
1

CCICheck: Using µhb Graphs to Verify
the Coherence-Consistency Interface

Yatin A. Manerkar, Daniel Lustig,

Michael Pellauer*, and Margaret Martonosi

Princeton University *NVIDIA

MICRO-48

2

Coherence and Consistency

At a high level:

ÅCoherence Protocols: Propagation of writes to
other cores

ÅConsistency Models: Ordering rules for
visibility of reads and writes

3

Coherence and Consistency

Arch. Level

Coherence Verifiers

Consistency Verifiers

4

Coherence and Consistency

Arch. Level

µarch. Level
Coherence and consistency often interwoven

Coherence Verifiers

Consistency Verifiers

5

Coherence and Consistency

Arch. Level

µarch. Level
Coherence and consistency often interwoven

Ignore consistency
even when

protocol affects
consistency!

Coherence Verifiers

Consistency Verifiers

Assume abstract
coherence instead
of protocol in use!

6

Coherence and Consistency

Arch. Level

µarch. Level
Coherence and consistency often interwoven

Ignore consistency
even when

protocol affects
consistency!

Coherence Verifiers

Consistency Verifiers

Assume abstract
coherence instead
of protocol in use!

 CCI

7

Motivating Example ς άtŜŜƪŀōƻƻέ

8

Motivating Example ς άtŜŜƪŀōƻƻέ

1. Invalidation before use

ï wŜǇŜŀǘŜŘ ƛƴǾ ōŜŦƻǊŜ ǳǎŜ Ҧ livelock [Kubiatowicz et al.

ASPLOS 1992]

9

Motivating Example ς άtŜŜƪŀōƻƻέ

1. Invalidation before use

ï wŜǇŜŀǘŜŘ ƛƴǾ ōŜŦƻǊŜ ǳǎŜ Ҧ livelock [Kubiatowicz et al.

ASPLOS 1992]

2. Livelock avoidance: allow destination core to
perform one operation on data when it
arrives, even if already invalidated [Sorin et al.

Primer]

ï Does not break coherence

ï Sometimes intentionally returns stale data

10

Motivating Example ς άtŜŜƪŀōƻƻέ

1. Invalidation before use

ï wŜǇŜŀǘŜŘ ƛƴǾ ōŜŦƻǊŜ ǳǎŜ Ҧ livelock [Kubiatowicz et al.

ASPLOS 1992]

2. Livelock avoidance: allow destination core to
perform one operation on data when it
arrives, even if already invalidated [Sorin et al.

Primer]

ï Does not break coherence

ï Sometimes intentionally returns stale data

3. Prefetching

11

Motivating Example ς άtŜŜƪŀōƻƻέ

1. Invalidation before use

ï wŜǇŜŀǘŜŘ ƛƴǾ ōŜŦƻǊŜ ǳǎŜ Ҧ livelock [Kubiatowicz et al.

ASPLOS 1992]

2. Livelock avoidance: allow destination core to
perform one operation on data when it
arrives, even if already invalidated [Sorin et al.

Primer]

ï Does not break coherence

ï Sometimes intentionally returns stale data

3. Prefetching

Individual Opt. Ҧ No violation
/ƻƳōƛƴŀǘƛƻƴ ƻŦ hǇǘǎΦ Ҧ Violation!

12

Motivating Example ς άtŜŜƪŀōƻƻέ

ÅConsider mp with the livelock-avoidance mechanism:

Core 0 Core 1

x: Shared
y: Modified

x: Invalid
y: Invalid

ώȄϐ ҥ м
[y] ҥ 1

Ǌм ҥ ώȅϐ
r2 ҥ [x]

13

Motivating Example ς άtŜŜƪŀōƻƻέ

ÅConsider mp with the livelock-avoidance mechanism:

Core 0 Core 1

x: Shared
y: Modified

x: Invalid
y: Invalid

ώȄϐ ҥ м
[y] ҥ 1

Ǌм ҥ ώȅϐ
r2 ҥ [x]

Prefetch x

14

Motivating Example ς άtŜŜƪŀōƻƻέ

ÅConsider mp with the livelock-avoidance mechanism:

Core 0 Core 1

x: Shared
y: Modified

x: Invalid
y: Invalid

ώȄϐ ҥ м
[y] ҥ 1

Ǌм ҥ ώȅϐ
r2 ҥ [x]

Prefetch x

Data (x = 0)

15

Motivating Example ς άtŜŜƪŀōƻƻέ

ÅConsider mp with the livelock-avoidance mechanism:

Core 0 Core 1

x: Shared
y: Modified

x: Invalid
y: Invalid

ώȄϐ ҥ м
[y] ҥ 1

Ǌм ҥ ώȅϐ
r2 ҥ [x]

Prefetch x

Data (x = 0)

Inv

16

Motivating Example ς άtŜŜƪŀōƻƻέ

ÅConsider mp with the livelock-avoidance mechanism:

Core 0 Core 1

x: Shared
y: Modified

x: Invalid
y: Invalid

ώȄϐ ҥ м
[y] ҥ 1

Ǌм ҥ ώȅϐ
r2 ҥ [x]

Prefetch x

Data (x = 0)

Inv

Inv-Ack

17

Motivating Example ς άtŜŜƪŀōƻƻέ

ÅConsider mp with the livelock-avoidance mechanism:

Core 0 Core 1

x: Invalid
y: Invalid

Ǌм ҥ ώȅϐ
r2 ҥ [x]

Prefetch x

Data (x = 0)

Inv

Inv-Ack

x: Modified
y: Modified

ώȄϐ ҥ м
[y] ҥ 1

18

Motivating Example ς άtŜŜƪŀōƻƻέ

ÅConsider mp with the livelock-avoidance mechanism:

Core 0 Core 1

x: Invalid
y: Invalid

Ǌм ҥ ώȅϐ
r2 ҥ [x]

Prefetch x

Data (x = 0)

Inv

Inv-Ack

x: Modified
y: Modified

ώȄϐ ҥ м
[y] ҥ 1

19

Motivating Example ς άtŜŜƪŀōƻƻέ

ÅConsider mp with the livelock-avoidance mechanism:

Core 0 Core 1

x: Invalid
y: Invalid

Ǌм ҥ ώȅϐ
r2 ҥ [x]

Prefetch x

Data (x = 0)

Inv

Inv-Ack

x: Modified
y: Modified

Request y
ώȄϐ ҥ м
[y] ҥ 1

20

Motivating Example ς άtŜŜƪŀōƻƻέ

ÅConsider mp with the livelock-avoidance mechanism:

Core 0 Core 1 Prefetch x

Data (x = 0)

Inv

Inv-Ack

Data (y = 1)

x: Modified
y: Shared

x: Invalid
y: Shared

Request y
ώȄϐ ҥ м
[y] ҥ 1

r1 = 1
r2 ҥ [x]

21

Motivating Example ς άtŜŜƪŀōƻƻέ

ÅConsider mp with the livelock-avoidance mechanism:

Core 0 Core 1 Prefetch x

Inv

Inv-Ack

Data (y = 1)

x: Modified
y: Shared

x: Invalid
y: Shared

Request y
ώȄϐ ҥ м
[y] ҥ 1

r1 = 1
r2 ҥ [x]

Data (x = 0)

22

Motivating Example ς άtŜŜƪŀōƻƻέ

ÅConsider mp with the livelock-avoidance mechanism:

Core 0 Core 1 Prefetch x

Inv

Inv-Ack

Data (y = 1)

x: Modified
y: Shared

x: Invalid
y: Shared

Request y
ώȄϐ ҥ м
[y] ҥ 1

r1 = 1
r2 = 0

Data (x = 0)

23

The Coherence-Consistency Interface (CCI)

ÅCCI = guarantees that coherence protocol
provides to rest of microarchitecture +
memory ordering guarantees that rest of
microarch. expects from coherence protocol

+

=

Expected Coherence SWMR, DVI, No Stale Data

Consistency

24

The Coherence-Consistency Interface (CCI)

ÅCCI = guarantees that coherence protocol
provides to rest of microarchitecture +
memory ordering guarantees that rest of
microarch. expects from coherence protocol

+

=

Expected Coherence SWMR, DVI, No Stale Data

Consistency

25

The Coherence-Consistency Interface (CCI)

ÅCCI = guarantees that coherence protocol
provides to rest of microarchitecture +
memory ordering guarantees that rest of
microarch. expects from coherence protocol

+

=

Expected Coherence SWMR, DVI, No Stale Data

Consistency

26

The Coherence-Consistency Interface (CCI)

ÅCCI = guarantees that coherence protocol
provides to rest of microarchitecture +
memory ordering guarantees that rest of
microarch. expects from coherence protocol

+

=

Expected Coherence SWMR, DVI, No Stale Data

Consistency

27

The Coherence-Consistency Interface (CCI)

ÅCCI = guarantees that coherence protocol
provides to rest of microarchitecture +
memory ordering guarantees that rest of
microarch. expects from coherence protocol

+

=

Expected Coherence SWMR, DVI, No Stale Data

Consistency

28

The Coherence-Consistency Interface (CCI)

ÅCCI = guarantees that coherence protocol
provides to rest of microarchitecture +
memory ordering guarantees that rest of
microarch. expects from coherence protocol

+

=

Expected Coherence

Consistency

SWMR, DVI, No Livelock

29

The Coherence-Consistency Interface (CCI)

ÅCCI = guarantees that coherence protocol
provides to rest of microarchitecture +
memory ordering guarantees that rest of
microarch. expects from coherence protocol

+

=

Expected Coherence

Consistency

SWMR, DVI, No Livelock

30

The Coherence-Consistency Interface (CCI)

ÅCCI = guarantees that coherence protocol
provides to rest of microarchitecture +
memory ordering guarantees that rest of
microarch. expects from coherence protocol

+

=

Expected Coherence SWMR, DVI, No Livelock

CCI Mismatch Consistency
Violation!

31

Our Work: CCICheck
Static CCI-aware consistency verification

Coherence Orderings (SWMR, DVI, etc.)

Microarch spec

Lds.

L2
WB

Mem.

SB

L1

Exec.

Dec.

Fetch

Litmus Test

WB

Mem.

SB

L1

Exec.

Dec.

Fetch

32

Our Work: CCICheck
Static CCI-aware consistency verification

Coherence Orderings (SWMR, DVI, etc.)

Microarch spec

Lds.

L2
WB

Mem.

SB

L1

Exec.

Dec.

Fetch

Litmus Test

Microarchitectural happens-
before (µhb) graph

WB

Mem.

SB

L1

Exec.

Dec.

Fetch

33

 [Lustig et al. MICRO-47]

ÅExhaustive
enumeration of
executions using
µhb graphs

ÅCyclic graph
ҦŦƻǊōƛŘŘŜƴ ōȅ
µarch

ÅAcyclic graph
ҦŀƭƭƻǿŜŘ ōȅ ҡŀǊŎƘ

Background: PipeCheck

Litmus Test mp

34

 [Lustig et al. MICRO-47]

ÅExhaustive
enumeration of
executions using
µhb graphs

ÅCyclic graph
ҦŦƻǊōƛŘŘŜƴ ōȅ
µarch

ÅAcyclic graph
ҦŀƭƭƻǿŜŘ ōȅ ҡŀǊŎƘ

Background: PipeCheck

Litmus Test mp

35

 [Lustig et al. MICRO-47]

ÅExhaustive
enumeration of
executions using
µhb graphs

ÅCyclic graph
ҦŦƻǊōƛŘŘŜƴ ōȅ
µarch

ÅAcyclic graph
ҦŀƭƭƻǿŜŘ ōȅ ҡŀǊŎƘ

Background: PipeCheck

Litmus Test mp

Prior techniques cannot model
CCI events!

36

Modelling CCI Events

ÅNeed to model per-cache occupancy

ïLazy coherence and partial incoherence (e.g. GPUs)

ÅNeed to model coherence transitions that relate
to consistency (e.g. Peekaboo)

37

Modelling CCI Events

ÅNeed to model per-cache occupancy

ïLazy coherence and partial incoherence (e.g. GPUs)

ÅNeed to model coherence transitions that relate
to consistency (e.g. Peekaboo)

38

ViCL: Value in Cache Lifetime

Å4-tuple:

(cache_id, address, data_value, generation_id)

Åcache_id and generation_id uniquely identify
each cache line

ÅA ViCL 4-tuple maps on to the period of time
over which the cache line serves the data value
for the address

ÅViCLs start at a ViCL Create event and end at a
ViCL Expire event

39

ViCL: Value in Cache Lifetime

Å4-tuple:

(cache_id, address, data_value, generation_id)

Åcache_id and generation_id uniquely identify
each cache line

ÅA ViCL 4-tuple maps on to the period of time
over which the cache line serves the data value
for the address

ÅViCLs start at a ViCL Create event and end at a
ViCL Expire event

40

ViCL: Value in Cache Lifetime

Å4-tuple:

(cache_id, address, data_value, generation_id)

Åcache_id and generation_id uniquely identify
each cache line

ÅA ViCL 4-tuple maps on to the period of time
over which the cache line serves the data value
for the address

ÅViCLs start at a ViCL Create event and end at a
ViCL Expire event

41

ViCL: Value in Cache Lifetime

Å4-tuple:

(cache_id, address, data_value, generation_id)

Åcache_id and generation_id uniquely identify
each cache line

ÅA ViCL 4-tuple maps on to the period of time
over which the cache line serves the data value
for the address

ÅViCLs start at a ViCL Create event and end at a
ViCL Expire event

42

Conventional co - mp timeline (M = Modified, S = Shared)

ViCL: Value in Cache Lifetime

Litmus Test co - mp

43

Conventional co - mp timeline (M = Modified, S = Shared)

ViCL: Value in Cache Lifetime

Litmus Test co - mp

44

Conventional co - mp timeline (M = Modified, S = Shared)

ViCL: Value in Cache Lifetime

Litmus Test co - mp

45

Conventional co - mp timeline (M = Modified, S = Shared)

ViCL: Value in Cache Lifetime

Litmus Test co - mp

46

Conventional co - mp timeline (M = Modified, S = Shared)

ViCL: Value in Cache Lifetime

Litmus Test co - mp

47

Conventional co - mp timeline (M = Modified, S = Shared)

ViCL: Value in Cache Lifetime

Litmus Test co - mp

48

ViCL: Value in Cache Lifetime

Now with ViCLs
Litmus Test co - mp

49

ViCL: Value in Cache Lifetime

Now with ViCLs
Litmus Test co - mp

50

ViCL: Value in Cache Lifetime

Now with ViCLs
Litmus Test co - mp

51

ViCL: Value in Cache Lifetime

Now with ViCLs
Litmus Test co - mp

52

ViCL: Value in Cache Lifetime

Can model requests, downgrades, etc.
Litmus Test co - mp

