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Coherence and Consistency 

At a high level: 

ÅCoherence Protocols: Propagation of writes to 
other cores 

ÅConsistency Models: Ordering rules for 
visibility of reads and writes 
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Individual Opt. Ҧ No violation 
/ƻƳōƛƴŀǘƛƻƴ ƻŦ hǇǘǎΦ Ҧ Violation! 
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Motivating Example ς άtŜŜƪŀōƻƻέ 

ÅConsider mp with the livelock-avoidance mechanism:  

Core 0 Core 1 

x: Shared 
y: Modified 

x: Invalid 
y: Invalid 

ώȄϐ ҥ м 
[y] ҥ 1 

Ǌм ҥ ώȅϐ 
r2 ҥ [x] 
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x: Invalid 
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Ǌм ҥ ώȅϐ 
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Motivating Example ς άtŜŜƪŀōƻƻέ 

ÅConsider mp with the livelock-avoidance mechanism:  

Core 0 Core 1 Prefetch x 

Data (x = 0) 
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Motivating Example ς άtŜŜƪŀōƻƻέ 

ÅConsider mp with the livelock-avoidance mechanism:  

Core 0 Core 1 Prefetch x 

Inv 

Inv-Ack 

Data (y = 1) 

x: Modified 
y: Shared 

x: Invalid 
y: Shared 

Request y 
ώȄϐ ҥ м 
[y] ҥ 1 

r1 = 1 
r2 = 0 

Data (x = 0) 
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The Coherence-Consistency Interface (CCI) 

ÅCCI = guarantees that coherence protocol 
provides to rest of microarchitecture + 
memory ordering guarantees that rest of 
microarch. expects from coherence protocol 

+ 

= 

Expected Coherence SWMR, DVI, No Stale Data 

Consistency 
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The Coherence-Consistency Interface (CCI) 

ÅCCI = guarantees that coherence protocol 
provides to rest of microarchitecture + 
memory ordering guarantees that rest of 
microarch. expects from coherence protocol 

+ 

= 

Expected Coherence SWMR, DVI, No Livelock 

CCI Mismatch Consistency 
Violation! 
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Our Work: CCICheck 
Static CCI-aware consistency verification 

 

Coherence Orderings (SWMR, DVI, etc.) 

Microarch spec 

Lds. 

L2 
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SB 

L1 
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Dec. 
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Microarchitectural happens-
before (µhb) graph 
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 [Lustig et al. MICRO-47] 

ÅExhaustive 
enumeration of 
executions using 
µhb graphs 

ÅCyclic graph 
ҦŦƻǊōƛŘŘŜƴ ōȅ 
µarch 

ÅAcyclic graph 
ҦŀƭƭƻǿŜŘ ōȅ ҡŀǊŎƘ 

Background: PipeCheck 

Litmus Test mp 
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µarch 

ÅAcyclic graph 
ҦŀƭƭƻǿŜŘ ōȅ ҡŀǊŎƘ 

Background: PipeCheck 

Litmus Test mp 

Prior techniques cannot model 
CCI events! 



36 

Modelling CCI Events 

ÅNeed to model per-cache occupancy 

ïLazy coherence and partial incoherence (e.g. GPUs) 

ÅNeed to model coherence transitions that relate 
to consistency (e.g. Peekaboo) 
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ViCL: Value in Cache Lifetime 

Å4-tuple: 

(cache_id, address, data_value, generation_id) 

Åcache_id and generation_id uniquely identify 
each cache line 

ÅA ViCL 4-tuple maps on to the period of time 
over which the cache line serves the data value 
for the address 

ÅViCLs start at a ViCL Create event and end at a 
ViCL Expire event 
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Conventional co - mp timeline (M = Modified, S = Shared) 

ViCL: Value in Cache Lifetime 
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Conventional co - mp timeline (M = Modified, S = Shared) 
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ViCL: Value in Cache Lifetime 

Can model requests, downgrades, etc. 
Litmus Test co - mp 


