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Compilers Must Uphold HLL Guarantees

Compiler
High-Level 

Language (HLL) 
Program

Assembly 
Language 
Program

• Compiler translates HLL statements into 
assembly instructions

• Code generated by compiler must provide 
functionality required by HLL program
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Compilers Must Uphold HLL Guarantees

x.store(1);

r1 = y.load();

mov [eax], 1

MFENCE

mov ebx, [ebx]

C11 Program
X86 Assembly 

Language Program

X86 C11 Atomic 
Mapping

Compiler

• C/C++11 standards introduced atomic 
operations

– Portable, high-performance concurrent code

• Compiler uses mapping to translate from 
atomic ops to assembly instructions
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Compilers Must Uphold HLL Guarantees

x.store(1);

r1 = y.load();

C11 Program

X86 C11 Atomic 
Mapping

Compiler

If mapping is correct, then for all programs:

C11 Outcome 
Forbidden

ISA-Level Outcome 
Forbidden

implies

mov [eax], 1

MFENCE

mov ebx, [ebx]

X86 Assembly 
Language Program
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Exploring Mappings with TriCheck

C11 Atomic 
Mapping

How do HLL outcomes compare 
to ISA-level outcomes?

C11 Outcomes ISA-Level Outcomes

C11 Litmus 
Test Variants

Herd µCheck

ISA-level 
litmus tests

?
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Exploring Mappings with TriCheck

C11 Atomic 
Mapping

If a mapping is correct, then 
for all programs:

C11 Outcome 
Forbidden

ISA-Level Outcome 
Forbidden

C11 Litmus 
Test Variants

Herd µCheck

ISA-level 
litmus tests

implies
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Counterexamples Detected!

C11 → 
Power/ARMv7 
Trailing-Sync

Atomic Mapping

C11 Outcome 
Forbidden

ISA-Level Outcome 
Allowed

C11 Litmus 
Test Variants

Herd µCheck

Power/ 
ARMv7-like 
litmus tests

but
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Counterexamples Detected!

C11 → 
Power/ARMv7 
Trailing-Sync

Atomic Mapping

C11 Outcome 
Forbidden

ISA-Level Outcome 
Allowed

C11 Litmus 
Test Variants

Herd µCheck

Power/ 
ARMv7-like 
litmus tests

but

• Counterexample implies mapping is flawed
• But mapping previously proven correct 

[Batty et al. POPL 2012]
• Must be an error in the proof!
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Outline

• Introduction

• Background on C11 model and mappings

• IRIW Counterexample and Analysis

• Loophole in Proof of Batty et al.

• IBM XL C++ Bugs

• Conclusions and Future Work
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C11 Memory Model

• C11 memory model specifies a C11 program’s 
allowed and forbidden outcomes

• Axiomatic model defined in terms of program 
executions

– Executions that satisfy C11 axioms are consistent

– Executions that do not satisfy axioms are forbidden

– Outcome only allowed if consistent execution exists

• C11 axioms defined in terms of various relations 
on an execution
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C11 atomic operations

• Used to write portable, high-performance 
concurrent code

• Atomic ops can have different memory orders
– seq_cst, acquire, release, relaxed …

– Stronger guarantees: easier correctness, lower 
performance

– Weaker guarantees: harder correctness, higher 
performance

• Example (y is an atomic variable):
y.store(1, memory_order_release);

int b = y.load(memory_order_acquire);
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Relevant C11 Memory Model Relations

• Happens-before (ℎ𝑏) = 𝑠𝑏 ∪ 𝑠𝑤 +

– Transitive closure of statement order and 
synchronization order

• Total order on SC operations (𝑠𝑐)

– Must be acyclic

– 𝑠𝑐 edges must not be in opposite direction to ℎ𝑏
edges (𝑠𝑐 must be “consistent with” ℎ𝑏)

– SC read operations cannot read from overwritten 
writes

Wsc x = 1

Rsc y = 0

hb sc
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Power and ARMv7 Compiler Mappings

• Trailing-sync mapping:

– [Boehm 2011][Batty et al. POPL 2012]

Power lwsync and ARMv7 dmb prior to releases ensure that prior 
accesses are made visible before the release
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Power and ARMv7 Compiler Mappings

• Trailing-sync mapping:

– [Boehm 2011][Batty et al. POPL 2012]

Power ctrlisync/sync and ARMv7 ctrlisb/dmb after acquires enforce 
that subsequent accesses are made visible after the acquire

Use of sync/dmb for SC loads helps enforce the required C11 total 
order on SC operations
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Power and ARMv7 Compiler Mappings

• Trailing-sync mapping:

– [Boehm 2011][Batty et al. POPL 2012]

Ostensibly, this ordering can also be enforced by putting fences 
before SC loads…

Power sync and ARMv7 dmb after SC stores (“trailing-sync”) 
prevent reordering with subsequent SC loads
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Power and ARMv7 Compiler Mappings

• Leading-sync mapping:

– [McKenney and Silvera 2011]

Leading-sync mapping places these fences *before* SC loads

Only translations of SC atomics change between the two mappings
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Both Mappings are Currently Invalid

• Both supposedly proven correct [Batty et al. 
POPL 2012]

• We discovered two counterexamples to 
trailing-sync mappings on Power and ARMv7

– Isolated the proof loophole that allowed flaw

• Vafeiadis et al. found counterexamples for 
leading-sync mapping, and have proposed 
solution
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Outline

• Introduction

• Background on C11 model and mappings

• IRIW Counterexample and Analysis

• Loophole in Proof of Batty et al.

• IBM XL C++ Bugs

• Conclusions and Future Work
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IRIW Trailing-Sync Counterexample
T0                                     T1                                              T2                                   T3

x.store(1, seq_cst);   y.store(1, seq_cst);    r1 = x.load(acquire);    r3 = y.load(acquire);

r2 = y.load(seq_cst);    r4 = x .load(seq_cst);

Outcome: r1 = 1, r2 = 0, r3 = 1, r4 = 0

• Variant of IRIW (Independent-Reads-
Independent-Writes) litmus test

• IRIW corresponds to two cores observing 
stores to different addresses in different 
orders

• At least one of first loads on T2 and T3 is an 
acquire; all other accesses are SC
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IRIW Counterexample Compilation
T0                                     T1                                              T2                                   T3

x.store(1, seq_cst);   y.store(1, seq_cst);    r1 = x.load(acquire);    r3 = y.load(acquire);

r2 = y.load(seq_cst);    r4 = x .load(seq_cst);

Outcome: r1 = 1, r2 = 0, r3 = 1, r4 = 0

With trailing sync mapping, effectively compiles down to

C0 C1 C2 C3

St x = 1 St y = 1 r1 = Ld x r3 = Ld y
ctrlisync/ctrlisb ctrlisync/ctrlisb

r2 = Ld y r4 = Ld x

Allowed by Power model and hardware [Alglave et al. TOPLAS 2014]

Allowed by ARMv7 model [Alglave et al. TOPLAS 2014]
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IRIW Counterexample Compilation
T0                                     T1                                              T2                                   T3

x.store(1, seq_cst);   y.store(1, seq_cst);    r1 = x.load(acquire);    r3 = y.load(acquire);

r2 = y.load(seq_cst);    r4 = x .load(seq_cst);

Outcome: r1 = 1, r2 = 0, r3 = 1, r4 = 0

With trailing sync mapping, effectively compiles down to

C0 C1 C2 C3

St x = 1 St y = 1 r1 = Ld x r3 = Ld y
ctrlisync/ctrlisb ctrlisync/ctrlisb

r2 = Ld y r4 = Ld x

Allowed by Power model and hardware [Alglave et al. TOPLAS 2014]

Allowed by ARMv7 model [Alglave et al. TOPLAS 2014]

ctrlisync/ctrlisb are not strong 
enough to forbid outcome
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IRIW Trailing-Sync Counterexample
T0                                     T1                                              T2                                   T3

x.store(1, seq_cst);   y.store(1, seq_cst);    r1 = x.load(acquire);    r3 = y.load(acquire);

r2 = y.load(seq_cst);    r4 = x .load(seq_cst);

Outcome: r1 = 1, r2 = 0, r3 = 1, r4 = 0

Happens-before edges from c → f and from d → h by transitivity
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IRIW Trailing-Sync Counterexample
T0                                     T1                                              T2                                   T3

x.store(1, seq_cst);   y.store(1, seq_cst);    r1 = x.load(acquire);    r3 = y.load(acquire);

r2 = y.load(seq_cst);    r4 = x .load(seq_cst);

Outcome: r1 = 1, r2 = 0, r3 = 1, r4 = 0

Happens-before edges from c → f and from d → h by transitivity
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IRIW Trailing-Sync Counterexample
T0                                     T1                                              T2                                   T3

x.store(1, seq_cst);   y.store(1, seq_cst);    r1 = x.load(acquire);    r3 = y.load(acquire);

r2 = y.load(seq_cst);    r4 = x .load(seq_cst);

Outcome: r1 = 1, r2 = 0, r3 = 1, r4 = 0

Happens-before edges from c → f and from d → h by transitivity
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IRIW Trailing-Sync Counterexample
• SC order must contain edges from c → f and 

from d → h to match direction of hb edges

• Shown below as sc_hb edges

c: Wsc x = 1 d: Wsc y = 1

f: Rsc y = 0 h: Rsc x = 0
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IRIW Trailing-Sync Counterexample
• SC reads f and h must read from non-SC 

writes b and a before they are overwritten

• The SC order must contain f→d and h→c to 
satisfy this condition c: Wsc x = 1 d: Wsc y = 1

f: Rsc y = 0 h: Rsc x = 0
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IRIW Trailing-Sync Counterexample
• SC reads f and h must read from non-SC 

writes b and a before they are overwritten

• The SC order must contain f→d and h→c to 
satisfy this condition c: Wsc x = 1 d: Wsc y = 1

f: Rsc y = 0 h: Rsc x = 0

• Cycle in the SC order
• Outcome is forbidden as there is no 

corresponding consistent execution
• But compiled code allows the behaviour!
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What went wrong?
• SC axioms required SC order to contain edges from c → f

and from d → h to match direction of hb edges

• This requires a sync/dmb ish between e and f as well 
as between g and h on Power and ARMv7

• These fences are NOT provided by trailing-sync mapping
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What went wrong?
• SC axioms required SC order to contain edges from c → f

and from d → h to match direction of hb edges

• This requires a sync/dmb ish between e and f as well 
as between g and h on Power and ARMv7

• These fences are NOT provided by trailing-sync mapping
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What went wrong?
• SC axioms required SC order to contain edges from c → f

and from d → h to match direction of hb edges

• This requires a sync/dmb ish between e and f as well 
as between g and h on Power and ARMv7

• These fences are NOT provided by trailing-sync mapping
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Outline

• Introduction

• Background on C11 model and mappings

• IRIW Counterexample and Analysis

• Loophole in Proof of Batty et al.

• IBM XL C++ Bugs

• Conclusion
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Loophole in Batty et al. proof [POPL 2012]

• Lemma in proof states that SC order for a given 
Power trace is an arbitrary linearization of 

𝑝𝑜𝑡
𝑠𝑐 ∪ 𝑐𝑜𝑡

𝑠𝑐 ∪ 𝑓𝑟𝑡
𝑠𝑐 ∪ 𝑒𝑟𝑓𝑡

𝑠𝑐 ∗

• This is the transitive closure of program order 
and coherence edges directly between SC 
accesses

• Proof clause checking C11 axiom that 𝑠𝑐 and 
ℎ𝑏 edges match direction states that having SC 
order be arbitrary linearization of above 
relation is sufficient
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Loophole in Batty et al. proof [POPL 2012]

• This claim is false in certain scenarios

• ℎ𝑏 edges can arise between SC accesses 
through the transitive composition of edges to 
and from a non-SC intermediate access

• Occurs in IRIW counterexample:
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Loophole in Batty et al. proof [POPL 2012]

• This claim is false in certain scenarios

• ℎ𝑏 edges can arise between SC accesses 
through the transitive composition of edges to 
and from a non-SC intermediate access

• Occurs in IRIW counterexample:
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Loophole in Batty et al. proof [POPL 2012]

• SC order must be in same direction as these 
ℎ𝑏 edges, but an arbitrary linearization of 
𝑝𝑜𝑡

𝑠𝑐 ∪ 𝑐𝑜𝑡
𝑠𝑐 ∪ 𝑓𝑟𝑡

𝑠𝑐 ∪ 𝑒𝑟𝑓𝑡
𝑠𝑐 ∗ may not 

satisfy this condition

• Result: Proof does not guarantee that 𝑠𝑐 and 
ℎ𝑏 edges match direction between two 
accesses, and is incorrect

– confirmed by Batty et al.



36

Current Compiler and Architecture State

• Neither GCC nor Clang implement exact 
flawed trailing-sync mapping
– Use leading-sync mapping for Power

– Use trailing-sync for ARMv7, but with stronger 
acquire mapping (ld; dmb ish or stronger)

– Sufficient to disallow both our counterexamples

• Both counterexample behaviours observed on 
Power hardware [Alglave et al. TOPLAS 2014]

• ARMv7 model [Alglave et al. TOPLAS 2014] 
allows counterexample behaviours, but not 
observed on ARMv7 hardware
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Outline
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What about optimizations?

C11 Atomic 
Mapping

Compiler
• Even if mapping is correct, optimizations cannot 

introduce new outcomes
• Recent work on src-to-src opts and LLVM IR verification

– [Vafeiadis et al. POPL 2015]
– [Chakraborty and Vafeiadis CGO 2016]

• What about commercial compilers?

C11 Litmus Test

Assembly 
Language 
Program

Optimizations



39

XL C++ Bugs Overview

• Visited IBM Yorktown Heights to check if XL 
C++ (v13.1.4) was vulnerable to trailing-sync 
counterexample

• XL C++ mapping close to leading-sync

• Often correct at lower optimization levels, but 
increasing optimizations to –O3 and –O4 
generated incorrect code for multiple tests

• Bugs have since been fixed by compiler team

– Caused by issues in code generator

– Fixes in v13.1.5
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Bug #1: Loss of SC Store Release Semantics
“Message-passing” litmus test (mp), relaxed store of x, all other accesses SC

T0                                     T1                          

x.store(1, relaxed);   r1 = y.load(seq_cst); 

y.store(1, seq_cst);   r2 = x.load(seq_cst); 

Outcome: r1 = 1, r2 = 0 (Forbidden by C++)

C0 C1
St x = 1 ctrlisync
ctrlisync r1 = Ld y
St y = 1 sync
sync                                ctrlisync

r2 = Ld x
sync

C0 C1
St x = 1 sync
sync r1 = Ld y
St y = 1 ctrlisync (twice)

sync
r2 = Ld x
ctrlisync (twice)

XL C++ with –O3 compiles to: XL C++ with –O4 compiles to:

Forbidden Allowed

Used litmus utility to exercise outcome of incorrect code
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Bug #1: Loss of SC Store Release Semantics
“Message-passing” litmus test (mp), relaxed store of x, all other accesses SC

T0                                     T1                          

x.store(1, relaxed);   r1 = y.load(seq_cst); 

y.store(1, seq_cst);   r2 = x.load(seq_cst); 

Outcome: r1 = 1, r2 = 0 (Forbidden by C++)

Bug: Ctrlisync is not 
strong enough to 
ensure stores are 
observed in order

C0 C1
St x = 1 ctrlisync
ctrlisync r1 = Ld y
St y = 1 sync
sync                                ctrlisync

r2 = Ld x
sync

C0 C1
St x = 1 sync
sync r1 = Ld y
St y = 1 ctrlisync (twice)

sync
r2 = Ld x
ctrlisync (twice)

XL C++ with –O3 compiles to: XL C++ with –O4 compiles to:

Forbidden Allowed

Used litmus utility to exercise outcome of incorrect code



42

Bug #2: Incorrect Impl. of Releases
“Message-passing” litmus test (mp), with release-acquire atomics, relaxed store of x

T0                                     T1                          

x.store(1, relaxed);   r1 = y.load(acquire); 

y.store(1, release);   r2 = x.load(acquire); 

Outcome: r1 = 1, r2 = 0 (Forbidden by C++)

C0 C1
St x = 1 ctrlisync
St y = 1   r1 = Ld y

ctrlisync
r2 = Ld x

XL C++ with –O3 compiles to:

Allowed

Used litmus utility to exercise outcome of incorrect code
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Bug #2: Incorrect Impl. of Releases
“Message-passing” litmus test (mp), with release-acquire atomics, relaxed store of x

T0                                     T1                          

x.store(1, relaxed);   r1 = y.load(acquire); 

y.store(1, release);   r2 = x.load(acquire); 

Outcome: r1 = 1, r2 = 0 (Forbidden by C++)

C0 C1
St x = 1 ctrlisync
St y = 1   r1 = Ld y

ctrlisync
r2 = Ld x

XL C++ with –O3 compiles to:

Allowed

Bug: No ordering 
enforcement 

between stores

Used litmus utility to exercise outcome of incorrect code
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Bug #3: Reordering SC Loads and syncs
IRIW litmus test with two acquire loads, all other accesses SC

T0                                     T1                                              T2                                   T3

x.store(1, seq_cst);   y.store(1, seq_cst);    r1 = x.load(acquire);    r3 = y.load(acquire);

r2 = y.load(seq_cst);    r4 = x .load(seq_cst);

Outcome: r1 = 1, r2 = 0, r3 = 1, r4 = 0 (Forbidden by C++)

C0 C1 C2 C3
ctrlisync ctrlisync ctrlisync ctrlisync
St x = 1 St y = 1     r1 = Ld x       r3 = Ld y

ctrlisync ctrlisync
r2 = Ld y r4 = Ld x
sync              sync

C0 C1 C2 C3
St x = 1 St y = 1 ctrlisync ctrlisync

r1 = Ld x r3 = Ld y
sync sync
r2 = Ld y r4 = Ld x
ctrlisync ctrlisync

XL C++ with –O3 compiles to: XL C++ with –O4 compiles to:

Forbidden Allowed
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Bug #3: Reordering SC Loads and syncs
IRIW litmus test with two acquire loads, all other accesses SC

T0                                     T1                                              T2                                   T3

x.store(1, seq_cst);   y.store(1, seq_cst);    r1 = x.load(acquire);    r3 = y.load(acquire);

r2 = y.load(seq_cst);    r4 = x .load(seq_cst);

Outcome: r1 = 1, r2 = 0, r3 = 1, r4 = 0 (Forbidden by C++)

C0 C1 C2 C3
ctrlisync ctrlisync ctrlisync ctrlisync
St x = 1 St y = 1     r1 = Ld x       r3 = Ld y

ctrlisync ctrlisync
r2 = Ld y r4 = Ld x
sync              sync

C0 C1 C2 C3
St x = 1 St y = 1 ctrlisync ctrlisync

r1 = Ld x r3 = Ld y
sync sync
r2 = Ld y r4 = Ld x
ctrlisync ctrlisync

XL C++ with –O3 compiles to: XL C++ with –O4 compiles to:

Forbidden Allowed

Bug: Ctrlisync is not enough to 
enforce required orderings
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Future Work

• XL C++ bugs show that it is particularly hard to 
maintain C11 orderings across optimizations

• Need a top-to-bottom verification flow from 
HLL to assembly code, incorporating compiler 
optimizations

– Avenue for future work
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Conclusions

• TriCheck provides rapid exploration of 
different compiler mappings for architectures 
across C11 litmus test variants

• Using TriCheck, discovered two trailing-sync 
counterexamples for Power and ARMv7

– Also discovered loophole in proof of mappings

– Either C11 model or mappings must change to 
enable correct compilation

• Experiments with IBM XL C++ revealed bugs 
(since fixed) in their C11 implementation
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