
1

C11 Compiler Mappings: Exploration,
Verification, and Counterexamples

Yatin Manerkar
Princeton University

manerkar@princeton.edu
http://check.cs.princeton.edu

November 22nd, 2016

http://check.cs.princeton.edu/

2

Compilers Must Uphold HLL Guarantees

Compiler
High-Level

Language (HLL)
Program

Assembly
Language
Program

• Compiler translates HLL statements into
assembly instructions

• Code generated by compiler must provide
functionality required by HLL program

3

Compilers Must Uphold HLL Guarantees

x.store(1);

r1 = y.load();

mov [eax], 1

MFENCE

mov ebx, [ebx]

C11 Program
X86 Assembly

Language Program

X86 C11 Atomic
Mapping

Compiler

• C/C++11 standards introduced atomic
operations

– Portable, high-performance concurrent code

• Compiler uses mapping to translate from
atomic ops to assembly instructions

4

Compilers Must Uphold HLL Guarantees

x.store(1);

r1 = y.load();

C11 Program

X86 C11 Atomic
Mapping

Compiler

If mapping is correct, then for all programs:

C11 Outcome
Forbidden

ISA-Level Outcome
Forbidden

implies

mov [eax], 1

MFENCE

mov ebx, [ebx]

X86 Assembly
Language Program

5

Exploring Mappings with TriCheck

C11 Atomic
Mapping

How do HLL outcomes compare
to ISA-level outcomes?

C11 Outcomes ISA-Level Outcomes

C11 Litmus
Test Variants

Herd µCheck

ISA-level
litmus tests

?

6

Exploring Mappings with TriCheck

C11 Atomic
Mapping

If a mapping is correct, then
for all programs:

C11 Outcome
Forbidden

ISA-Level Outcome
Forbidden

C11 Litmus
Test Variants

Herd µCheck

ISA-level
litmus tests

implies

7

Counterexamples Detected!

C11 →
Power/ARMv7
Trailing-Sync

Atomic Mapping

C11 Outcome
Forbidden

ISA-Level Outcome
Allowed

C11 Litmus
Test Variants

Herd µCheck

Power/
ARMv7-like
litmus tests

but

8

Counterexamples Detected!

C11 →
Power/ARMv7
Trailing-Sync

Atomic Mapping

C11 Outcome
Forbidden

ISA-Level Outcome
Allowed

C11 Litmus
Test Variants

Herd µCheck

Power/
ARMv7-like
litmus tests

but

• Counterexample implies mapping is flawed
• But mapping previously proven correct

[Batty et al. POPL 2012]
• Must be an error in the proof!

9

Outline

• Introduction

• Background on C11 model and mappings

• IRIW Counterexample and Analysis

• Loophole in Proof of Batty et al.

• IBM XL C++ Bugs

• Conclusions and Future Work

10

C11 Memory Model

• C11 memory model specifies a C11 program’s
allowed and forbidden outcomes

• Axiomatic model defined in terms of program
executions

– Executions that satisfy C11 axioms are consistent

– Executions that do not satisfy axioms are forbidden

– Outcome only allowed if consistent execution exists

• C11 axioms defined in terms of various relations
on an execution

11

C11 atomic operations

• Used to write portable, high-performance
concurrent code

• Atomic ops can have different memory orders
– seq_cst, acquire, release, relaxed …

– Stronger guarantees: easier correctness, lower
performance

– Weaker guarantees: harder correctness, higher
performance

• Example (y is an atomic variable):
y.store(1, memory_order_release);

int b = y.load(memory_order_acquire);

12

Relevant C11 Memory Model Relations

• Happens-before (ℎ𝑏) = 𝑠𝑏 ∪ 𝑠𝑤 +

– Transitive closure of statement order and
synchronization order

• Total order on SC operations (𝑠𝑐)

– Must be acyclic

– 𝑠𝑐 edges must not be in opposite direction to ℎ𝑏
edges (𝑠𝑐 must be “consistent with” ℎ𝑏)

– SC read operations cannot read from overwritten
writes

Wsc x = 1

Rsc y = 0

hb sc

13

Power and ARMv7 Compiler Mappings

• Trailing-sync mapping:

– [Boehm 2011][Batty et al. POPL 2012]

Power lwsync and ARMv7 dmb prior to releases ensure that prior
accesses are made visible before the release

14

Power and ARMv7 Compiler Mappings

• Trailing-sync mapping:

– [Boehm 2011][Batty et al. POPL 2012]

Power ctrlisync/sync and ARMv7 ctrlisb/dmb after acquires enforce
that subsequent accesses are made visible after the acquire

Use of sync/dmb for SC loads helps enforce the required C11 total
order on SC operations

15

Power and ARMv7 Compiler Mappings

• Trailing-sync mapping:

– [Boehm 2011][Batty et al. POPL 2012]

Ostensibly, this ordering can also be enforced by putting fences
before SC loads…

Power sync and ARMv7 dmb after SC stores (“trailing-sync”)
prevent reordering with subsequent SC loads

16

Power and ARMv7 Compiler Mappings

• Leading-sync mapping:

– [McKenney and Silvera 2011]

Leading-sync mapping places these fences *before* SC loads

Only translations of SC atomics change between the two mappings

17

Both Mappings are Currently Invalid

• Both supposedly proven correct [Batty et al.
POPL 2012]

• We discovered two counterexamples to
trailing-sync mappings on Power and ARMv7

– Isolated the proof loophole that allowed flaw

• Vafeiadis et al. found counterexamples for
leading-sync mapping, and have proposed
solution

18

Outline

• Introduction

• Background on C11 model and mappings

• IRIW Counterexample and Analysis

• Loophole in Proof of Batty et al.

• IBM XL C++ Bugs

• Conclusions and Future Work

19

IRIW Trailing-Sync Counterexample
T0 T1 T2 T3

x.store(1, seq_cst); y.store(1, seq_cst); r1 = x.load(acquire); r3 = y.load(acquire);

r2 = y.load(seq_cst); r4 = x .load(seq_cst);

Outcome: r1 = 1, r2 = 0, r3 = 1, r4 = 0

• Variant of IRIW (Independent-Reads-
Independent-Writes) litmus test

• IRIW corresponds to two cores observing
stores to different addresses in different
orders

• At least one of first loads on T2 and T3 is an
acquire; all other accesses are SC

20

IRIW Counterexample Compilation
T0 T1 T2 T3

x.store(1, seq_cst); y.store(1, seq_cst); r1 = x.load(acquire); r3 = y.load(acquire);

r2 = y.load(seq_cst); r4 = x .load(seq_cst);

Outcome: r1 = 1, r2 = 0, r3 = 1, r4 = 0

With trailing sync mapping, effectively compiles down to

C0 C1 C2 C3

St x = 1 St y = 1 r1 = Ld x r3 = Ld y
ctrlisync/ctrlisb ctrlisync/ctrlisb

r2 = Ld y r4 = Ld x

Allowed by Power model and hardware [Alglave et al. TOPLAS 2014]

Allowed by ARMv7 model [Alglave et al. TOPLAS 2014]

21

IRIW Counterexample Compilation
T0 T1 T2 T3

x.store(1, seq_cst); y.store(1, seq_cst); r1 = x.load(acquire); r3 = y.load(acquire);

r2 = y.load(seq_cst); r4 = x .load(seq_cst);

Outcome: r1 = 1, r2 = 0, r3 = 1, r4 = 0

With trailing sync mapping, effectively compiles down to

C0 C1 C2 C3

St x = 1 St y = 1 r1 = Ld x r3 = Ld y
ctrlisync/ctrlisb ctrlisync/ctrlisb

r2 = Ld y r4 = Ld x

Allowed by Power model and hardware [Alglave et al. TOPLAS 2014]

Allowed by ARMv7 model [Alglave et al. TOPLAS 2014]

ctrlisync/ctrlisb are not strong
enough to forbid outcome

22

IRIW Trailing-Sync Counterexample
T0 T1 T2 T3

x.store(1, seq_cst); y.store(1, seq_cst); r1 = x.load(acquire); r3 = y.load(acquire);

r2 = y.load(seq_cst); r4 = x .load(seq_cst);

Outcome: r1 = 1, r2 = 0, r3 = 1, r4 = 0

Happens-before edges from c → f and from d → h by transitivity

23

IRIW Trailing-Sync Counterexample
T0 T1 T2 T3

x.store(1, seq_cst); y.store(1, seq_cst); r1 = x.load(acquire); r3 = y.load(acquire);

r2 = y.load(seq_cst); r4 = x .load(seq_cst);

Outcome: r1 = 1, r2 = 0, r3 = 1, r4 = 0

Happens-before edges from c → f and from d → h by transitivity

24

IRIW Trailing-Sync Counterexample
T0 T1 T2 T3

x.store(1, seq_cst); y.store(1, seq_cst); r1 = x.load(acquire); r3 = y.load(acquire);

r2 = y.load(seq_cst); r4 = x .load(seq_cst);

Outcome: r1 = 1, r2 = 0, r3 = 1, r4 = 0

Happens-before edges from c → f and from d → h by transitivity

25

IRIW Trailing-Sync Counterexample
• SC order must contain edges from c → f and

from d → h to match direction of hb edges

• Shown below as sc_hb edges

c: Wsc x = 1 d: Wsc y = 1

f: Rsc y = 0 h: Rsc x = 0

26

IRIW Trailing-Sync Counterexample
• SC reads f and h must read from non-SC

writes b and a before they are overwritten

• The SC order must contain f→d and h→c to
satisfy this condition c: Wsc x = 1 d: Wsc y = 1

f: Rsc y = 0 h: Rsc x = 0

27

IRIW Trailing-Sync Counterexample
• SC reads f and h must read from non-SC

writes b and a before they are overwritten

• The SC order must contain f→d and h→c to
satisfy this condition c: Wsc x = 1 d: Wsc y = 1

f: Rsc y = 0 h: Rsc x = 0

• Cycle in the SC order
• Outcome is forbidden as there is no

corresponding consistent execution
• But compiled code allows the behaviour!

28

What went wrong?
• SC axioms required SC order to contain edges from c → f

and from d → h to match direction of hb edges

• This requires a sync/dmb ish between e and f as well
as between g and h on Power and ARMv7

• These fences are NOT provided by trailing-sync mapping

29

What went wrong?
• SC axioms required SC order to contain edges from c → f

and from d → h to match direction of hb edges

• This requires a sync/dmb ish between e and f as well
as between g and h on Power and ARMv7

• These fences are NOT provided by trailing-sync mapping

30

What went wrong?
• SC axioms required SC order to contain edges from c → f

and from d → h to match direction of hb edges

• This requires a sync/dmb ish between e and f as well
as between g and h on Power and ARMv7

• These fences are NOT provided by trailing-sync mapping

31

Outline

• Introduction

• Background on C11 model and mappings

• IRIW Counterexample and Analysis

• Loophole in Proof of Batty et al.

• IBM XL C++ Bugs

• Conclusion

32

Loophole in Batty et al. proof [POPL 2012]

• Lemma in proof states that SC order for a given
Power trace is an arbitrary linearization of

𝑝𝑜𝑡
𝑠𝑐 ∪ 𝑐𝑜𝑡

𝑠𝑐 ∪ 𝑓𝑟𝑡
𝑠𝑐 ∪ 𝑒𝑟𝑓𝑡

𝑠𝑐 ∗

• This is the transitive closure of program order
and coherence edges directly between SC
accesses

• Proof clause checking C11 axiom that 𝑠𝑐 and
ℎ𝑏 edges match direction states that having SC
order be arbitrary linearization of above
relation is sufficient

33

Loophole in Batty et al. proof [POPL 2012]

• This claim is false in certain scenarios

• ℎ𝑏 edges can arise between SC accesses
through the transitive composition of edges to
and from a non-SC intermediate access

• Occurs in IRIW counterexample:

34

Loophole in Batty et al. proof [POPL 2012]

• This claim is false in certain scenarios

• ℎ𝑏 edges can arise between SC accesses
through the transitive composition of edges to
and from a non-SC intermediate access

• Occurs in IRIW counterexample:

35

Loophole in Batty et al. proof [POPL 2012]

• SC order must be in same direction as these
ℎ𝑏 edges, but an arbitrary linearization of
𝑝𝑜𝑡

𝑠𝑐 ∪ 𝑐𝑜𝑡
𝑠𝑐 ∪ 𝑓𝑟𝑡

𝑠𝑐 ∪ 𝑒𝑟𝑓𝑡
𝑠𝑐 ∗ may not

satisfy this condition

• Result: Proof does not guarantee that 𝑠𝑐 and
ℎ𝑏 edges match direction between two
accesses, and is incorrect

– confirmed by Batty et al.

36

Current Compiler and Architecture State

• Neither GCC nor Clang implement exact
flawed trailing-sync mapping
– Use leading-sync mapping for Power

– Use trailing-sync for ARMv7, but with stronger
acquire mapping (ld; dmb ish or stronger)

– Sufficient to disallow both our counterexamples

• Both counterexample behaviours observed on
Power hardware [Alglave et al. TOPLAS 2014]

• ARMv7 model [Alglave et al. TOPLAS 2014]
allows counterexample behaviours, but not
observed on ARMv7 hardware

37

Outline

• Introduction

• Background on C11 model and mappings

• IRIW Counterexample and Analysis

• Loophole in Proof of Batty et al.

• IBM XL C++ Bugs

• Conclusion

38

What about optimizations?

C11 Atomic
Mapping

Compiler
• Even if mapping is correct, optimizations cannot

introduce new outcomes
• Recent work on src-to-src opts and LLVM IR verification

– [Vafeiadis et al. POPL 2015]
– [Chakraborty and Vafeiadis CGO 2016]

• What about commercial compilers?

C11 Litmus Test

Assembly
Language
Program

Optimizations

39

XL C++ Bugs Overview

• Visited IBM Yorktown Heights to check if XL
C++ (v13.1.4) was vulnerable to trailing-sync
counterexample

• XL C++ mapping close to leading-sync

• Often correct at lower optimization levels, but
increasing optimizations to –O3 and –O4
generated incorrect code for multiple tests

• Bugs have since been fixed by compiler team

– Caused by issues in code generator

– Fixes in v13.1.5

40

Bug #1: Loss of SC Store Release Semantics
“Message-passing” litmus test (mp), relaxed store of x, all other accesses SC

T0 T1

x.store(1, relaxed); r1 = y.load(seq_cst);

y.store(1, seq_cst); r2 = x.load(seq_cst);

Outcome: r1 = 1, r2 = 0 (Forbidden by C++)

C0 C1
St x = 1 ctrlisync
ctrlisync r1 = Ld y
St y = 1 sync
sync ctrlisync

r2 = Ld x
sync

C0 C1
St x = 1 sync
sync r1 = Ld y
St y = 1 ctrlisync (twice)

sync
r2 = Ld x
ctrlisync (twice)

XL C++ with –O3 compiles to: XL C++ with –O4 compiles to:

Forbidden Allowed

Used litmus utility to exercise outcome of incorrect code

41

Bug #1: Loss of SC Store Release Semantics
“Message-passing” litmus test (mp), relaxed store of x, all other accesses SC

T0 T1

x.store(1, relaxed); r1 = y.load(seq_cst);

y.store(1, seq_cst); r2 = x.load(seq_cst);

Outcome: r1 = 1, r2 = 0 (Forbidden by C++)

Bug: Ctrlisync is not
strong enough to
ensure stores are
observed in order

C0 C1
St x = 1 ctrlisync
ctrlisync r1 = Ld y
St y = 1 sync
sync ctrlisync

r2 = Ld x
sync

C0 C1
St x = 1 sync
sync r1 = Ld y
St y = 1 ctrlisync (twice)

sync
r2 = Ld x
ctrlisync (twice)

XL C++ with –O3 compiles to: XL C++ with –O4 compiles to:

Forbidden Allowed

Used litmus utility to exercise outcome of incorrect code

42

Bug #2: Incorrect Impl. of Releases
“Message-passing” litmus test (mp), with release-acquire atomics, relaxed store of x

T0 T1

x.store(1, relaxed); r1 = y.load(acquire);

y.store(1, release); r2 = x.load(acquire);

Outcome: r1 = 1, r2 = 0 (Forbidden by C++)

C0 C1
St x = 1 ctrlisync
St y = 1 r1 = Ld y

ctrlisync
r2 = Ld x

XL C++ with –O3 compiles to:

Allowed

Used litmus utility to exercise outcome of incorrect code

43

Bug #2: Incorrect Impl. of Releases
“Message-passing” litmus test (mp), with release-acquire atomics, relaxed store of x

T0 T1

x.store(1, relaxed); r1 = y.load(acquire);

y.store(1, release); r2 = x.load(acquire);

Outcome: r1 = 1, r2 = 0 (Forbidden by C++)

C0 C1
St x = 1 ctrlisync
St y = 1 r1 = Ld y

ctrlisync
r2 = Ld x

XL C++ with –O3 compiles to:

Allowed

Bug: No ordering
enforcement

between stores

Used litmus utility to exercise outcome of incorrect code

44

Bug #3: Reordering SC Loads and syncs
IRIW litmus test with two acquire loads, all other accesses SC

T0 T1 T2 T3

x.store(1, seq_cst); y.store(1, seq_cst); r1 = x.load(acquire); r3 = y.load(acquire);

r2 = y.load(seq_cst); r4 = x .load(seq_cst);

Outcome: r1 = 1, r2 = 0, r3 = 1, r4 = 0 (Forbidden by C++)

C0 C1 C2 C3
ctrlisync ctrlisync ctrlisync ctrlisync
St x = 1 St y = 1 r1 = Ld x r3 = Ld y

ctrlisync ctrlisync
r2 = Ld y r4 = Ld x
sync sync

C0 C1 C2 C3
St x = 1 St y = 1 ctrlisync ctrlisync

r1 = Ld x r3 = Ld y
sync sync
r2 = Ld y r4 = Ld x
ctrlisync ctrlisync

XL C++ with –O3 compiles to: XL C++ with –O4 compiles to:

Forbidden Allowed

45

Bug #3: Reordering SC Loads and syncs
IRIW litmus test with two acquire loads, all other accesses SC

T0 T1 T2 T3

x.store(1, seq_cst); y.store(1, seq_cst); r1 = x.load(acquire); r3 = y.load(acquire);

r2 = y.load(seq_cst); r4 = x .load(seq_cst);

Outcome: r1 = 1, r2 = 0, r3 = 1, r4 = 0 (Forbidden by C++)

C0 C1 C2 C3
ctrlisync ctrlisync ctrlisync ctrlisync
St x = 1 St y = 1 r1 = Ld x r3 = Ld y

ctrlisync ctrlisync
r2 = Ld y r4 = Ld x
sync sync

C0 C1 C2 C3
St x = 1 St y = 1 ctrlisync ctrlisync

r1 = Ld x r3 = Ld y
sync sync
r2 = Ld y r4 = Ld x
ctrlisync ctrlisync

XL C++ with –O3 compiles to: XL C++ with –O4 compiles to:

Forbidden Allowed

Bug: Ctrlisync is not enough to
enforce required orderings

46

Future Work

• XL C++ bugs show that it is particularly hard to
maintain C11 orderings across optimizations

• Need a top-to-bottom verification flow from
HLL to assembly code, incorporating compiler
optimizations

– Avenue for future work

47

Conclusions

• TriCheck provides rapid exploration of
different compiler mappings for architectures
across C11 litmus test variants

• Using TriCheck, discovered two trailing-sync
counterexamples for Power and ARMv7

– Also discovered loophole in proof of mappings

– Either C11 model or mappings must change to
enable correct compilation

• Experiments with IBM XL C++ revealed bugs
(since fixed) in their C11 implementation

48

C11 Compiler Mappings: Exploration,
Verification, and Counterexamples

Yatin Manerkar

Princeton University

Tools and papers available at
http://check.cs.princeton.edu

