,
so outcome can be enforced!

Outcome Filtering in Axiomatic Analysis
= Qutcome Filtering: Restrict test outcome to one particular outcome

e Allows for more efficient verification

= Axiomatic models make outcome filtering easy

mp (Message Passing)

Outcome:

rl =

1, r2

Core O Core 1
(i1) x = 1% ¥3) rl = y;
(i2) yv = 14) r2 = X;

Execution examined as a whole,
so outcome can be enforced!

= Filtering executions by outcome requires expensive global analysis

* Not done by many SVA verifiers, including JasperGold!
mp
Core © Core 1
(i1) x = 1; (i3) rl = y;
(i2) y = 1; (i4) r2 = x;
Is rl =1, r2 = 0 possible?

Outcome Filtering in Temporal Verification
= Filtering executions by outcome requires expensive global analysis

* Not done by many SVA verifiers, including JasperGold!

mp
Core 0O Core 1

(3 r1 - ;

(i2) y = 1; (i4) r2 = x;
Is rl = 1, r2 = 0 possible?

ep

Outcome Filtering in Temporal Verification

= Filtering executions by outcome requires expensive global analysis
* Not done by many SVA verifiers, including JasperGold!

mp
Core O Core 1
(i1) x = 1;
(i2) y = 1;

Is rl = 1, r2 = 0 possible?

1 |—(i2) y = 1 |—[(i3) r1

Il
=

y

Step 2 Step 3 Step 4

Outcome Filtering in Temporal Verification

= Filtering executions by outcome requires expensive global analysis

* Not done by many SVA verifiers, including JasperGold!
mp

Core 0O Core 1

(i1) x =

(i2) y =
Is rl = 1, r2 = 0 possible?

Il
=

1 |—(i2) y =1 |—»{(i3) rl =y
Step 2 Step 3

(i4) r2 = x =1
Step 4

Outcome Filtering in Temporal Verification
= Filtering executions by outcome requires expensive global analysis

* Not done by many SVA verifiers, including JasperGold!

mp .

P— Core 1 Need to examine all
(i1) x = 1; | (i3) rl = y; possible paths from
(i2) y = 1; | (34) r2 = x; current step to end of

Is rl = 1, r2 = 0 possible?

execution: too expensive!

000
(13) ril =y =290 }4...
(i1) x =1 (i2) y =1 (i3) rl =y =1 (id) r2 =x=1
Step 1 Step 2 : Step 3 ; Step 4
o0

000
(i4) r2 = x = 0?

SVA Verifier Approximation: Only check if
constraints hold up to current step

Makes Outcome Filtering impossible!

mp
Core © Core 1

(i1) x = 1; | (i3) rl1 = y;
(i2) y = 1; | (i4) r2 = Xx;
SC Forbids: rl =1, r2 = 0

Axiom "Read Values":
Every load either reads BeforeAllWrites OR reads FromLatestWrite

Note: Axioms abstracted for brevity

Luspec Analysis Uses Outcome Filtering

mp

Core ©

Core 1

(i1) x =
(i2) y =

1;
1;

(i3) rl = y;

(i4) r2 = x;

SC Forbids: rl1 = 1,

Axiom "Read Values".

Every load either reads BeforeAllWrites OR reads FromLatestWrite

Note: Axioms abstracted for brevity

Luspec Analysis Uses Outcome Filtering
mp
Core © Core 1

(i1) x = 1; | (i3) rl1 = y;

(i2) y = 1;

SC Forbids: rl1 = 1,

Axiom "Read Values".
Every load either reads BeforeAllWrites OR reads |FromLatestWrite

No write for load
to read from!

Note: Axioms abstracted for brevity

Luspec Analysis Uses Outcome Filtering

mp

Core ©

Core 1

(i1) x = 1;
(i2) y = 1;

(i3) rl = y;

(i4) r2 = x;

SC Forbids:

ri=1,|r2 =0

Axiom "Read Values".

Evepy load edther reads BeforeAllWrites -QR—heads—lromatestilaite-

Outcome Filtering leads to simpler axioms!

Note: Axioms abstracted for brevity

Core ©
Filtered Read Values: (i1) x = 1;
Unless Load returns non-zero value, (i2) y = 1;
Load happens before all stores to its address SC Forbids:

Time (cycles)

clk

Core[0] .Commit:x
Core[0].SData :x
Core[1] .Commit:x
Core[1l].LData :x

Note: Axioms/properties abstracted for brevity

Core ©
Filtered Read Values: (i1) x = 1;
Unless Load returns non-zero value, (i2) y = 1;
Load happens before all stores to its address SC Forbids:

Time (cycles)

1 5 3 After 3 cycles:
clk I | l | I |
| |
Core[0].Commit St x
|
| |
Core[0].SData ox1

|
|
|
coref1].Loata Y XY

Note: Axioms/properties abstracted for brevity

Temporal Outcome Filtering Falls! e o
Filtered Read Values: (i1) x = 1;
Unless Load returns non-zero value, (i2) y = 1;

Load happens before all stores to its address SC Forbids:

Time (cycles)
After 3 cycles:
Store happens before load!

Property Violated?

|
|
|
corefa].Loata YN ¥

Note: Axioms/properties abstracted for brevity

Temporal Outcome Filtering Falls! e

Filtered Read Values: (i1) x = 1;
Unless Load returns non-zero value, (i2) y = 1;
Load happens before all stores to its address SC Forbids:

Time (cycles)

1 2 3 A : . After 3 cycles:

cak [l L1 l |_| | [] Store happens before load!
| | 1
corefe]..comit Y X Y s Y s N Property Violated?
| | .
corefo].spata Y N ¥ oa X oo f_ J_ After 6 cycles:

Load does not read O

Core[1].Commit

No Violation!

Core[1l].LData

Note: Axioms/properties abstracted for brevity

Temporal Outcome Filtering Falls! e

Filtered Read Values: (i1) x = 1;
Unless Load returns non-zero value, (i2) y = 1;
Load happens before all stores to its address SC Forbids:

Time (cycles)

1 2 3 A : . After 3 cycles:

cak [l L1 l |_| | [] Store happens before load!
| | 1
corefe]..comit Y X Y s Y s N Property Violated?
| | .
corefo].spata Y N ¥ oa X oo f_ J_ After 6 cycles:

Load does not read O

Core[1].Commit

No Violation!
But SVA verifiers don’t check
future cycles!

Core[1l].LData

Note: Axioms/properties abstracted for brevity

Temporal Outcome Filtering Falls! s Core 1

mp

Filtered Read Values:
Unless Load returns non-zero value,

Load happens before all stores to its address SC Forbids: rl1 = 1,

(i1) x = 1; | (i3) rl = y;
(i2) y = 1;

Time (cycles)

|
|
|
corefa].Loata YN ¥

After 3 cycles:
Store happens before load!
Property Violated?

After 6 cycles:

Load does not read O
No Violation!
But SVA verifiers don’t check
future cycles!

Note: Axioms/properties abstracted for brevity

Core 0O

(i1) x = 1;
o . _ (i2) y = 1;
" Don’t simplify axioms; translate all cases C Forbide:

" Tag each case with appropriate load value constraints

* reflect the data constraints required for edge(s)

Axiom "Read Values":
Every load either reads BeforeAllWrites OR reads

Property to check:
mapNode(Ld x - St x, Ld x == @) or mapNode()5

Note: Axioms and properties abstracted for brevity

mp

Solution: Load Value Constraints ==t _see?
" Don’t simplify axioms; translate all cases S(CizF)O,,yb;dSl:

" Tag each case with appropriate load value constraints

* reflect the data constraints required for edge(s)

Axiom "Read Values":

Every load either reads|BeforeAllWritesOR reads

Property to check:
mapNodefLd x » St x, Ld x == 0)Jor mapNode(

)5

Note: Axioms and properties abstracted for brevity

mp

Solution: Load Value Constraints —=-° Core 1

(i1) x = 1; | (i3) rl = y;
ST - (i2) y = 1;
" Don’t simplify axioms; translate all cases C Forbide: r1 o1

" Tag each case with appropriate load value constraints

* reflect the data constraints required for edge(s)

Axiom "Read Values":

Every load either reads BeforeAllWrites OR reads:_

Property to check:

mapNode(Ld x » St x, Ld x == @) or mapNode:;_

Note: Axioms and properties abstracted for brevity

Core 0O

(i1) x = 1;
o . _ (i2) y = 1;
" Don’t simplify axioms; translate all cases C Forbide:

" Tag each case with appropriate load value constraints

* reflect the data constraints required for edge(s)

Axiom "Read Values":
Every load either reads Befor‘eAllwritesr‘eads

Property to check:
mapNode(Ld x » St x, Ld x == @)] or|mapNode()

Note: Axioms and properties abstracted for brevity

Multi-V-scale: a Multicore Case Study

Core 0 Core 1l Core 2 Core 3
IF IF IF IF
{ { { {
DX DX DX DX
{ { { {
WB WB WB WB
¥ ¥ ¥ ¥
Arbiter

Multi-V-scale: a Multicore Case Study

ore (0 Corel Core 2 Core 3
IF IF IF IF
3-stage ‘ ‘ ‘ ‘
in-order DX DX DX DX
pipelines ‘ ‘ ‘ ‘
WB WB WB WB
{ { {
Arbiter

Core 2

Multi-V-scale: a Multicore Case Study

Core 3

IF

{

IF

DX

{

Core 0 Core 1
IF IF
! !
DX DX
! !
WB WB

{

DX

WB

{

WB

Arbiter
enforces that
only one core

can access
memory at any
time

" V-scale memory internally writes cqre 0 Core 1 Core 2 Core 3
stores to wdata register IF IF IF

= wdata pushed to memory when [;X SX [;X
subsequent store occurs Vv L 2 v

= Akin to single-entry store buffer WTB —V\iB _V\iB

= When two stores are sent to Arbiter
memory in successive cycles,
first of two stores is dropped by Memory
memory! Stores

" Fixed bug by eliminating wdata wdata

= \/-scale has since been 1 Mem array
deprecated by RISC-V Foundation 0 0 0 0 0 0 0 0

9 0 0 9 9 (% 0 9

= \/-scale memory internally writes
stores to wdata register

= wdata pushed to memory when
subsequent store occurs

= Akin to single-entry store buffer

= When two stores are sent to
memory in successive cycles,
first of two stores is dropped by
memory!

" Fixed bug by eliminating wdata

= \/-scale has since been
deprecated by RISC-V Foundation

Core O Corel Core 2 Core 3
IF IF IF IF
v v v
DX DX DX
v I 2 I 2
_WB [L WB || [LWB
! ! !
Arbiter
Memory
Stores
Mem array
(%) (%) (%) (%) (%) (%) (%) (%)
(%) (%) (%) (%) (%) (%) (%) (%)

= \/-scale memory internally writes
stores to wdata register

= wdata pushed to memory when
subsequent store occurs

= Akin to single-entry store buffer

= When two stores are sent to
memory in successive cycles,
first of two stores is dropped by
memory!

" Fixed bug by eliminating wdata

= \/-scale has since been
deprecated by RISC-V Foundation

Core 0 Corel Core 2 Core 3
IF IF IF IF
v v v v
DX DX DX DX
v v I 2 I 2
__WB || [LWB | WB __WB
| | | |
Arbiter
Memory
Stores
Mem array
(%) (%) (%) (%) (%) %)
(%) (%) (%) (%) (%) %)

" Microarchitectural models must be validated against RTL

= RTLCheck: Automated translation of microarch. axioms into
equivalent temporal SVA properties for litmus test suites

* Translation is complicated by the axiomatic-temporal mismatch

* JasperGold was able to prove 90% of properties/test in 11 hours runtime

" | ast piece of the Check suite; now have tools at all levels of the stack!

Conclusion

High-Level Languages (HLL)

Compiler

Architecture (ISA)

Microarchitecture

Processor RTL

" The Check suite provides automated full-stack
MCM checking of implementations

m | itmus-test based verification to concentrate on
error-prone cases

= Can check:
* Implementation of HLL requirements
* Virtual memory implementation
 HLL Compiler mappings
* Microarchitectural Orderings (including coherence)

* and even RTL (Verilog)!

= All tools are open-source and publicly available!

" Collaborators:
* Margaret Martonosi
* Daniel Lustig

e Caroline Trippel

Michael Pellauer
* Aarti Gupta

" Funding:
* Princeton Wallace Memorial Honorific Fellowship
e STARnet C-FAR (Center for Future Architectures Research)

e JUMP ADA Center (Applications Driving Architectures)
* National Science Foundation

Questions?

http://www.cs.princeton.edu/~manerkar

Yatin A. Manerkar, Daniel Lustig, Margaret Martonosi, and Michael Pellauer. RTLCheck: Verifying the Memory Consistency of
RTL Designs. The 50th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), October 2017.

Yatin A. Manerkar, Caroline Trippel, Daniel Lustig, Michael Pellauer, and Margaret Martonosi. Counterexamples and Proof
Loophole for the C/C++ to POWER and ARMv7 Trailing-Sync Compiler Mappings. CoRR abs/1611.01507, November 2016.

Caroline Trippel, Yatin A. Manerkar, Daniel Lustig, Michael Pellauer, and Margaret Martonosi. TriCheck: Memory Model
Verification at the Trisection of Software, Hardware, and ISA. The 22nd International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), April 2017.

Yatin A. Manerkar, Daniel Lustig, Michael Pellauer, and Margaret Martonosi. CCICheck: Using uhb Graphs to Verify the
Coherence-Consistency Interface. The 48th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),
December 2015.

http://check.cs.princeton.edu/

Coherence and Consistency

" Most coherence protocols are not that simple!
 Partial incoherence (e.g. GPUs) [Wickerson et al. OOPSLA 2016]
e Lazy coherence (e.g. TSO-CC) [Elver and Nagarajan HPCA 2014]

" CCl: Coherence-Consistency Interface

Coherence Consistency

Conceptual

Coherence and Consistency

" Most coherence protocols are not that simple!
 Partial incoherence (e.g. GPUs) [Wickerson et al. OOPSLA 2016]
e Lazy coherence (e.g. TSO-CC) [Elver and Nagarajan HPCA 2014]

" CCl: Coherence-Consistency Interface

Coherence Consistency

Conceptual

Real
Implementations

Coherence and Consistency

" Most coherence protocols are not that simple!
 Partial incoherence (e.g. GPUs) [Wickerson et al. OOPSLA 2016]
e Lazy coherence (e.g. TSO-CC) [Elver and Nagarajan HPCA 2014]

" CCl: Coherence-Consistency Interface

Coherence

Consistency

Verifiers can’t assume
abstract Conceptual
coherence/memory
hierarchy!

Verifiers can’t ignore
consistency

implications!

Real
Implementations

Coherence and Consistency

" Most coherence protocols are not that simple!
 Partial incoherence (e.g. GPUs) [Wickerson et al. OOPSLA 2016]
e Lazy coherence (e.g. TSO-CC) [Elver and Nagarajan HPCA 2014]

" CCl: Coherence-Consistency Interface

Coherence Consistency

C Verifiers can’t assume
abstract Conceptual
coherence/memory

Verifiers can’t ignore
consistency

implications!
hierarchy!

Real
Implementations

Issue with Draft RISC-V MCM: Cumulativity

= Consider this litmus test variant (WRC):

e C11 atomics can specify memory orderings: REL = release, ACQ = acquire
Thread © Thread 1 Thread 2

St (x, 1, REL) re = Ld (x, ACQ) rl = Ld (y, ACQ)
St (y, 1, REL) r2 = Ld (x, ACQ)
Forbidden by C11: r@ = 1, rl =1, r2 = 0

= RISC-V lacked cumulative fences to enforce this ordering:

(x5 and x6 contain addresses of x and y)

Core © Core 1 Core 2
sw x1, (x5) lw x2, (x5) lw x3, (x6)
fence r, rw fence r, rw
fence rw, w 1w x4, (x5)
sw x2, (x6)
Allowed by draft RISC-V: x1 =1, x2 =1, x3 =1, x4 =0

Issue with Draft RISC-V MCM: Cumulativity

= Consider this litmus test variant (WRC):

e C11 atomics can specify memory orderings: REL = release, ACQ = acquire
Thread © Thread 1 Thread 2

St (x, 1, REL) re = Ld (x, ACQ) rl = Ld (y, ACQ)
St (y, 1, REL) r2 = Ld (x, ACQ)
Forbidden by C11: r@ = 1, rl =1, r2 = 0

= RISC-V lacked cumulative fences to enforce this ordering:

(x5 and x6 contain addresses of x and y)

Core © Core 1 Core 2
sw x1, (x5) lw x2, (x5) lw x3, (x6)
fence r, rw fence r, rw
fence rw, w 1w x4, (x5)
sw x2, (x6)
Allowed by draft RISC-V: x1 =1, x2 =1, x3 =1, x4 =0

Issue with Draft RISC-V MCM: Cumulativity

= Consider this litmus test variant (WRC):

e C11 atomics can specify memory orderings: REL = release, ACQ = acquire
Thread © Thread 1 Thread 2

St (x, 1, REL) re = Ld (x, ACQ) rl = Ld (y, ACQ)
St (y, 1, REL) r2 = Ld (x, ACQ)
Forbidden by C11: r@ = 1, rl =1, r2 = 0

= RISC-V lacked cumulative fences to enforce this ordering:

(x5 and x6 contain addresses of x and y)

Core © Core 1 Core 2
sw x1, (x5) lw x2, (x5) lw x3, (x6)
fence r, rw fence r, rw
fence rw, w 1w x4, (x5)
sw x2, (x6)
Allowed by draft RISC-V: x1 =1, x2 =1, x3 =1, x4 =0

Issue with Draft RISC-V MCM: Cumulativity

= Consider this litmus test variant (WRC):

e C11 atomics can specify memory orderings: REL = release, ACQ = acquire

Thread © Thread 1 Thread 2
St (X, 1, REL)Nemtpro = Ld (x, ACQ)
St (y, 1, REL)
Forbidden by C11: r@ = 1, rl =1, r2 = 0

= RISC-V lacked cumulative fences to enforce this ordering:

(x5 and x6 contain addresses of x and y)

Core © Core 1 Core 2
sw x1, (x5) lw x2, (x5) lw x3, (x6)
fence r, rw fence r, rw
fence rw, w 1w x4, (x5)
sw x2, (x6)
Allowed by draft RISC-V: x1 =1, x2 =1, x3 =1, x4 =0

Issue with Draft RISC-V MCM: Cumulativity

= Consider this litmus test variant (WRC):

e C11 atomics can specify memory orderings: REL = release, ACQ = acquire
Thread © Thread 1 Thread 2

St (X, 1, REL)Nemtpro = Ld (x, ACQ)
st (y, 1, REL)
Forbidden by C11: r@ = 1, rl =1, r2 = 0

= RISC-V lacked cumulative fences to enforce this ordering:

(x5 and x6 contain addresses of x and y)

Core © Core 1 Core 2
sw x1, (x5) lw x2, (x5) lw x3, (x6)
Sy ——
o e fence r, rw fence r, rw
i —

fence rw, w = p 1w x4, (x5)

sw x2, (x6)
Allowed by draft RISC-V: x1 =1, x2 =1, x3 =1, x4 = 0

Issue with Draft RISC-V MCM: Cumulativity

= Consider this litmus test variant (WRC):

e C11 atomics can specify memory orderings: REL = release, ACQ = acquire

Thread © Thread 1 Thread 2
St (X, 1, REL)Nemtpro = Ld (x, ACQ)
St (y, 1, REL)
Forbidden by C11: r@ = 1, rl =1, r2 = 0

= RISC-V lacked cumulative fences to enforce this ordering:

(x5 and x6 contain addresses of x and y)

Core © Core 1 Core 2
sw x1, (x5) lw x2, (x5) lw x3, (x6)
fence r, rw fence r, rw
fence rw, w 1w x4, (x5)
sw x2, (x6)
Allowed by draft RISC-V: x1 =1, x2 =1, x3 =1, x4 =0

ARMv7/Power Trailing-Sync Counterexample
= Consider this litmus test variant (IRIW):

 Total order over all SC atomic accesses is required

Thread © Thread 1 Thread 2 Thread 3
St (x, 1, SC) St (y, 1, SC) re = Ld (x, ACQ) [r2 = Ld (y, ACQ)
rl = Ld (y, SC) | r3 = Ld (x, SC)
Forbidden by C11: r@6 =1, rl =0, r2 =1, r3 =0

= \With the trailing-sync mapping, this compiles to the following:
* Allowed on Power [Sarkar et al. PLDI 2011] and ARMv7 [Alglave et al. TOPLAS

2014]
Core © Core 2 Core 3
str 1, [X] str 1, [y] ldr r1, [x] ldr r3, [y]
ctrlisb/ctrlisync | ctrlisb/ctrlisync
ldr r2, [y] ldr r4, [x]
Allowed by Power/ARMv7: rl =1, r2 =0, r3 =1, r4 =0

ARMv7/Power Trailing-Sync Counterexample
= Consider this litmus test variant (IRIW):

 Total order over all SC atomic accesses is required
Thread © Thread 1 Thread 2 Thread 3

St (x, 1, SC) St (y, 1, SC) |r@ = Ld (x, ACQ) |r2 = Ld (y, ACQ)
rl = Ld (y, SC) | r3 = Ld (x, SC)
Forbidden by C11: r@6 =1, rl =0, r2 =1, r3 =0

= SC total order must respect happens-beforei.e. (sb U sw)+

a:Wna x=0
S
b:Wna y=0
\ w
c:Wsc x=1 d:Wsc y=1 e:Racq x=1 g:Racq y=1
— i i | 4--—"'
SwW S S

[Generated with CPPMEM from Cambridge] f:Rsc y=0 h:Rsc x=0

ARMv7/Power Trailing-Sync Counterexample
= Consider this litmus test variant (IRIW):

 Total order over all SC atomic accesses is required
Thread © Thread 1 Thread 2 Thread 3

St (x, 1, SC) St (y, 1, SC) |r@ = Ld (x, ACQ) |r2 = Ld (y, ACQ)
rl = Ld (y, SC) | r3 = Ld (x, SC)
Forbidden by C11: r@6 =1, rl =0, r2 =1, r3 =0

= SC total order must respect happens-beforei.e. (sb U sw)+

a:Wna x=0

d:Wsc y=1 e:Racq x=1 ‘Racq y=1
) owert ot o

SwW S Si
[Generated with CPPMEM from Cambridge] @ h:Rsc x=0

ARMv7/Power Trailing-Sync Counterexample
= Consider this litmus test variant (IRIW):

 Total order over all SC atomic accesses is required
Thread © Thread 1 Thread 2 Thread 3

St (x, 1, SC) St (y, 1, SC) |r@ = Ld (x, ACQ) |r2 = Ld (y, ACQ)
rl = Ld (y, SC) | r3 = Ld (x, SC)
Forbidden by C11: r@6 =1, rl =0, r2 =1, r3 =0

= SC total order must respect happens-beforei.e. (sb U sw)+

a:Wna x=0

[Generated with CPPMEM from Cambridge] f:Rsc y=0 @

ARMv7/Power Trailing-Sync Counterexample
= Consider this litmus test variant (IRIW):

 Total order over all SC atomic accesses is required
Thread © Thread 1 Thread 2 Thread 3

St (x, 1, SC) St (y, 1, SC) |r@ = Ld (x, ACQ) |r2 = Ld (y, ACQ)
rl = Ld (y, SC) | r3 = Ld (x, SC)
Forbidden by C11: r@6 =1, rl =0, r2 =1, r3 =0

= SC total order must respect happens-before i.e. (sb U sw)+

shina x d: Wscy =1

b:Wna y=0
w
\%j\‘ f: Rscy =0 h:Rscx=0_
c:Wsc x=1 d:Wsc y=1 e:Racq x=1 :Racq y=1
_ y |q > g qy
SW SWkb s

[Generated with CPPMEM from Cambridge] f:Rsc y=0 h:Rsc x=0

ARMv7/Power Trailing-Sync Counterexample
= Consider this litmus test variant (IRIW):

 Total order over all SC atomic accesses is required
Thread © Thread 1 Thread 2 Thread 3

St (x, 1, SC) St (y, 1, SC) |r@ = Ld (x, ACQ) |r2 = Ld (y, ACQ)
rl = Ld (y, SC) | r3 = Ld (x, SC)
Forbidden by C11: r@6 =1, rl =0, r2 =1, r3 =0

= SC reads must be before later SC writes

a:Wna x=0
S
b:Wna y=0
\%‘W\‘
c:Wsc x=1 d:Wsc y=1 e:Racq x=1 g:Racq y=1
o s-d_ I ____._-”
r SWsb s
sc fr

[Generated with CPPMEM from Cambridge] f:Rsc y=0 h:Rsc x=0

* Cycle in the SC order implies outcome is forbidden
 But compiled code allows the behaviour!

" |t was thought that program order and coherence edges directly
between SC accesses were all that needed enforcing [Batty et al.
POPL 2012]

" But hb edges can arise between SC accesses through the transitive
composition of edges to and from a non-SC intermediate access

" Occurs in IRIW counterexample:

c:Wsc x=1 - d:Wsc y=1 e:Racq x=1
—— __'
SW sb]
\

f:Rsc y=0

" |t was thought that program order and coherence edges directly
between SC accesses were all that needed enforcing [Batty et al.
POPL 2012]

" But b edges can arise between SC accesses through the transitive
composition of edges to and from a non-SC intermediate access

" Occurs in IRIW counterexample:

c:Wsc x=1 ~ d:Wsc y="1

L e

SW

f:Rsc y=0

" |t was thought that program order and coherence edges directly
between SC accesses were all that needed enforcing [Batty et al.
POPL 2012]

" But b edges can arise between SC accesses through the transitive
composition of edges to and from a non-SC intermediate access

" Occurs in IRIW counterexample:

c:Wsc x=1 ~ d:Wsc y="1

L e

SW

= Need to restrict executions to those of litmus test

" Three classes of assumptions:
* Memory initialization
— Instr. mem and data mem
* Register initialization
* Value assumptions

— Load value assumptions: loads return correct value (when they occur)

— Final value assumptions: Required final values of memory are respected

" RTLCheck generates SystemVerilog Assumptions to constrain executions

 Utilises user-provided program mapping function

= Covering trace: execution where assumption condition is enforced

e Eg: execution where load of x returns O

 Must obey all assumptions

= Covering final value assum. == finding forbidden execution!

* No covering trace => equivalent to verifying overall test!

» Quicker verification for some tests

e Expect benefit to be largest for small designs

= \Why generate final value assumptions if test has no final conditions?
= Answer: Covering traces can lead to faster verification

" These are traces where assumption condition occurs and can be

enforced 1 2 1 3 | 4 1 5 1 6 | 7
clk

| |
Core[@].DX

Core[0].WB |I| | |

Core[0].SData ||| | |

Core[1].DX -- |
1

Core[1].WB ||| | |

XX X eaX exi)

Core[1l].LData

= \Why generate final value assumptions if test has no final conditions?
= Answer: Covering traces can lead to faster verification

" These are traces where assumption condition occurs and can be

enforced 12 13 14 |5 16 7
clk |

Covering trace for final val

| | | | |
assumption is complete Core[0].DX (st xX sty X X
| | | | |

execution of litmus test

Core[0].WB ||| --

Core[0].SData |I| --

Core[1].DX -- |
|

Core[1].WB ||.|

Core[1].LData ==_=

= \Why generate final value assumptions if test has no final conditions?
= Answer: Covering traces can lead to faster verification

" These are traces where assumption condition occurs and can be

enforced 12 13 14 |5 16 7
clk |

Covering trace for final val

| | | | |
assumption is complete Core[0].DX (st xX sty X X
| | | | |

execution of litmus test

Covering trace must also obey other

Core[0].WB ---
]] I I
assumptions, including load val assumptions , ;
(For mp, Ld y = 1 and Ld x = @) Core[0].SData ||| --
|
Core[1].DX -- -
I I I I I
Core[1].WB ---
| | |
Core[1].LData ---

= \Why generate final value assumptions if test has no final conditions?
= Answer: Covering traces can lead to faster verification

" These are traces where assumption condition occurs and can be

enforced 12 13 14 |5 16 7
clk |

Covering trace for final val

| | | | |
assumption is complete Core[0].DX (st xX sty X X
| | | | |

execution of litmus test

Covering trace must also obey other

Core[@] .WB [X stxXstyXK X
| | | I |
assumptions, including load val assumptions ,
(Formp,Ld y = 1 and Ld x = 9) Core[@].SData [X oeoaX oeak X
| | | l |
Thus, covering trace for mp final val Core[1].DX |||||
assumption (full execution with Ld y=1 ! — "
Core[1].WB X X X idyX Ldx)
i l |

and Ld x=0) is equivalent to finding

. . | ' |
forbidden execution of mp! core[1].L0ata__X___ X X [ox1)

ueanl
MUI-0d
cpwe
Tu
9004
00!
VIO
SO0
oo
91094es
0o0o>jes
9¢0d4es
TTOH
000!
TOO
6T03jes
qu
¢To
LT03jes
1004Mmpod
vzdmi
LU

ML
TZ0djes
€00
STOM
TTO®jes
0€094es
€TOM
u

oMU
Lc0d4es
6¢c09jes
60094es
qezdmi
v103jes
coo94es
¢1094es
piejeis+dw
€003jes
i 0004mpod
| 8T0°jes
i as

! UM

i TO0®jes
1 dw-03
i qu

{ bu

i 8009®jes
i 0009jes
Iss
0T094es
¢codjes
dw
£003jes
qi
90094es

H Full Proof

®m Hybrid

Time to Prove Properties

» Two configurations (Hybrid and Full Proof), avg. runtime 6.2 hrs
* See paper for configuration details

Results

12
10

0 W < N o

(sanoy) swiy

UBIIN
MUI-0)
gpwe
Tu
90044
0044
IOl
S0014
[40[0] 2%
9109jes
t003jes
9c0djes
TT04
000134
T004
6T0O3jes
qu
CTo4
LTO3jes
T00.Mmpod
vzdmi
yA

mul
Tco3jes
€00134
STOW
T1034es
0€03jes
€TOoY
cu

IMI
LT0djes
62034es
6003jes
qezdmi
vT03jes
z0034es
¢T03jeS

avg. runtime 6.2 hrs

)

Proof

H Full Proof

®m Hybrid

€00°3jes
' 0004mpod
1 8T09jes

1 as
! UM
i TOO0>jes
1 dw-03
i qu
i bu
| 8009jes
| 0003jes
Iss
0TO03jes
ccoojes
dw
L00?jes
qi
900°3jes

traces

covering

Complete quickly due to

* See paper for configuration details

Results: Time to Prove Properties

» Two configurations (Hybrid and Full

12
10

0 v <

(sanoy) swiy

ueanl
MUI-0d
cpwe
Tu
9004
00!
VIO
SO0
oo
91094es
0o0o>jes
9¢0d4es
TTOH
000!
TOO
6T03jes
qu
¢To
LT03jes
1004Mmpod
vzdmi
LU
ML
TZ0djes
€00
STOM
TTO®jes
0€094es
€TOM
u
oMU
Lc0d4es
6¢c09jes
60094es
qezdmi
v103jes
coo94es
¢1094es
piejeis+dw
€003jes
i 0004mpod
| 8T0°jes
i as
! UM
i TO0®jes
1 dw-03
i qu
{ bu
i 8009®jes
i 0009jes
Iss
0T094es
¢codjes
dw
£003jes
qi
90094es

Max runtime 11 hours (if
some properties unproven)

H Full Proof

®m Hybrid

» Two configurations (Hybrid and Full Proof), avg. runtime 6.2 hrs
* See paper for configuration details

Results: Time to Prove Properties

0 W < N o

12
10

(sanoy) swiy

uea
6c¢0djes
qezdmi
0004mpod
qs

dw-02

ISS

0T03jes
¢codjes
dw

€10
pisjeis+dw
Epwe
00y
60092jes
IMJ

8103jes
24M

su

qu
A
8003jes
100 mpod
Lc0djes
9c03jes
TOoOW
STOW
vzdmi
T003jes
v109jes
€003jes
€001
¢103jes
[{o[o]} ¥
Mmul

u
¢003jes
Soou
MLII-0D
LU
¢To
Tu
90044
TTOoW
Tc03jes
v003jes
6T03jes
LT03jes
00014
0codjes
9103jes
TTO®jes
pu
0003jes
£003jes
qi
9009jes

® Hybrid = Full_Proof

generally better (90%/test) than Hybrid (81%/test)

" On average, Full Proof can prove more properties in same time

© O O O O O O O O O o
m987654321

Results: Proven Properties

=Full Proof

sa1u9doad uanoud %

uean
6C03jes
qezdmi
0004mpod
qs

dw-0>

Iss
0T094es
¢cod9jes

gpwe
00l
6009jes
IMI

8103jes
UM

LZ03jes
9z03jes
100
STOI
pzdmi
T003jes
vT03jes
€003jes
€001
ZT03jes
zoon
mul

cu
z003jes
S0014
MUI-0)
yA')
ZTo
Tu
900144
TTOI
TC03jes
v003jes
6T03jes
LT03jes
000144
0€03jes
9T03jes
T103jes
pu
0003jes
L00djes
ql
9009jes

Hybrid better for only a few tests

® Hybrid = Full_Proof

Proof can prove more properties in same time

generally better (90%/test) than Hybrid (81%/test)

© O O O O O O O O O o
m987654321

Results: Proven Properties

"Full Proof
" On average, Full

sa1u9doad uanoud %

