Yatin Manerkar

Princeton University

ARM Cambridge, July 20t", 2018

http://check.cs.princeton.edu/




Memory Consistency Models (MCMs)
Specify rules and guarantees about the ordering and
visibility of accesses to shared memory [Sorin et al., 2011].
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Memory Consistency Models (MCMs)
Specify rules and guarantees about the ordering and
visibility of accesses to shared memory [Sorin et al., 2011].
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» Defined by [Lamport 1979], execution Is the same as If:
(R1) Memory ops of each processor appear in program order

(R2) Memory ops of all processors were executed in some total order

(load reads the value of last store to its address in the total order)
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" Most processors don’t implement SC
» x86: Total Store Order (TSO): Relaxes Write->Read ordering

* ARMv8 and Power relax more orderings

" Compilation to weak memory ISAs must maintain ordering guarantees

* [Owens et al. TPHOLS 2009], [Batty et al. POPL 2011, POPL 2012], [Wickerson et al. OOPSLA 2015], ...
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atomic<int> x = 0;
atomic<int> y = 0;
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X = 1, r\l - y,
y = 1, r\2 - X,
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" Most processors don’t implement SC
» x86: Total Store Order (TSO): Relaxes Write->Read ordering

* ARMv8 and Power relax more orderings

" Compilation to weak memory ISAs must maintain ordering guarantees

* [Owens et al. TPHOLS 2009], [Batty et al. POPL 2011, POPL 2012], [Wickerson et al. OOPSLA 2015], ...

C11 Source Code

atomic<int> x = 0; ARMv8 Assembly Language
atomic<int> y = 0; Initially, [x] = [y] = ©
Thread © Thread 1 Core © Core 1
X = 1; rl = vy; > stl #1, [x] 1da r1, [y]
y = 1; r2 = X; stl #1, [y] lda r2, [x]
Cl1 Forbids: rl1 =1, r2 = 0 ARMv8 forbids: rl =1, r2 = 0




Is the ARMvS8 hardware correctly implementing

the ARMv8 MCM?




MCM Verification 1s a Full-Stack Problem!

Is compiler maintaining
HLL guarantees?

High-Level Languages (HLL)

[Batty et al. POPL 2011, POPL 2012]
[Alglave et al. TOPLAS 2014] _
[Wickerson et al. OOPSLA 2015] Compiler

Is the ISA-level MCM

Architecture (ISA) formally defined?

= Fach layer has responsibilities for ensuring correct MCM operation

" Need MCM checking tools at all layers of the computing stack!
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Is compiler maintaining
HLL guarantees?

High-Level Languages (HLL)

[Batty et al. POPL 2011, POPL 2012]
[Alglave et al. TOPLAS 2014]

: Are virtual memory
[Wickerson et al. OOPSLA 2015] Compiler

mappings correct?

Is the ISA-level MCM

Architecture (ISA) formally defined?

Is hardware incorrectly

Microarchitecture .. L s
reordering instructions?

Is RTL correctly
Processor RTL

implementing
microarchitecture?

" Each layer has responsibilities for ensuring correct MCM operation

" Need MCM checking tools at all layers of the computing stack!



Check Suite: Full-Stack Automated MCM Analysis

High-Level Languages (HLL)

TriCheck

[Trippel et al. ASPLOS 2017]
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[Lustig et al. MICRO 2014]
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Processor RTL

= Suite of tools at various levels of computing stack

= Automated Full-Stack MCM checking across litmus test suites
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Check Suite: Full-Stack Automated MCM Analysis

High-Level Languages (HLL)

TriCheck

[Trippel et al. ASPLOS 2017]
Compiler

COATCheck

[Lustig et al. ASPLOS 2016]
Architecture (ISA)

PipeCheck & CCICheck

[Lustig et al. MICRO 2014]
[Manerkar et al. MICRO 2015]

RTLCheck
[Manerkar et al. MICRO 2017]

Microarchitecture

Processor RTL

Does RTL like Verilog correctly
implement microarchitecture?
= Suite of tools at various levels of computing stack

= Automated Full-Stack MCM checking across litmus test suites




Check Suite: Full-Stack Automated MCM Analysis

Do HLL, Compiler, and

. microarchitecture work
TriCheck ¢ th tv?
Trippel et al. ASPLOS 2017 OBELNEr Correctly:

COATCheck
[Lustig et al. ASPLOS 2016]

High-Level Languages (HLL)

Compiler

Architecture (ISA)

PipeCheck & CCICheck
[Lustig et al. MICRO 2014]
Microarchitecture [Manerkar et al. MICRO 2015]

RTLCheck
[Manerkar et al. MICRO 2017]
Processor RTL

= Suite of tools at various levels of computing stack

= Automated Full-Stack MCM checking across litmus test suites



Architecture (ISA)

Microarchitecture

Processor RTL

TriCheck
[Trippel et al. ASPLOS 2017]

COATCheck
[Lustig et al. ASPLOS 2016]

PipeCheck & CCICheck
[Lustig et al. MICRO 2014]
[Manerkar et al. MICRO 2015]

RTLCheck
[Manerkar et al. MICRO 2017]

So far, tools have found bugs in:

* Widely-used gemb5 Research simulator
e Cache coherence paper (TSO-CC)

* IBM XL C++ compiler (fixed in v13.1.5)
* In-design commercial processors

e RISC-V draft ISA specification

e Compiler mapping proofs

e C11 memory model

* (Open-source processor RTL

= Suite of tools at various levels of computing stack

= Automated Full-Stack MCM checking across litmus test suites




" Hardware enforces consistency model using smaller localized orderings
* In-order fetch/decode/execute...
* Orderings enforced by memory hierarchy

e ..and many more
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Modelling Microarchitecture: Going below the ISA

" Hardware enforces consistency model using smaller localized orderings

* In-order fetch/decode/execute...

* Orderings enforced by memory hierarchy

e ..and many more

: Feltch |
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: EXleC. |

: Melm. L
-~ WB
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Lds.
SB SB

Memory Hierarchy

Pipeline stages

may be FIFO to

ensure in-order
execution




Do individual orderings correctly work together

to satisfy consistency model?




Microarchitecture in pspec DSL

Axiom “Decode is FIFO":
EdgeExists ((il, Decode), (i2, Decode))
=> AddEdge ((il, Execute), (i2, Execute)).

Axiom "PO Fetch":
. SameCore il i2 /\ ProgramOrder il i2 =>
AddEdge ((il, Fetch), (i2, Fetch)).

+

Litmus Test

Core 0 Core 1
(i1) [x] <=1 | (i3) r1 « [y]
(i2) [y] « 1 | (i4) r2 « [x]
Under SC: Forbid r1=1, r2=0




Microarchitectural Consistency Checking

Microarchitecture in pspec DSL

{Axiom “Decode is FIFO":
. EdgeExists ((il, Decode), (i2, Decode))
=> AddEdge ((il, Execute), (i2, Execute)).

Axiom "PO Fetch":
. SameCore il i2 /\ PjpogramOrder il i2 =>
AddEdge ((il, FegkLh), (i2, Fetch)).

Each axiom specifies an ordering
that parch should respect
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Microarchitecture in pspec DSL

Axiom “Decode is FIFO":
. EdgeExists ((il, Decode), (i2, Decode))

=> AddEdge ((il, Execute), (i2, Execute)).

Axiom "PO Fetch":
. SameCore il i2 /\ ProgramOrder il i2 =>
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Microarchitectural Consistency Checking

Microarchitecture in pspec DSL

Axiom “Decode is FIFO":
. EdgeExists ((il, Decode), (i2, Decode))
=> AddEdge ((il, Execute), (i2, Execute)).

Axiom "PO Fetch":
. SameCore il i2 /\ ProgramOrder il i2 =>

AddEdge ((il, Fetch), (i2, Fetch)).

Microarch. verification checks that
combination of axioms satisfies MCM
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Core 0 Core 1

Litmus Test mp

Core 0 Core 1

(i1) St [x] « 1 | (i3) Ld r1 « |y]
(i2) St [y] < 1 | (i4) Ld r2 + [x]

Under TSO: Forbid r1=1, r2=0




Core 1

Litmus Test mp

Core 0 Core 1

(i1) St [x] « 1 | (i3) Ld r1 « |y]
(i2) St [y] < 1 | (i4) Ld r2 + [x]

Under TSO: Forbid r1=1, r2=0
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PipeCheck: Executions as hb Graphs [Lustig et al. MICRO 2014]
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PipeCheck: Executions as hb Graphs [Lustig et al. MICRO 2014]
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PipeCheck: Executions as hb Graphs [Lustig et al. MICRO 2014]
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PipeCheck: Executions as hb Graphs [Lustig et al. MICRO 2014]
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PipeCheck: Executions as hb Graphs [Lustig et al. MICRO 2014]
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" Cycle in phb graph => event has to
happen before itself (impossible)

" Cyclic graph - unobservable on parch
" Acyclic graph — observable on parch

" Exhaustively enumerate and check all
possible execs of litmus test on parch

* Implemented using fast SMT solvers

 Compare against ISA-level outcome from
herd [Alglave et al. TOPLAS 2014]



PipeCheck: Microarchitectural Correctness
(i1) (i2) (i3) (i4)

" Cycle in uhb graph => event has to
happen before itself (impossible)

" Cyclic graph — unobservable on parch
" Acyclic graph — observable on parch
" Exhaustively enumerate and check all

possible execs of litmus test on parch

* Implemented using fast SMT solvers

 Compare against ISA-level outcome from
Compl. () O herd [Alglave et al. TOPLAS 2014]

Litmus Test mp
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ISA-Level Observable Not Observable

Core 0 Core 1

Outcome (=2 1 Graph Acyclic) (All Graphs Cyclic)

(i1) [x] « 1 | (i3) r1 « [y]
[x]

OK (stricter
(i2) [y] « 1 | (i4)r2 « [x

Allowed OK

than necessary)

Under SC: Forbid r1=1, r2=0

Forbidden | Consistency violation! OK
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" Cycle in uhb graph => event has to
happen before itself (impossible)

" Cyclic graph — unobservable on parch
" Acyclic graph — observable on parch
" Exhaustively enumerate and check all

possible execs of litmus test on parch

* Implemented using fast SMT solvers

 Compare against ISA-level outcome from
Compl. () O herd [Alglave et al. TOPLAS 2014]

Litmus Test mp

SB

MemHier

ISA-Level Observable Not Observable

Core 0 Core 1 Outcome (2 1 Graph Acyclic) (All Graphs Cyclic)
(i1) [x] «= 1 | (i3) r1 « [y] lowed OK (stricter
(i2) [y] « 1 | (i4) 12 « [x] Allowe than necessary)
Under SC: Forbid r1=1, r2=0 Forbidden oK




PipeCheck: Microarchitectural Correctness
(i1)
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(i2) (i3)

Compl. O i O

Litmus Test mp
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(i1) [x] « 1 | (i3) r1 « [y]
(i2) [y] <1 | (i4) r2 « [x]
Under SC: Forbid r1=1, r2=0

(i4)

" Cycle in uhb graph => event has to
happen before itself (impossible)

" Cyclic graph — unobservable on parch
" Acyclic graph — observable on parch

" Exhaustively enumerate and check all
possible execs of litmus test on parch

* Implemented using fast SMT solvers

 Compare against ISA-level outcome from
herd [Alglave et al. TOPLAS 2014]

ISA-Level Observable Not Observable

Outcome (=2 1 Graph Acyclic) (All Graphs Cyclic)

OK (stricter
than necessary)

OK

Allowed OK

Forbidden | Consistency violation!




PipeCheck: Microarchitectural Correctness
(i1)

(i2)

(i3)

Compl. O O
Litmus Test mp
Core 0 Core 1
(i1) [x] « 1 | (i3) r1 « [y]
(i2) [y] <1 | (i4) r2 « [x]

Under SC: Forbid r1=1, r2=0

(i4)

" Cycle in uhb graph => event has to
happen before itself (impossible)

" Cyclic graph — unobservable on parch
" Acyclic graph — observable on parch

" Exhaustively enumerate and check all
possible execs of litmus test on parch

* Implemented using fast SMT solvers

 Compare against ISA-level outcome from
herd [Alglave et al. TOPLAS 2014]

ISA-Level Observable Not Observable

Outcome (=2 1 Graph Acyclic) (All Graphs Cyclic)

OK (stricter

Allowed OK
than necessary)

Forbidden | Consistency violation! OK




Abstracted memory hierarchy prevents

verification of complex coherence issues!




" Memory hierarchy is a collection of caches

* Coherence protocols ensure that all caches agree on the value
of any variable

= CCICheck [Manerkar et al. MICRO 2015] shows that

consistency verification often cannot simply treat
memory hierarchy abstractly
* Nominated for Best Paper at MICRO 2015
Microarchitecture
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CCICheck: Coherence vs Consistency

" Memory hierarchy is a collection of caches

* Coherence protocols ensure that all caches agree on the value
of any variable

= CCICheck [Manerkar et al. MICRO 2015] shows that
consistency verification often cannot simply treat
Architecture (ISA) memory hierarchy abstractly

* Nominated for Best Paper at MICRO 2015
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Coherence Protocol (SWMR, DVI, etc.)




Coherence Protocol Example

" |f P1 updates the value of x to 200, the stale value of x in other
processors must be invalidated

= [f P3 wants to subsequently read/write x, it must request the new value
" SWMR = Single-Writer Multiple Readers, DVI = Data Value Invariant

Processors

Caches
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Coherence Protocol Example

" |f P1 updates the value of x to 200, the stale value of x in other
processors must be invalidated

= [f P3 wants to subsequently read/write x, it must request the new value
" SWMR = Single-Writer Multiple Readers, DVI = Data Value Invariant
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Coherence Protocol Example

" |f P1 updates the value of x to 200, the stale value of x in other
processors must be invalidated

= [f P3 wants to subsequently read/write x, it must request the new value
" SWMR = Single-Writer Multiple Readers, DVI = Data Value Invariant

Processors

Caches

Data Response



" Three optimizations: correct individually, but not in combination
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" Three optimizations: correct individually, but not in combination
1. Prefetching

2. Invalidation before use
* Invalidation can arrive before data
 Acknowledge Inv early rather than wait for data to arrive

 Butrepeated inv before use = livelock [kubiatowicz et al. AspLOS 1992]




" Three optimizations: correct individually, but not in combination
1. Prefetching

2. Invalidation before use
* Invalidation can arrive before data
 Acknowledge Inv early rather than wait for data to arrive

 Butrepeated inv before use = livelock [kubiatowicz et al. AspLOS 1992]

3. Livelock avoidance: allow destination core to perform one

operation on data when it arrives, even if already invalidated
[Sorin et al. Primer 2011]

e Does not break coherence

 Sometimes intentionally returns stale data



Motivating Example — "Peekaboo”

" Consider mp with the livelock-avoidance mechanism:

CoreO

X: Shared
v: Modified

[x] < 1
lyl < 1

Core 0 Core 1

(i1) [x] <=1 | (i3) r1 « [y]
(i2) [y] « 1 | (i4) r2 « [x]

Under SC: Forbid r1=1, r2=

-

Optimizations:

1. Prefetching
2. Invalidation-before-use
3. Livelock avoidance

Core 1

x: Invalid
v: Invalid

rl < [y]
r2 < [X]
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" Consider mp with the livelock-avoidance mechanism:
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(i) [x] — 1 | (i3)r1 « [y]
(i2) [y] <1 | (i4) r2 « [x]
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" Consider mp with the livelock-avoidance mechanism:

Core 0 Core 1 Optimizations:
(i) [x] — 1 | (i3)r1 « [y]
(i2) [y] <1 | (i4) r2 « [x]
Under SC: Forbid r1=1, r2=
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CoreO
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Motivating Example — "Peekaboo”

" Consider mp with the livelock-avoidance mechanism:

CoreO

x: Modified
y: Shared

Core 0 Core 1

() [x] — 1 | (i3)rl —
2)[y] « 1 | (i4)r2 —

ly]
[

x]

Under SC: Forbid r1=1, r2=0

Prefetch x

Data (x = 0)

Inv-Ack

Request y

Data (y = 1)

Optimizations:

1. Prefetching
2. Invalidation-before-use
3. Livelock avoidance

Core 1

x: Invalid
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" Consider mp with the livelock-avoidance mechanism:

CoreO

x: Modified
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Core 0 Core 1

(i1) [x] <=1 | (i3) 11 « [y]
(i2) [y] <=1 | (i4)r2 < [x]
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Inv-Ack
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" Consider mp with the livelock-avoidance mechanism:

Core 0 Core 1 Optimizations:
(i1) [x] « 1 | (i3)rl « [y]
(i2) [y] <1 | (i4) r2 « [x]
Under SC: Forbid r1=1, r2=0

1. Prefetching
2. Invalidation-before-use
3. Livelock avoidance

Core O Prefetch x Core 1

x: Modified Data =) x: Invalid
y: Shared v: Shared

Inv-Ack

Request y

Data (y = 1)
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The Coherence-Consistency Interface (CCl)

= CCl = coherence protocol guarantees to microarch. +
Expected Coherence

Violation!




" Need a way to model cache occupancy and coherence events for:
e Coherence protocol optimizations (eg: Peekaboo)

 Partial incoherence and lazy coherence (GPUs, etc)
" AVIiCLis a 4-tuple:
(cache_id, address, data_value, generation_id)

" cache_id and generation_id uniquely identify each cache line

" A VIiCL 4-tuple maps on to the period of time over which the cache
line serves the data value for the address
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FetchStage and end at a ViCL Expire event
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= Additional nodes represent ViCL
FetchStage Q """"" ’Q Q """"" *Q requests and invalidations

Preoissiese Q>Q Q79 wsolution: Invalidated data only

Q usable if accessing load/store is
oldest in program order at time of
request [Sorin et al. Primer 2011]

® TSO-CC protocol [Elver and
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" Coherence & consistency often closely coupled in implementations
" |n such cases, coherence & consistency cannot be verified separately

" CCICheck: CCl-aware microarchitectural MCM checking

e Uses VICL (Value in Cache Lifetime) abstraction

" Discovered bug in TSO-CC lazy coherence protocol
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New ISA-level MCM
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Hardware



High-Level Languages (HLLs)
. 2

Which orderings does

the compiler need to

enforce?
]
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Which orderings

must be guaranteed
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Hardware



TriCheck checks that HLL, compiler, ISA, and

hardware aligh on MCM requirements




TriCheck: Layers of the Stack are Intertwined

= [SA-level MCMs should allow microarchitectural
optimizations but also be compatible with HLLs

High-Level Languages (HLL)

Compiler " TriCheck [Trippel et al. ASPLOS 2017] enables
holistic analysis of HLL memory model, ISA-level
Architecture (ISA) MCM, compiler mappings, and microarchitectures

 Mapping: translation of HLL synchronization primitives to
Microarchitecture one or more assembly language instructions

= Also useful for checking HLL compiler mappings to
ISA-level MCMs

= Selected as one of 12 “Top Picks of Comp. Arch.
Conferences” for 2017



HLL HLL to ISA pspec
Model HLL Litmus Compiler Microarch.
e.g. C11 Test Variants Mapping Model

Four Primary Inputs




TriCheck: Comparing HLL to Microarchitecture

HLL !
Model HLL Litmus

Test Variants

Examine all C11
memory_order
combinations

(release, acquire,
relaxed, seq cst)
for HLL litmus tests

HLL to ISA
Compiler

puspec
Microarch.
Model




TnCheck Comparlng HLL to I\/Ilcroarck

HLL to ISA
Comp||er ISA-level
litmus tests

HLL !
Model HLL Litmus
Test Variants

Translate HLL Litmus Tests
to ISA-level litmus tests

|

itecture

puspec
Microarch.
Model




HLL HLL to ISA ' uspec
Model HLL Litmus :> Compiler :> ISA-level Microarch.
Test Variants . litmus tests
e.g. C11 Mapping Model

Herd Use Herd to

[Alglave et al. check HLL
TOPLAS 2014] Outcomes

‘IIIIIIII

4........

HLL Outcome
Forbidden/Allowed?




HLL HLL to ISA ' uspec
Model HLL Litmus :> Compiler :> ISA-level Microarch.
Test Variants . litmus tests
e.g. C11 Mapping _ Model

\ 4 . \
Herd Use phb analysis to
: phb Analysis
[Alglave et al. check microarch. with Check
TOPLAS 2014] Outcomes
v v
HLL Outcome Microarch. Outcome

Forbidden/Allowed? Observable/Unobservable?




HLL HLL to ISA ' uspec
Model HLL Litmus :> Compiler :> ISA-level Microarch.
Test Variants . litmus tests
e.g. C11 Mapping _ Model

Herd
[Alglave et al.

‘IIIIIIII
‘IIIIIIIII

phb Analysis
with Check

TOPLAS 2014]
: Compare HLL and .
microarch. outcomes :
v

HLL Outcome | | Microarch. Outcome
Forbidden/Allowed? | | Observable/Unobservable?

D P
)




HLL | HLL to ISA = uspec
Model HLL Litmus :> Compiler :> ISA-level Microarch.
Test Variants . litmus tests
e.g. C11 Mapping _ Model
\ 4 \
Herd :
[Alglave et al. uh.t;:gzlyslis
TOPLAS 2014] WItR SREC
: Compare HLL and -
: microarch. outcomes :
v ? v
HLL Outcome | | Microarch. Outcome
Forbidden | | Observable




HLL | HLL to ISA = uspec
Model HLL Litmus :> Compiler :> ISA-level Microarch.
Test Variants . litmus tests
e.g. C11 Mapping _ Model
\ 4 \
Herd .
[Alglave et al. uh.t;:gzlyslis
TOPLAS 2014] WIER Shec
: Compare HLL and -
: microarch. outcomes :
v v
HLL Outcome m Microarch. Outcome
Forbidden Observable




HLL
Model
e.g. C11

‘IIIIIIII

Herd
[Alglave et al.
TOPLAS 2014]

4........

HLL to ISA

HLL Litmus JJ Compiler
g =

If bugs found, iterate

|:> ISA-level H
litmus tests

‘IIIIIIIII

by changing the rhb Analysis
inputs and re-run with Check

HLL Outcome
Forbidden

v

pUspec
Microarch.
Model

Microarch. Outcome
Observable




" Ran TriCheck on draft RISC-V ISA MCM with
 C11 HLL MCM [Batty et al. POPL 2011] [Batty et al. POPL 2016]
 Compiler mappings based on RISC-V manual

* Variety of microarchitectures that relaxed various memory orderings
— All legal according to draft RISC-V spec

— Ranging from SC microarchitecture to one with reorderings allowed by ARM/Power

" Draft RISC-V MCM for Base ISA incapable of correctly compiling C11:
e C11 outcome forbidden, but impossible to forbid on hardware

* RISC-V fences too weak to restore orderings that implementations could relax




" In response to our findings, RISC-V Memory Model Working Group
was formed (we are members)

* Mandate to create an MCM for RISC-V that satisfies community needs

» Working Group has developed an MCM proposal that fixes the
aforementioned bugs (and other issues)

" MCM proposal recently passed the 45-day public feedback period!
* Well on its way to being included in the next version of the RISC-V ISA spec



TriCheck: Analysing Compiler I\/Iapplngs

= HLL to ISA uspec
' ) ISA-level Microarch.
Iitmus tests Model
Fix HLL model,
microarch model, .
\ and ISA-level MCM \ 4
Herd
phb Analysis
[Alglave et al. with Check
? v
HLL Outcome ] Microarch. Outcome
Forbidden/Allowed? I Observable/Unobservable?
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Model
e.g. Cl11
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Test Variants

‘IIIIIIII

Herd
[Alglave et al.
TOPLAS 2014]
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HLL Outcome
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Compiler
Mapping

|:> ISA-level H
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» Ran TriCheck on microarch. with reordering similar to ARMv7/Power
e Utilised “trailing-sync” compiler mapping [Batty et al. POPL 2012]
* Discovered 2 cases where C11 outcome forbidden, but allowed by hardware!

* Deduced that the mapping must be flawed

" Mapping was supposedly proven correct [Batty et al. POPL 2012]
e Traced the loophole in the proof [Manerkar et al. CoRR’16]

" Problem: C11 model slightly too strong for mappings
* C11 has happens-before (hb) ordering and total order on all SC accesses (sc)
* hb and sc orders must agree with each other
* Trailing-sync mapping does not guarantee this for our counterexamples




" “Leading-sync” mapping [McKenney and Silvera 2011]

* Counterexample discovered concurrently to us [Lahav et al. PLDI 2017]
=" Both mappings currently broken

" Possible solutions under discussion by C11 memory model committee:
 RC11 [Lahav et al. PLDI 2017]: remove req. that sc and hb orders agree

— Current mappings work, but reduces intuition in an already complicated C11 model

* Adding extra fences to mappings

— low performance, requires recompilation, counterexample pattern not common



" Both HLL memory models and microarchitectural optimizations
influence the design of ISA-level MCMs

" TriCheck enables holistic analysis of HLL memory model, ISA-level
MCM, compiler mappings, and microarchitectural implementations

= TriCheck discovered numerous issues with draft RISC-V MCM
* Influenced the design of the new RISC-V MCM

" Discovered two counterexamples to C11 -> ARMv7/Power compiler
mappings

* Mappings were previously “proven” correct; isolated flaw in proof
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" RTLCheck [Manerkar et al. MICRO 2017] enables
checking microarchitectural axioms against an
implementation’s Verilog RTL for litmus test suites

" This helps ensure that the RTL maintains orderings
required for consistency

= Selected as an Honorable Mention from the “Top Picks
of Comp. Arch. Conferences” for 2017

Microarchitecture

Processor RTL




 ..but usually ignores memory consistency!

" Often use SystemVerilog Assertions (SVA)
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 ..but usually ignores memory consistency!

" Often use SystemVerilog Assertions (SVA)

/ISA-FormaI [Reid et al. CAV 2016? fDOGReL [Stewart et al. DIFTS 2014] A
-Instr. Operational Semantics -Memory subsystem transactions
i No MCM verification L LNO multicore MCM verification (?)J

Kami
[Vijayaraghavan et al. CAV 2015] [Choi et al. ICFP 2017]
-MCM correctness for all programs, but...

[ Needs Bluespec design and manual proofs! J




Lack of automated memory

consistency verification at RTL!




RTLCheck: Checking RTL Consistency Orderings
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RTLCheck: Checking RTL Consistency Orderings

: pspec .
RTL Litmus Microarch. Mapping

Design Test . Functions
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RTLCheck: Checkinc

: puspec ,
Hitmus Microarch. Mapping

Test . Functions
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» Qutcome Filtering: Restrict test outcome to one particular outcome

e Allows for more efficient verification

= Axiomatic models make outcome filtering easy

mp (Message Passing)

Core © Core 1
(11) x = 1; [(i3) rl = y;
(i2) vy = 1; |(id4) r2 = x;
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Outcome: r1 =1, r2 =1

Execution examined as a whole,
so outcome can be enforced!
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Outcome Filtering in Axiomatic Analysis
= Qutcome Filtering: Restrict test outcome to one particular outcome

e Allows for more efficient verification

= Axiomatic models make outcome filtering easy

mp (Message Passing)

Outcome:

rl =

1, r2

Core O Core 1
(i1) x = 1% ¥3) rl = y;
(i2) yv = 14 ) r2 = X;

Execution examined as a whole,
so outcome can be enforced!




= Filtering executions by outcome requires expensive global analysis

* Not done by many SVA verifiers, including JasperGold!
mp
Core © Core 1
(i1) x = 1; (i3) rl = y;
(i2) y = 1; (i4) r2 = x;
Is rl =1, r2 = 0 possible?




Outcome Filtering in Temporal Verification
= Filtering executions by outcome requires expensive global analysis

* Not done by many SVA verifiers, including JasperGold!

mp
Core 0O Core 1

(3 r1 - ;

(i2) y = 1; (i4) r2 = x;
Is rl = 1, r2 = 0 possible?

ep
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= Filtering executions by outcome requires expensive global analysis

* Not done by many SVA verifiers, including JasperGold!
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Outcome Filtering in Temporal Verification
= Filtering executions by outcome requires expensive global analysis

* Not done by many SVA verifiers, including JasperGold!

mp .

P— Core 1 Need to examine all
(i1) x = 1; | (i3) rl = y; possible paths from
(i2) y = 1; | (34) r2 = x; current step to end of

Is rl = 1, r2 = 0 possible?

execution: too expensive!

000
(13) ril =y =290 }4...
(i1) x =1 (i2) y =1 (i3) rl =y =1 (id) r2 =x=1
Step 1 Step 2 : Step 3 ; Step 4
o0

000
(i4) r2 = x = 0?




SVA Verifier Approximation: Only check if
constraints hold up to current step

Makes Outcome Filtering impossible!




mp
Core © Core 1

(i1) x = 1; | (i3) rl1 = y;
(i2) y = 1; | (i4) r2 = Xx;
SC Forbids: rl =1, r2 = 0

Axiom "Read Values":
Every load either reads BeforeAllWrites OR reads FromLatestWrite

Note: Axioms abstracted for brevity



Luspec Analysis Uses Outcome Filtering
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1;
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(i3) rl = y;

(i4) r2 = x;

SC Forbids: rl1 = 1,

Axiom "Read Values".

Every load either reads BeforeAllWrites OR reads FromLatestWrite

Note: Axioms abstracted for brevity



Luspec Analysis Uses Outcome Filtering
mp
Core © Core 1

(i1) x = 1; | (i3) rl1 = y;

(i2) y = 1;

SC Forbids: rl1 = 1,

Axiom "Read Values".
Every load either reads BeforeAllWrites OR reads |FromLatestWrite

No write for load
to read from!

Note: Axioms abstracted for brevity



Luspec Analysis Uses Outcome Filtering

mp

Core ©

Core 1

(i1) x = 1;
(i2) y = 1;

(i3) rl = y;

(i4) r2 = x;

SC Forbids:

ri=1,|r2 =0

Axiom "Read Values".

Evepy load edther reads BeforeAllWrites -QR—heads—lromatestilaite-

Outcome Filtering leads to simpler axioms!

Note: Axioms abstracted for brevity



Core ©
Filtered Read Values: (i1) x = 1;
Unless Load returns non-zero value, (i2) y = 1;
Load happens before all stores to its address SC Forbids:

Time (cycles)

clk

Core[0] .Commit:x
Core[0].SData :x
Core[1] .Commit:x
Core[1l].LData :x

Note: Axioms/properties abstracted for brevity



Core ©
Filtered Read Values: (i1) x = 1;
Unless Load returns non-zero value, (i2) y = 1;
Load happens before all stores to its address SC Forbids:

Time (cycles)

1 5 3 After 3 cycles:
clk I | l | I |
| |
Core[0].Commit St x
|
| |
Core[0].SData ox1

|
|
|
coref1].Loata Y XY

Note: Axioms/properties abstracted for brevity



Temporal Outcome Filtering Falls! e o
Filtered Read Values: (i1) x = 1;
Unless Load returns non-zero value, (i2) y = 1;

Load happens before all stores to its address SC Forbids:

Time (cycles)
After 3 cycles:
Store happens before load!

Property Violated?

|
|
|
corefa].Loata YN ¥

Note: Axioms/properties abstracted for brevity



Temporal Outcome Filtering Falls! e

Filtered Read Values: (i1) x = 1;
Unless Load returns non-zero value, (i2) y = 1;
Load happens before all stores to its address SC Forbids:

Time (cycles)

1 2 3 A : . After 3 cycles:

cak [ l L1 l |_| | [] Store happens before load!
| | 1
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| | .
corefo].spata Y N ¥ oa X oo f_ J_ After 6 cycles:

Load does not read O

Core[1].Commit

No Violation!

Core[1l].LData

Note: Axioms/properties abstracted for brevity



Temporal Outcome Filtering Falls! e

Filtered Read Values: (i1) x = 1;
Unless Load returns non-zero value, (i2) y = 1;
Load happens before all stores to its address SC Forbids:

Time (cycles)

1 2 3 A : . After 3 cycles:

cak [ l L1 l |_| | [] Store happens before load!
| | 1
corefe]..comit Y X Y s Y s N Property Violated?
| | .
corefo].spata Y N ¥ oa X oo f_ J_ After 6 cycles:

Load does not read O

Core[1].Commit

No Violation!
But SVA verifiers don’t check
future cycles!

Core[1l].LData

Note: Axioms/properties abstracted for brevity



Temporal Outcome Filtering Falls! s Core 1

mp

Filtered Read Values:
Unless Load returns non-zero value,

Load happens before all stores to its address SC Forbids: rl1 = 1,

(i1) x = 1; | (i3) rl = y;
(i2) y = 1;

Time (cycles)

|
|
|
corefa].Loata YN ¥

After 3 cycles:
Store happens before load!
Property Violated?

After 6 cycles:

Load does not read O
No Violation!
But SVA verifiers don’t check
future cycles!

Note: Axioms/properties abstracted for brevity



Core 0O

(i1) x = 1;
o . _ (i2) y = 1;
" Don’t simplify axioms; translate all cases C Forbide:

" Tag each case with appropriate load value constraints

* reflect the data constraints required for edge(s)

Axiom "Read Values":
Every load either reads BeforeAllWrites OR reads

Property to check:
mapNode(Ld x - St x, Ld x == @) or mapNode( )5

Note: Axioms and properties abstracted for brevity



mp

Solution: Load Value Constraints ==t _see?
" Don’t simplify axioms; translate all cases S(CizF)O,,yb;dSl:

" Tag each case with appropriate load value constraints

* reflect the data constraints required for edge(s)

Axiom "Read Values":

Every load either reads|BeforeAllWritesOR reads

Property to check:
mapNodefLd x » St x, Ld x == 0)Jor mapNode(

)5

Note: Axioms and properties abstracted for brevity
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(i1) x = 1; | (i3) rl = y;
ST - (i2) y = 1;
" Don’t simplify axioms; translate all cases C Forbide: r1 o1

" Tag each case with appropriate load value constraints

* reflect the data constraints required for edge(s)

Axiom "Read Values":

Every load either reads BeforeAllWrites OR reads:_

Property to check:

mapNode(Ld x » St x, Ld x == @) or mapNode:;_

Note: Axioms and properties abstracted for brevity



Core 0O

(i1) x = 1;
o . _ (i2) y = 1;
" Don’t simplify axioms; translate all cases C Forbide:

" Tag each case with appropriate load value constraints

* reflect the data constraints required for edge(s)

Axiom "Read Values":
Every load either reads Befor‘eAllwritesr‘eads

Property to check:
mapNode(Ld x » St x, Ld x == @)] or|mapNode( )

Note: Axioms and properties abstracted for brevity



Multi-V-scale: a Multicore Case Study

Core 0 Core 1l Core 2 Core 3
IF IF IF IF
{ { { {
DX DX DX DX
{ { { {
WB WB WB WB
¥ ¥ ¥ ¥
Arbiter




Multi-V-scale: a Multicore Case Study

ore (0 Corel Core 2 Core 3
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Core 2

Multi-V-scale: a Multicore Case Study

Core 3

IF

{

IF

DX

{

Core 0 Core 1
IF IF
! !
DX DX
! !
WB WB

{

DX

WB

{

WB

Arbiter
enforces that
only one core

can access
memory at any
time




" V-scale memory internally writes  cqre 0 Core 1 Core 2 Core 3
stores to wdata register IF IF IF

= wdata pushed to memory when [;X SX [;X
subsequent store occurs Vv L 2 v

= Akin to single-entry store buffer WTB —V\iB _V\iB

= When two stores are sent to Arbiter
memory in successive cycles,
first of two stores is dropped by Memory
memory! Stores

" Fixed bug by eliminating wdata wdata

= \/-scale has since been 1 Mem array
deprecated by RISC-V Foundation 0 0 0 0 0 0 0 0
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= \/-scale memory internally writes
stores to wdata register

= wdata pushed to memory when
subsequent store occurs

= Akin to single-entry store buffer

= When two stores are sent to
memory in successive cycles,
first of two stores is dropped by
memory!

" Fixed bug by eliminating wdata

= \/-scale has since been
deprecated by RISC-V Foundation

Core 0 Corel Core 2 Core 3
IF IF IF IF
v v v v
DX DX DX DX
v v I 2 I 2
__WB || [LWB | WB __WB
| | | |
Arbiter
Memory
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" Microarchitectural models must be validated against RTL

= RTLCheck: Automated translation of microarch. axioms into
equivalent temporal SVA properties for litmus test suites

* Translation is complicated by the axiomatic-temporal mismatch

* JasperGold was able to prove 90% of properties/test in 11 hours runtime

" | ast piece of the Check suite; now have tools at all levels of the stack!




Conclusion

High-Level Languages (HLL)

Compiler

Architecture (ISA)

Microarchitecture

Processor RTL

" The Check suite provides automated full-stack
MCM checking of implementations

m | itmus-test based verification to concentrate on
error-prone cases

= Can check:
* Implementation of HLL requirements
* Virtual memory implementation
 HLL Compiler mappings
* Microarchitectural Orderings (including coherence)

* and even RTL (Verilog)!

= All tools are open-source and publicly available!
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http://www.cs.princeton.edu/~manerkar
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Coherence and Consistency

" Most coherence protocols are not that simple!
 Partial incoherence (e.g. GPUs) [Wickerson et al. OOPSLA 2016]
e Lazy coherence (e.g. TSO-CC) [Elver and Nagarajan HPCA 2014]

" CCl: Coherence-Consistency Interface

Coherence Consistency

Conceptual




Coherence and Consistency

" Most coherence protocols are not that simple!
 Partial incoherence (e.g. GPUs) [Wickerson et al. OOPSLA 2016]
e Lazy coherence (e.g. TSO-CC) [Elver and Nagarajan HPCA 2014]

" CCl: Coherence-Consistency Interface

Coherence Consistency

Conceptual

Real
Implementations




Coherence and Consistency

" Most coherence protocols are not that simple!
 Partial incoherence (e.g. GPUs) [Wickerson et al. OOPSLA 2016]
e Lazy coherence (e.g. TSO-CC) [Elver and Nagarajan HPCA 2014]

" CCl: Coherence-Consistency Interface

Coherence

Consistency

Verifiers can’t assume
abstract Conceptual
coherence/memory
hierarchy!

Verifiers can’t ignore
consistency

implications!

Real
Implementations




Coherence and Consistency

" Most coherence protocols are not that simple!
 Partial incoherence (e.g. GPUs) [Wickerson et al. OOPSLA 2016]
e Lazy coherence (e.g. TSO-CC) [Elver and Nagarajan HPCA 2014]

" CCl: Coherence-Consistency Interface

Coherence Consistency

C Verifiers can’t assume
abstract Conceptual
coherence/memory

Verifiers can’t ignore
consistency

implications!
hierarchy!

Real
Implementations




Issue with Draft RISC-V MCM: Cumulativity

= Consider this litmus test variant (WRC):

e C11 atomics can specify memory orderings: REL = release, ACQ = acquire
Thread © Thread 1 Thread 2

St (x, 1, REL) re = Ld (x, ACQ) rl = Ld (y, ACQ)
St (y, 1, REL) r2 = Ld (x, ACQ)
Forbidden by C11: r@ = 1, rl =1, r2 = 0

= RISC-V lacked cumulative fences to enforce this ordering:

(x5 and x6 contain addresses of x and y)

Core © Core 1 Core 2
sw x1, (x5) lw x2, (x5) lw x3, (x6)
fence r, rw fence r, rw
fence rw, w 1w x4, (x5)
sw x2, (x6)
Allowed by draft RISC-V: x1 =1, x2 =1, x3 =1, x4 =0
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ARMv7/Power Trailing-Sync Counterexample
= Consider this litmus test variant (IRIW):

 Total order over all SC atomic accesses is required

Thread © Thread 1 Thread 2 Thread 3
St (x, 1, SC) St (y, 1, SC) re = Ld (x, ACQ) [r2 = Ld (y, ACQ)
rl = Ld (y, SC) | r3 = Ld (x, SC)
Forbidden by C11: r@6 =1, rl =0, r2 =1, r3 =0

= \With the trailing-sync mapping, this compiles to the following:
* Allowed on Power [Sarkar et al. PLDI 2011] and ARMv7 [Alglave et al. TOPLAS

2014]
Core © Core 2 Core 3
str 1, [X] str 1, [y] ldr r1, [x] ldr r3, [y]
ctrlisb/ctrlisync | ctrlisb/ctrlisync
ldr r2, [y] ldr r4, [x]
Allowed by Power/ARMv7: rl =1, r2 =0, r3 =1, r4 =0




ARMv7/Power Trailing-Sync Counterexample
= Consider this litmus test variant (IRIW):

 Total order over all SC atomic accesses is required
Thread © Thread 1 Thread 2 Thread 3

St (x, 1, SC) St (y, 1, SC) |r@ = Ld (x, ACQ) |r2 = Ld (y, ACQ)
rl = Ld (y, SC) | r3 = Ld (x, SC)
Forbidden by C11: r@6 =1, rl =0, r2 =1, r3 =0

= SC total order must respect happens-beforei.e. (sb U sw)+

a:Wna x=0
S
b:Wna y=0
\ w
c:Wsc x=1 d:Wsc y=1 e:Racq x=1 g:Racq y=1
— i i | 4--—"'
SwW S S

[Generated with CPPMEM from Cambridge] f:Rsc y=0 h:Rsc x=0



ARMv7/Power Trailing-Sync Counterexample
= Consider this litmus test variant (IRIW):

 Total order over all SC atomic accesses is required
Thread © Thread 1 Thread 2 Thread 3
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d:Wsc y=1 e:Racq x=1 ‘Racq y=1
) owert ot o

SwW S Si
[Generated with CPPMEM from Cambridge] @ h:Rsc x=0




ARMv7/Power Trailing-Sync Counterexample
= Consider this litmus test variant (IRIW):
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ARMv7/Power Trailing-Sync Counterexample
= Consider this litmus test variant (IRIW):

 Total order over all SC atomic accesses is required
Thread © Thread 1 Thread 2 Thread 3

St (x, 1, SC) St (y, 1, SC) |r@ = Ld (x, ACQ) |r2 = Ld (y, ACQ)
rl = Ld (y, SC) | r3 = Ld (x, SC)
Forbidden by C11: r@6 =1, rl =0, r2 =1, r3 =0

= SC total order must respect happens-before i.e. (sb U sw)+

shina x d: Wscy =1

b:Wna y=0
w
\%j\‘ f: Rscy =0 h:Rscx=0_
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ARMv7/Power Trailing-Sync Counterexample
= Consider this litmus test variant (IRIW):

 Total order over all SC atomic accesses is required
Thread © Thread 1 Thread 2 Thread 3

St (x, 1, SC) St (y, 1, SC) |r@ = Ld (x, ACQ) |r2 = Ld (y, ACQ)
rl = Ld (y, SC) | r3 = Ld (x, SC)
Forbidden by C11: r@6 =1, rl =0, r2 =1, r3 =0

= SC reads must be before later SC writes

a:Wna x=0
S
b:Wna y=0
\%‘W\‘
c:Wsc x=1 d:Wsc y=1 e:Racq x=1 g:Racq y=1
o s-d_ I ____._-”
r SWsb s
sc fr

[Generated with CPPMEM from Cambridge] f:Rsc y=0 h:Rsc x=0



* Cycle in the SC order implies outcome is forbidden
 But compiled code allows the behaviour!




" |t was thought that program order and coherence edges directly
between SC accesses were all that needed enforcing [Batty et al.
POPL 2012]

" But hb edges can arise between SC accesses through the transitive
composition of edges to and from a non-SC intermediate access

" Occurs in IRIW counterexample:

c:Wsc x=1 - d:Wsc y=1 e:Racq x=1
—— __'
SW sb]
\

f:Rsc y=0
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" |t was thought that program order and coherence edges directly
between SC accesses were all that needed enforcing [Batty et al.
POPL 2012]

" But b edges can arise between SC accesses through the transitive
composition of edges to and from a non-SC intermediate access

" Occurs in IRIW counterexample:

c:Wsc x=1 ~ d:Wsc y="1
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= Need to restrict executions to those of litmus test

" Three classes of assumptions:
* Memory initialization
— Instr. mem and data mem
* Register initialization
* Value assumptions

— Load value assumptions: loads return correct value (when they occur)

— Final value assumptions: Required final values of memory are respected

" RTLCheck generates SystemVerilog Assumptions to constrain executions

 Utilises user-provided program mapping function




= Covering trace: execution where assumption condition is enforced

e Eg: execution where load of x returns O

 Must obey all assumptions

= Covering final value assum. == finding forbidden execution!

* No covering trace => equivalent to verifying overall test!

» Quicker verification for some tests

e Expect benefit to be largest for small designs




= \Why generate final value assumptions if test has no final conditions?
= Answer: Covering traces can lead to faster verification

" These are traces where assumption condition occurs and can be

enforced 1 2 1 3 | 4 1 5 1 6 | 7
clk

| |
Core[@].DX

Core[0].WB |I| | |

Core[0].SData ||| | |

Core[1].DX -- |
1

Core[1].WB ||| | |

XX X eaX exi)

Core[1l].LData



= \Why generate final value assumptions if test has no final conditions?
= Answer: Covering traces can lead to faster verification

" These are traces where assumption condition occurs and can be

enforced 12 13 14 |5 16 7
clk |

Covering trace for final val

| | | | |
assumption is complete Core[0].DX (st xX sty X X
| | | | |
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= \Why generate final value assumptions if test has no final conditions?
= Answer: Covering traces can lead to faster verification

" These are traces where assumption condition occurs and can be

enforced 12 13 14 |5 16 7
clk |

Covering trace for final val

| | | | |
assumption is complete Core[0].DX (st xX sty X X
| | | | |

execution of litmus test

Covering trace must also obey other

Core[0].WB ---
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= \Why generate final value assumptions if test has no final conditions?
= Answer: Covering traces can lead to faster verification

" These are traces where assumption condition occurs and can be

enforced 12 13 14 |5 16 7
clk |

Covering trace for final val

| | | | |
assumption is complete Core[0].DX (st xX sty X X
| | | | |

execution of litmus test

Covering trace must also obey other

Core[@] .WB [ X stxXstyXK X
| | | I |
assumptions, including load val assumptions ,
(Formp,Ld y = 1 and Ld x = 9) Core[@].SData [ X oeoaX oeak X
| | | l |
Thus, covering trace for mp final val Core[1].DX |||||
assumption (full execution with Ld y=1 ! — "
Core[1].WB X X X idyX Ldx)
i l |

and Ld x=0) is equivalent to finding

. . | ' |
forbidden execution of mp! core[1].L0ata__X___ X X [ ox1 )
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