C11 Compiler Mappings: Exploration,
Verification, and Counterexamples

Yatin Manerkar
Princeton University
manerkar@princeton.edu
http://check.cs.princeton.edu

November 224 2016

http://check.cs.princeton.edu/

Compilers Must Uphold HLL Guarantees

High-Level Assembly
Language (HLL) ‘ Compiler ‘ Language
Program Program

 Compiler translates HLL statements into
assembly instructions

* Code generated by compiler must provide
functionality required by HLL program

Compilers Must Uphold HLL Guarantees

C11 Program

x.store(1);

rl =vy.load();

Compiler

‘ X86 C11 Atomic

Mapping

—

X86 Assembly
Language Program

mov [eax], 1

MFENCE

mov ebx, [ebx]

e C/C++11 standards introduced atomic
operations

— Portable, high-performance concurrent code

 Compiler uses mapping to translate from
atomic ops to assembly instructions

.
E ¥

Compilers Must Uphold HLL Guarantees

C11 Program Language Program

x.store(1); ‘ X86 C11 Atomic ‘ mov [eax], 1

r1 = y.load(); Mapping MFENCE

mov ebx, [ebx]

Compiler X86 Assembly

If mapping is correct, then for all programs:

v -
C11 Outcome
Forbidden

Forbidden

Exploring Mappings with TriCheck

C11 Atomic
C11 Litmus | | [P M e AR

Test Variants L litmus tests LI
\n—/- \/E’-
- How do HLL outcomes compare -
\ 4 \ 4
to ISA-level outcomes?
Herd uCheck
4

?
1
1

ISA-Level Outcomes

C11 Outcomes

|
C11 Litmus)

Test Variants |~

\:/_

H If a mapping is correct, then H
Herd for all programs: \Check

\

C11 OQutcome
Forbidden

C11 Atomic
Mapping

Exploring Mappings with TriCheck

‘ ISA-level

litmus tests | I~

T

v

o)

ISA-Level Outcome
Forbidden

Counterexamples Detected!

. C11- Power/
C11Litmus — Power/ARMv7 — ARMv7-like
Test Variants [~ Trailing-Sync litmus tests_ |-
\:—/ Atomic Mapping E
v v
Herd uCheck
v v
C11 Outcome ISA-Level Outcome
Forbidden Allowed

Counterexamples Detected!

 Counterexample implies mapping is flawed

* But mapping previously proven correct
[Batty et al. POPL 2012]

* Must be an error in the proof!

Outline

Background on C11 model and mappings
RIW Counterexample and Analysis
L.oophole in Proof of Batty et al.

BM XL C++ Bugs

Conclusions and Future Work

C11 Memory Model

 C11 memory model specifies a C11 program’s
allowed and forbidden outcomes

e Axiomatic model defined in terms of program
executions

— Executions that satisfy C11 axioms are consistent
— Executions that do not satisfy axioms are forbidden
— Outcome only allowed if consistent execution exists

e C11 axioms defined in terms of various relations
on an execution

]

%

Cl1 atomic operations

* Used to write portable, high-performance
concurrent code

* Atomic ops can have different memory orders
— seq cst,acquilre, release, relaxed..

— Stronger guarantees: easier correctness, lower
performance

— Weaker guarantees: harder correctness, higher
performance

 Example (v is an atomic variable):
y.store(l, memory order release);
int b = y.load(memory order acquire);

AL
Mo

%

Relevant C11 Memory Model Relations
* Happens-before (hb) = (sb U sw)?

— Transitive closure of statement order and
synchronization order

hb SC

— sc edges must not be in opposite direction to hb
edges (sc must be “consistent with” hb)

* Total order on SC operations (sc)

— Must be acyclic

— SC read operations cannot read from overwritten
writes

Power and ARMv7 Compiler Mappings

* Trailing-sync mapping:
— [Boehm 2011][Batty et al. POPL 2012]

C/C++ Atomic Power Mapping ARMv7 Mapping
Load Acquire 1d; cmp; bc; isync 1ldr; teq; beq; isb
Load Seq Cst 1d; sync 1dr; dmb ish
Store Release st str
Store Seq Cst sync ; dmb ish

!

Power Iwsync and ARMv7 dmb prior to releases ensure that prior
accesses are made visible before the release

Power and ARMv7 Compiler Mappings

* Trailing-sync mapping:
— [Boehm 2011][Batty et al. POPL 2012]

ARMv7 Mapping
ldr;Teq; beq; isb
S, dmb ish
dmb ish;
sync dmb ish;

! /

Power ctrlisync/sync and ARMv7 ctrlisb/dmb after acquires enforce
that subsequent accesses are made visible after the acquire

C/C++ Atomic Power Mapping
Load Acquire 14;
Load Seq Cst
Store Release lwsync;
Store Seq Cst lwusync; st

Use of sync/dmb for SC loads helps enforce the required C11 total
order on SC operations

.
E ¥

Power and ARMv7 Compiler Mappings

* Trailing-sync mapping:
— [Boehm 2011][Batty et al. POPL 2012]

C/C++ Atomic Power Mapping ARMv7 Mapping
Load Acquire 1d; cmp; bc; isync 1ldr; teq; beq; isb
Load Seq Cst 1d; sync ldr; dmb ish
Store Release lwsync; st dmb ish; str

Store Seq Cst lwsync; st? dmb ish; str;

Power sync and ARMv7 dmb after SC stores (“trailing-sync”)
prevent reordering with subsequent SC loads

Ostensibly, this ordering can also be enforced by putting fences
before SC loads...

AL
Mo

%

Power and ARMv7 Compiler Mappings

* Leading-sync mapping:

— [McKenney and Silvera 2011]
C/C++ Atomic Power Mapping ARMv7 Mapping
Load Acquire 1d; cmp; bc; isync 1dr; teq; beq; isb
Load Seq Cst 1d; cmp; bc; isync ldr; teq; beq; isb
Store Release lwsync; st dmb ish; str
Store Seq Cst sync; st 4 dmb ish; str

I

Leading-sync mapping places these fences *before* SC loads

Only translations of SC atomics change between the two mappings

.
E ¥

Both Mappings are Currently Invalid

* Both supposedly proven correct [Batty et al.
POPL 2012]

 We discovered two counterexamples to
trailing-sync mappings on Power and ARMv7

— Isolated the proof loophole that allowed flaw
* Vafeiadis et al. found counterexamples for

leading-sync mapping, and have proposed
solution

Outline

RIW Counterexample and Analysis
L.oophole in Proof of Batty et al.
BM XL C++ Bugs

Conclusions and Future Work

IRIW Trailing-Sync Counterexample

TO T1 T2 T3
x.store(1, seq_cst); vy.store(1, seq_cst); rl=x.load(acquire); r3 =y.load(acquire);

r2 =y.load(seq_cst); rd =x.load(seq_cst);
Outcome:r1=1,r2=0,r3=1,r4=0

e Variant of IRIW (Independent-Reads-
Independent-Writes) litmus test

* |RIW corresponds to two cores observing
stores to different addresses in different
orders

e At least one of first loads on T2 and T3 is an
acquire; all other accesses are SC
CE)

%

IRIW Counterexample Compilation

TO T1 T2 T3

x.store(1, seq_cst); vy.store(1, seq_cst); rl=x.load(acquire); r3 =y.load(acquire);
r2 =y.load(seq_cst); rd =x.load(seq_cst);

Outcome:r1=1,r2=0,r3=1,r4=0

With trailing sync mapping, effectively compiles down to

CO C1 C2 C3

Stx=1 Sty=1 rl=1Ldx r3=Ldy
ctrlisync/ctrlisb ctrlisync/ctrlisb
r2=Ldy r4d = Ld x

Allowed by Power model and hardware [Alglave et al. TOPLAS 2014]
Allowed by ARMv7 model [Alglave et al. TOPLAS 2014]

AL
Mo

IRIW Counterexample Compilation

TO T1 T2 T3

x.store(1, seq_cst); vy.store(1, seq_cst); rl=x.load(acquire); r3 =y.load(acquire);
r2 =y.load(seq_cst); rd =x.load(seq_cst);

Outcome:r1=1,r2=0,r3=1,r4=0

With trailing sync mapping, effectively compiles down to

CcO C1 C2 C3
Stx=1 Sty=1 rl=1Ldx r3=Ldy

<<trlisync/ctrlisb ctrlisync/ctrlisb>
r2=Ldy ,l, r4d = Ld x
[ctrlisync/ctrlisb are not strong}

enough to forbid outcome
Allowed by Power model and hardware [Alglave et al. TOPLAS 2014]

Allowed by ARMv7 model [Alglave et al. TOPLAS 2014]

.
E ¥

IRIW Trailing-Sync Counterexample

TO T1 T2 T3
x.store(1, seq_cst); vy.store(1, seq_cst); rl=x.load(acquire); r3 =y.load(acquire);

r2 =y.load(seq_cst); rd =x.load(seq_cst);
Outcome:r1=1,r2=0,r3=1,r4=0

Happens-before edges from ¢ - £ and from d = h by transitivity
a:Wna x=0

S
b:Wna y=0

\\\.M\.

c:Wsc x=1 d:Wsc y=1 e:Racq x=1 g:Racq y=1
— __

—_— |

SwW S

f:Rsc y=0 h:Rsc x=0

IRIW Trailing-Sync Counterexample

TO T1 T2 T3
x.store(1, seq_cst); vy.store(1, seq_cst); rl=x.load(acquire); r3 =y.load(acquire);

r2 =y.load(seq_cst); rd =x.load(seq_cst);
Outcome:r1=1,r2=0,r3=1,r4=0

Happens-before edges from ¢ - £ and from d = h by transitivity
a:Wna x=0

S

b:Wna y=0

IRIW Trailing-Sync Counterexample

TO T1 T2 T3
x.store(1, seq_cst); vy.store(1, seq_cst); rl=x.load(acquire); r3 =y.load(acquire);

r2 =y.load(seq_cst); rd =x.load(seq_cst);
Outcome:r1=1,r2=0,r3=1,r4=0

Happens-before edges from ¢ - £ and from d = h by transitivity

a:Wna x=0

c:Wsc x=1

IRIW Trailing-Sync Counterexample

e SC order must contain edges from ¢ - £ and
from d - h to match direction of hb edges

* Shown below as sc hb edges

d: Wscy = 1

a:Wna x=0

oW y-0 f:Rscy =0

\kﬂ”\‘

c:Wsc x=1 d:Wsc y=1 e:Racq x=1 g:Racq y=1
§—<L ___.——-"’_'

IRIW Trailing-Sync Counterexample

e SCreads £ and h must read from non-SC
writes b and a before they are overwritten

e The SC order must contain f=>d and h—>c to
satisfy this condition

a:Wna x=0

S

h: Rscx=0

b:Wna y=0

\kﬂ”\‘

c:Wsc x=1 d:Wsc y=1 e:Racq x=1 g:Racq y=1

sc fr

f:Rsc y=0 h:Rsc x=0

IRIW Trailing-Sync Counterexample

Cycle in the SC order

Outcome is forbidden as there is no
corresponding consistent execution

But compiled code allows the behaviour!

What went wrong?
e SCaxioms required SC order to contain edges fromc - £
and from d - h to match direction of hb edges

* Thisrequiresa sync/dmb ish between e and £ as well
as between g and h on Power and ARMv7

* These fences are NOT provided by trailing-sync mapping

a:Wna x=0
S
b:Wna y=0
\Eiw\‘
c:Wsc x=1 d:Wsc y=1 e:Racq x=1 g:Racq y=1
——— — | _
SW SWkb S

f:Rsc y=0 h:Rsc x=0

What went wrong?

e SCaxioms required SC order to contain edges fromc - £
and from d - h to match direction of hb edges

* Thisrequiresa sync/dmb ish between e and £ as well
as between g and h on Power and ARMv7

* These fences are NOT provided by trailing-sync mapping

a:Wna x=0
S
b:Wna y=0
\ w
c:Wsc x=1 d:Wsc y=1 e:Racq x=1 g:Racq y=1
———— =] e —

e

f:Rsc y=0 h:Rsc x=0

What went wrong?

e SCaxioms required SC order to contain edges fromc - £
and from d - h to match direction of hb edges

* Thisrequiresa sync/dmb ish between e and £ as well
as between g and h on Power and ARMv7

* These fences are NOT provided by trailing-sync mapping

a:Wna x=0
S
b:Wna y=0
\ w
c:Wsc x=1 d:Wsc y=1 e:Racq x=1 g:Racq y=1
———— =] e —

DD

f:Rsc y=0 h:Rsc x=0

Outline

* Loophole in Proof of Batty et al.
* |BM XL C++ Bugs
* Conclusion

(]
%

Loophole in Batty et al. proof [POPL 2012]

* Lemma in proof states that SC order for a given
Power trace is an arbitrary linearization of
(po:© U cot“ U fri“ Uerfy)”
e This is the transitive closure of program order

and coherence edges directly between SC
accesses

* Proof clause checking C11 axiom that sc and
hb edges match direction states that having SC
order be arbitrary linearization of above
relation is sufficient

CE)

%

Loophole in Batty et al. proof [POPL 2012]

 This claim is false in certain scenarios

* hb edges can arise between SC accesses
through the transitive composition of edges to
and from a non-SC intermediate access

* Occurs in IRIW counterexample:

c:Wsc x=1 - d:Wsc y=1 e:Racq x=1
— __'
SW sb]
\

f:Rsc y=0

Loophole in Batty et al. proof [POPL 2012]

 This claim is false in certain scenarios

* hb edges can arise between SC accesses
through the transitive composition of edges to
and from a non-SC intermediate access

* Occurs in IRIW counterexample:

c:Wsc x=1 ~ d:Wsc y="1

L e

SW

f:Rsc y=0

Loophole in Batty et al. proof [POPL 2012]

e SC order must be in same direction as these
hb edges, but an arbitrary linearization of
(poz© U co;® U frg Uerf)* may not
satisfy this condition

* Result: Proof does not guarantee that sc and

hb edges match direction between two
accesses, and is incorrect

— confirmed by Batty et al.

Current Compiler and Architecture State

* Neither GCC nor Clang implement exact
flawed trailing-sync mapping
— Use leading-sync mapping for Power

— Use trailing-sync for ARMv7, but with stronger
acquire mapping (1d; dmb ish or stronger)

— Sufficient to disallow both our counterexamples

* Both counterexample behaviours observed on
Power hardware [Alglave et al. TOPLAS 2014]

« ARMv7 model [Alglave et al. TOPLAS 2014]
allows counterexample behaviours, but not
observed on ARMv7 hardware

]

%

Outline

* |BM XL C++ Bugs
e Conclusion

(]
%

What about optimizations?

C11 Litmus Test mmmmm) C;ﬂl Atomic
apping
| ‘ ‘ Assembly

Optimizations ‘ L:rr:)ggl::ie

Compiler

* Even if mapping is correct, optimizations cannot
introduce new outcomes

* Recent work on src-to-src opts and LLVM IR verification

— [Vafeiadis et al. POPL 2015]
— [Chakraborty and Vafeiadis CGO 2016]

 What about commercial compilers?

XL C++ Bugs Overview

* Visited IBM Yorktown Heights to check if XL
C++ (v13.1.4) was vulnerable to trailing-sync
counterexample

* XL C++ mapping close to leading-sync

e Often correct at lower optimization levels, but
increasing optimizations to —03 and -04
generated incorrect code for multiple tests

* Bugs have since been fixed by compiler team

— Caused by issues in code generator

— Fixesinv13.1.5
o]

%

Bug #1: Loss of SC Store Release Semantics

“Message-passing” litmus test (mp), relaxed store of x, all other accesses SC
TO T1

x.store(1, relaxed); rl =y.load(seq_cst);

y.store(1, seq_cst); r2 =x.load(seq_cst);

Outcome:rl =1, r2 = 0 (Forbidden by C++)

XL C++ with —03 compiles to: XL C++ with —04 compiles to:
co Cl co €l
Stx=1 sync Stx=1 ctrlisync
sync rl=Ldy ctrlisync rl=Ldy
Sty=1 ctrlisync (twice) Sty=1 sync
sync sync ctrlisync
r2 = Ld x r2 = Ld x
ctrlisync (twice) sync
Forbidden Allowed

Used litmus utility to exercise outcome of incorrect code

.
E ¥

Bug #1: Loss of SC Store Release Semantics

“Message-passing” litmus test (mp), relaxed store of x, all other accesses SC

TO T1
x.store(1, relaxed); rl =y.load(seq_cst);

y.store(1, seq_cst); r2 =x.load(seq_cst);
Outcome:rl =1, r2 = 0 (Forbidden by C++)

XL C++ with —03 compiles to:

co Cl

Stx=1 sync

sync rl=Ldy

Sty=1 ctrlisync (twice)
sync
r2 =Ldx
ctrlisync (twice)

Forbidden

/" Bug: Ctrlisync is not
strong enough to
ensure stores are

. observed in order

XL C++ with —04/eo?npiles to:

Cl1
ctrlisync
rl=Ldy
sync
ctrlisync
r2 =Ld x
sync

Allowed

Used litmus utility to exercise outcome of incorrect code

AL
Mo

%

Bug #2: Incorrect Impl. of Releases

“Message-passing” litmus test (mp), with release-acquire atomics, relaxed store of x
TO T1
x.store(1, relaxed); rl =y.load(acquire);

y.store(1, release); r2 =x.load(acquire);
Outcome: rl =1, r2 =0 (Forbidden by C++)

XL C++ with —O3 compiles to:

co €1
Stx=1 ctrlisync
Sty=1 rl=Ldy
ctrlisync
r2 = Ld x
Allowed

Used litmus utility to exercise outcome of incorrect code

AL
Mo

%

Bug #2: Incorrect Impl. of Releases

“Message-passing” litmus test (mp), with release-acquire atomics, relaxed store of x
TO T1

x.store(1, relaxed); rl =y.load(acquire);

y.store(1, release); r2 =x.load(acquire);
Outcome: rl =1, r2 =0 (Forbidden by C++)

XL C++ with —03 compiles to: ~ —
c1 Bug: No ordering
Ctrlisync > enforcement
rl=Ldy . between stores
ctrlisync
r2 =Ld x
Allowed

Used litmus utility to exercise outcome of incorrect code

AL
Mo

%

Bug #3: Reordering SC Loads and syncs

IRIW litmus test with two acquire loads, all other accesses SC
TO T1 T2
x.store(1, seq_cst); vy.store(1, seq_cst);

rl = x.load(acquire);
r2 = y.load(seq_cst);
Outcome:rl=1,r2=0,r3=1, r4 =0 (Forbidden by C++)

XL C++ with —03 compiles to:

r3 = y.load(acquire);
r4 = x .load(seq_cst);

XL C++ with —04 compiles to:

co Cc1 c2 3 co (o} c2 c3
Stx=1 Sty=1 ctrlisync ctrlisync ctrlisync ctrlisync ctrlisync ctrlisync
ril=Ldx r3=Ldy Stx=1 Sty=1 rl=Ldx r3=Ldy
sync sync ctrlisync ctrlisync
r2=Ldy rd4=Ldx r2=Ldy rd4=Ldx
ctrlisync ctrlisync sync sync
Forbidden Allowed

.
E ¥

Bug #3: Reordering SC Loads and syncs

IRIW litmus test with two acquire loads, all other accesses SC
TO T1 T2 T3

x.store(1, seq_cst); vy.store(1, seq_cst); rl=x.load(acquire); r3 =y.load(acquire);

r2 = y.load(seq_cst); r4 =x.load(seq_cst);
Outcome:rl=1,r2=0,r3=1, r4 =0 (Forbi e Ll :
Bug: Ctrlisync is not enough to }

enforce required orderings

XL C++ with —03 compiles to: XL C++ with —O'}\{ompiles to:
co Cc1 c2 3 co (o} c2 c3
Stx=1 Sty=1 ctrlisync ctrlisync ctrlisync ctrlisync ctrlisyng ctrlisync

ril=Ldx r3=Ldy Stx=1 Sty=1 rl=Ldx\ r3=Ldy

sync sync
r2=Ldy rd4=Ldx y
ctrlisync ctrlisync sync sync
Forbidden Allowed

.
E ¥

Future Work

e XL C++ bugs show that it is particularly hard to
maintain C11 orderings across optimizations

* Need a top-to-bottom verification flow from

HLL to assembly code, incorporating compiler
optimizations

— Avenue for future work

Conclusions

* TriCheck provides rapid exploration of

different compiler mappings for architectures
across C11 litmus test variants

e Using TriCheck, discovered two trailing-sync
counterexamples for Power and ARMv7
— Also discovered loophole in proof of mappings
— Either C11 model or mappings must change to
enable correct compilation
* Experiments with IBM XL C++ revealed bugs

(since fixed) in their C11 implementation
CE)

%

C11 Compiler Mappings: Exploration,
Verification, and Counterexamples

Yatin Manerkar

Princeton University

