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ABSTRACT

Formal verification can help ensure the correctness of today’s pro-
cessors. However, such formal verification requires formal specifi-
cations of the processors being verified. Today, these specifications
are mostly written by hand, which is tedious and error-prone. Fur-
thermore, architects and hardware engineers generally do not have
formal methods experience, making it even harder for them to
write formal specifications. Existing methods for the automated
synthesis of formal microarchitectural specifications utilise RTL
implementations of processors for their synthesis, preventing their
usage until RTL implementation of the processor has completed.
This hampers the effectiveness of formal verification for processors,
as catching design bugs pre-RTL can reduce verification overhead
and overall development time.

In response, we present PipeSynth, an automated formal method-
ology and tool for the synthesis of 𝜇spec microarchitectural order-
ing axioms from small example programs (litmus tests) and microar-
chitectural execution traces. PipeSynth helps architects automati-
cally generate formal specifications for their microarchitectures be-
fore RTL is even written, enabling greater use of formal verification
on today’s microarchitectures. We evaluate PipeSynth’s capability
to synthesise single axioms and multiple axioms at the same time
across four microarchitectures. Our evaluated microarchitectures
include an out-of-order processor and one with a non-traditional
coherence protocol. In single-axiom synthesis, PipeSynth is capa-
ble of synthesising replacement axioms for 42 out of 46 axioms
from our evaluated microarchitectures in under 2 hours per axiom.
When doing multi-axiom synthesis, we are able to synthesise an en-
tire microarchitectural specification for the in-order Multi-V-scale
processor in under 1 hour, and can synthesise at least 4 nontrivial
axioms at the same time for our other microarchitectures.

CCS CONCEPTS
• Computer systems organization→ Parallel architectures; •
Software and its engineering→ Formal methods; • Theory
of computation→ Parallel computing models.
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1 INTRODUCTION
Hardware architectures are becoming more and more complex. To-
day’s Systems-on-Chip (SoCs) typically contain not just multicore
processors, but also specialised accelerators for various types of
computational tasks. This complexity makes it difficult for archi-
tects and hardware engineers to build correct processors. A number
of high-profile bugs have been found in processors in recent years,
including security vulnerabilities [23, 25, 44] and concurrency-
related bugs [17]. Hardware verification is thus critical for ensuring
the correctness of today’s computer systems, with verification costs
now dominating total hardware design cost [12]. With the advent
of accelerator-level parallelism [18], this trend is set to continue.

Formal methods can provide strong correctness guarantees for
computing systems (including hardware architectures) based on
mathematical proofs. Given a formal specification of the system
to verify, automated formal verification approaches can prove that
the system satisfies a certain property (sometimes for a restricted
set of programs). If verification fails, the verification procedure
can often provide a counterexample (an execution that does not
satisfy the property). There has been an uptick in formal verification
research related to computer architecture in recent years, both in
academia [20, 34, 35, 51, 53, 54, 57, 60] and industry [28, 45].

A key challenge in the use of formal verification for architecture
and microarchitecture is that the vast majority of formal verifica-
tion approaches require formal specifications (i.e., formal models
of the system being verified) for their usage. Most of the time,
these formal specifications must be written by hand, which is both
tedious and error-prone for today’s complex microarchitectures.
In addition, most architects and hardware engineers do not have
formal methods expertise, making it hard for them to even write
formal specifications in the first place. A formal specification used
for verification must be sound with respect to the design it is mod-
elling, or this can lead to the verification succeeding even if the real
design is buggy.

The need for formal specification and verification is especially
pertinent for memory consistency models (MCMs) in parallel ar-
chitectures. MCMs specify the ordering rules governing memory

https://doi.org/10.1145/3582016.3582056
https://doi.org/10.1145/3582016.3582056


ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Chase Norman, Adwait Godbole, and Yatin A. Manerkar

and synchronization operations in parallel programs, and constrain
the values that can be returned by load instructions. MCMs are
notoriously difficult to specify, as the complexity of today’s microar-
chitectures leads to many corner cases that need to be accounted for
by such specifications. It is also very hard to verify MCM implemen-
tations, as the nondeterminism of today’s multicore architectures
requires formal verification to ensure that the MCM will always
be respected by the hardware. In response, there has been much
work on formal specification and verification for hardware MCMs,
especially over the past decade [1, 2, 6, 8, 10, 11, 14, 27–29, 31, 34–
36, 38, 43, 46, 48, 54, 56, 60].

To alleviate the difficulties of writing complicated code such
as formal MCM specifications, program synthesis techniques use
formal methods to automatically generate programs that match
a high-level formal correctness specification. A state-of-the-art
synthesis method is that of syntax-guided synthesis (SyGuS) [3]. In
SyGuS, a context-free grammar (like those used by parsers) specifies
the space of possible function implementations. A Satisfiability
Modulo Theories (SMT) solver then searches over the space of
possible implementations to find an implementation of the function
that satisfies the high-level correctness specification. The solver
can either return a correct implementation or state that no valid
implementation of the function exists under the given parameters.
There has been much work on program synthesis over the years [3,
21, 22, 40, 42, 49, 50, 52].

There has also been prior work on synthesising formal architec-
tural and microarchitectural specifications [6, 19, 51, 58, 59]. Mem-
Synth [6] can automatically synthesise formal ISA-level MCM spec-
ifications, but has no capability to generate formal microarchitec-
tural specifications. Meanwhile, RTL2𝜇spec [19] and the Instruction-
Level Abstraction (ILA) line of work [51, 58, 59] are capable of au-
tomatically generating microarchitecture-level specifications, but
they use an RTL implementation of the hardware design in order
to accomplish their synthesis. As a result, the formal specifications
they can create are generated quite late in the design timeline,
after the RTL implementation of the processor has been created.
If a formal microarchitectural model can only be generated post-
implementation, then engineers cannot formally verify that the
microarchitecture is a correct design (i.e., that it correctly respects
the ISA) until the implementation has been completed. Such an
implementation will likely have microarchitectural design bugs
that must be subsequently fixed, so the effort spent by engineers to
create the buggy parts of the implementation is effectively wasted.
On the other hand, if formal methods are used to catch microar-
chitectural design bugs during early-stage design, then engineers
will not waste time creating incorrect implementations. Such use of
formal methods requires a formal specification of the design, lead-
ing to a need for pre-RTL formal microarchitectural specification
synthesis.

In response, this paper proposes PipeSynth1, an automatedmethod-
ology and tool for the pre-RTL synthesis of formal microarchitec-
tural ordering specifications. Given a set of litmus tests2 (which
function as input-output examples), execution traces (which can
be generated by pre-RTL architectural simulators like gem5 [5]), a
1open-source and publicly available at github.com/chasenorman/PipeSynth-AEC.
2Litmus tests are 4-8 instruction programs designed to test specificmemory consistency
scenarios.

Core 0 Core 1
(i1) [x]← 1 (i3) r1← [y]
(i2) [y]← 1 (i4) r2← [x]

SC forbids r1=1, r2=0

(a)

Core 0 Core 1
(i1) [y]← 1 (i3) r1← [y]
(i2) [x]← 1 (i4) r2← [x]

SC allows r1=1, r2=0

(b)

Figure 1: (a) Code for the litmus test mp, which is forbidden
under SC. (b) Code for a variant of mp that switches the order
of the two stores on core 0 and is thus allowed by SC.

partial microarchitectural ordering specification, and a grammar
specifying the space of possible ordering rules, PipeSynth can use
SyGuS to automatically generate additional microarchitectural or-
dering axioms (invariants) that are needed to satisfy the litmus
tests and execution traces. PipeSynth uses and synthesises ordering
specifications in the 𝜇spec domain-specific language for microarchi-
tectural orderings [29]. PipeSynth allows architects and engineers
to specify allowed and forbidden MCM behaviours using formats
that are more familiar to them (namely, litmus tests and simulator
traces), and then automatically generates formal ordering axioms
necessary to enforce those orderings. In this way, PipeSynth signif-
icantly reduces the barrier to entry for architects wishing to create
formal microarchitectural ordering specifications pre-RTL. These
formal specifications can then be used for early-stage design-time
verification to catch design bugs that would otherwise result in
MCM violations [15, 27, 29, 34, 36, 54].

The contributions of this paper are:
• Pre-RTL Synthesis of Ordering Axioms: PipeSynth is the
first automated methodology and tool for the pre-RTL formal
synthesis of 𝜇spec axioms from litmus tests and execution
traces.
• Novel SyGuS Encoding for Axiom Synthesis: The naive
use of SyGuS cannot synthesise 𝜇spec axioms, so we develop
a novel conjunct-based encoding that makes 𝜇spec synthesis
with SyGuS feasible for multiple common types of 𝜇spec
axioms.
• Demonstration:We synthesise axioms for a variety of mi-
croarchitectural specifications, including both in-order and
out-of-order processors. We are able to synthesise the ma-
jority of axioms for these microarchitectural specifications.

The rest of this paper is organised as follows. Section 2 provides
background on 𝜇spec-based microarchitectural MCM verification
and SyGuS. Section 3 provides an overview of PipeSynth. Section 4
describes the notable challenges involved in 𝜇spec axiom synthe-
sis. Section 5 explains PipeSynth’s operation, focusing on its novel
conjunct-based encoding. Section 6 covers auxiliary synthesis op-
tions that users of PipeSynth can utilise to improve PipeSynth’s
synthesis capabilities. Section 7 describes our experimental method-
ology and Section 8 presents our results. Section 9 covers related
work, and Section 10 concludes.

2 BACKGROUND
2.1 𝜇spec Microarchitectural MCM Verification
MCMs specify the ordering requirements on memory and syn-
chronization operations in parallel systems. The simplest MCM is
sequential consistency (SC) [24]. SC requires the results of memory
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(i1) (i2)

IF

DX

WB

(i3) (i4)

Figure 2: Example 𝜇hb graph for mp litmus test (Figure 1a) on
Multi-V-scale processor [47].

Axiom "DecodeExecute_stage_is_in_order":
forall microops "i",
forall microops "j",

(~SameMicroop i j /\
AddEdge ((i, IF), (j, IF))) =>

AddEdge ((i, DX), (j, DX)).

Figure 3: An example 𝜇spec axiom.

operations to be consistent with a total order on all memory opera-
tions, where instructions from individual threads or cores appear
to execute in program order and each load reads from the last store
to its address in the total order.

MCM analysis often uses litmus tests, which are typically small
4-8 instruction programs designed to illustrate a specific MCM
scenario. In litmus test convention, the initial values at all memory
addresses are 0. For example, Figure 1a shows the litmus test mp,
which depicts the idiom of message passing. In mp, core 0 writes to
data variable x and then sets a flag variable y. Core 1, meanwhile,
reads the value of y and then reads the value of x. Under SC, it is
impossible for core 1 to see the write to y but not the write to x, as
there is no total order on memory operations that obeys program
order that would allow this. On the other hand, if we reordered the
two writes on core 0 (as Figure 1b depicts), the test would become
allowed.

Prior work from the Check suite [27, 29, 35, 36, 54] developed
methodologies and tools for the formal verification of litmus tests
on microarchitectures. This work represented microarchitectural
executions as 𝜇hb graphs where nodes represent sub-events in
instruction execution and edges represent happens-before relation-
ships between such events. Figure 2 shows a 𝜇hb graph for the
outcome of mp forbidden under SC for the open-source Multi-V-
scale processor [47]. Multi-V-scale has 3-stage in-order pipelines of
Fetch (IF), a combined Decode+Execute (DX), and Writeback (WB)
stages, and aims to implement SC. Nodes in the 𝜇hb graph rep-
resent the different pipeline stages of instruction execution, with
each column of nodes representing an instruction flowing through
the pipeline. For instance, the second node in the first column rep-
resents instruction i1 at its DX stage, while the third node in the
second column represents instruction i2 at its WB stage.

Edges in 𝜇hb graphs, meanwhile, represent happens-before rela-
tionships between the nodes that they connect. For instance, the
edge between the first two nodes in the second row of the 𝜇hb graph

Grammar:
f(x) := E
E := E + E | E * E | x | 0 | 1

Constraints:
assert(f(x) > x && f(3) == 4)

Figure 4: An example of a SyGuS synthesis problem.

represents that instruction i1 goes through its DX stage before in-
struction i2 does. Since each edge represents a happens-before
relationship, a cycle in a 𝜇hb graph indicates that an event has to
happen before itself, which is impossible. Thus, cyclic 𝜇hb graphs
constitute executions that are unobservable on the modelled mi-
croarchitecture, while acyclic 𝜇hb graphs constitute executions that
are observable on the modelled microarchitecture. The overall 𝜇hb
graph in Figure 2 is cyclic, indicating that this particular execution
of mp is unobservable on Multi-V-scale—as we would expect of an
SC microarchitecture.

The decision of when and where to add edges to 𝜇hb graphs in
microarchitectural MCM verification is dictated by a microarchitec-
tural specification in the domain-specific 𝜇spec language. A 𝜇spec
specification consists of a set of axioms or invariants dictating or-
dering properties that must be maintained by the microarchitecture.
Each axiom represents one of the individual smaller orderings that
combine to enforce the MCM of the overall processor. For example,
Figure 3 shows one of the 𝜇spec axioms for Multi-V-scale. This
axiom says that for any two distinct instructions i and j in the test,
if i goes through its IF stage before j does, then i must also go
through DX before j goes through that stage. Instructions i1 and
i2 (as well as i3 and i4) are fetched in order, so this axiom thus
results in the addition of edges between the DX stages of i1 and i2
and between those of i3 and i4. Other axioms in Multi-V-scale’s
𝜇spec specification enforce the other blue horizontal edges enforc-
ing in-order execution for instructions on the same core. Additional
axioms cause the addition of the black vertical edges between the
nodes of a single instruction and the addition of the red edges in-
dicating the ordering of loads and stores on different cores with
respect to each other.

To verify a 𝜇spec microarchitectural specification against a lit-
mus test, the Check tools instantiate the specification’s axioms for
the litmus test and use an SMT solver to search for an acyclic 𝜇hb
graph that satisfies all the axioms. If such an acyclic 𝜇hb graph is
found, then the litmus test is observable on the microarchitecture.
If the test was forbidden, its observability means that the microar-
chitecture is buggy. On the other hand, if the test is required to be
observable, then an acyclic 𝜇hb graph satisfying the axioms must
exist for it.

2.2 Syntax-Guided Synthesis (SyGuS)
Program synthesis aims to automatically generate implementations
of functions (henceforth called synthesis functions) that match a
high-level correctness specification. Syntax-guided Synthesis (Sy-
GuS) [3] is a flavour of program synthesis that restricts the space
of possible function implementations using context-free grammars
(like those used in parsers).
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PipeSynthForbidden
Litmus Tests

Partial 𝜇spec
specification

Observable
Execution
Traces

Processor
Oracle

Synthesis
Options

Complete
𝜇arch

specification

Figure 5: PipeSynth block diagram. Rectangles are required;
circular nodes are optional. The rounded rectangle represents
PipeSynth’s output upon successful synthesis.

pc:0x8 stage:IF t:4 unit:core0
...
pc:0x1c stage:IF t:5 unit:core1
pc:0x18 stage:DX t:5 unit:core1
pc:0x8 stage:DX t:6 unit:core0
...

Figure 6: Execution trace fragment from Multi-V-scale.

SyGuS is a standardised format for the specification of syntax-
guided synthesis problems [39], and it is supported by multiple
synthesis solvers. A synthesis solver searches over a space of pos-
sible function implementations (often called candidate solutions)
and tries to find an implementation that satisfies the correctness
specification. In this paper we use the CVC5 solver [4].

Figure 4 shows a pedagogical example of a SyGuS problem for-
mulation. The synthesis function 𝑓 (𝑥) is restricted by the grammar.
The grammar allows multiplication and addition operators over
the function’s input and the constants 0 and 1. In addition, the
generated implementation must satisfy the constraint that 𝑓 (3) = 4
and 𝑓 (𝑥) must be greater than 𝑥 for all 𝑥 . When provided with such
a SyGuS query, a synthesis solver like CVC5 will search over the
space of possible implementations to try and find one that satisfies
the examples and grammar constraints. In this example, it finds
the implementation 𝑓 (𝑥) = 𝑥 + 1, which satisfies the constraints
and abides by the grammar. Thus, this implementation could be
returned as the solution to the synthesis problem. In general, there
may be several correct implementations and the solver may return
any one of them.

Constraints on the synthesis functions may be provided as as-
sertions that must hold (as in Figure 4), or they can be generated
from oracles (human input or software/hardware runtimes). The
flavour of synthesis where oracles are used to generate constraints
is referred to as oracle-guided inductive synthesis (OGIS) [21].

3 PIPESYNTH OVERVIEW
Figure 5 shows PipeSynth’s high-level organisation. The three re-
quired inputs to PipeSynth are a partial microarchitectural spec-
ification, a set of forbidden litmus tests, and a set of observable

execution traces (all described below). PipeSynth then synthesises
additional 𝜇spec axioms for the microarchitectural specification
that are necessary to refute the negative tests while allowing ob-
servable executions. PipeSynth terminates when the synthesised
axiom(s) + other provided axioms are sufficient to forbid all for-
bidden tests and allow all required execution traces, or when the
solver concludes that synthesis is impossible for the given scenario
and grammars. Users may leverage PipeSynth’s synthesis options
(Section 6) to improve their synthesis results. They may also use
processor simulators as oracles3 to generate observable execution
traces (Section 5.5).

The first input to PipeSynth is the partial 𝜇spec specification.
Users provide a partial 𝜇spec specification that consists of a set
of microarchitectural axioms and placeholder functions for the re-
maining axioms. PipeSynth replaces these placeholder functions
with synthesised 𝜇spec such that the overall 𝜇spec specification
respects the constraints of the litmus tests and execution traces pro-
vided by the user. The synthesis of one axiom may require multiple
such placeholder functions due to our novel synthesis encoding
(Sections 5.1 to 5.3), so PipeSynth provides utility APIs to create
the appropriate templates of placeholder functions for a number of
common axiom types (Section 5.2). These built-in templates (either
alone or in combination) can be used to synthesise replacement
axioms for all but one of the 46 axioms in our evaluated microarchi-
tectures for the litmus tests and execution traces we use. For axioms
that do not conform to one or more of our built-in templates, users
may create custom templates by putting placeholder functions in a
custom 𝜇spec axiom structure (Section 6.3).

The second input is the set of forbidden litmus tests. We recom-
mend that these tests exhibit a variety of ISA-level orderings so as
to cover a wide range of possibilities. We use the litmustestgen
tool [30] to generate our tests. Given a formal ISA-level MCM spec-
ification, litmustestgen can automatically generate all boundary
litmus tests (of size up to a bound) for that ISA MCM. A boundary
litmus test is a forbidden litmus test for which any relaxation would
result in it being allowed. For example, the reordering of core 0’s
writes from Figure 1a to Figure 1b is a relaxation that makes the test
allowed. (PipeSynth does not require the use of litmustestgen.
Users can provide forbidden litmus tests from other sources, e.g.,
handwritten tests.)

If we only provide forbidden litmus tests, an axiom which disal-
lows all executions of all programs will be a consistent solution to
them. This is clearly nonsensical, as a microarchitecture obeying
such an axiom could never generate a result for a program. Thus, we
must also provide the synthesis procedure with test cases that must
be allowed by the microarchitecture. We generate such “required”
litmus tests by taking our forbidden litmus tests and reordering
one of the pairs of instructions in each of them. This constitutes a
relaxation to each such test which is guaranteed to make it allowed
(since litmustestgen only generates boundary litmus tests).

However, merely providing a synthesis procedure with permit-
ted litmus tests is insufficient to synthesise realistic 𝜇spec axioms,
because litmus test outcomes do not provide any information about
how such litmus tests should execute on the microarchitecture. This

3In synthesis terminology, an oracle is an entity (including humans) that can be used
by the synthesis procedure through a query-response interface [21, 39, 40].
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issue is a key challenge in 𝜇spec synthesis (covered in Section 4.3).
We solve this problem by annotating permitted litmus tests with
timestamped execution traces like the one in Figure 6 (Section 5.5
provides details). These execution traces provide the synthesis pro-
cedure with a witness for permissibility of the litmus test. This
allows PipeSynth to synthesise axioms that accurately reflect the
event orderings in such executions. These execution traces can be
generated in a straightforward manner by instrumenting pre-RTL
simulators such as gem5 [5].

PipeSynth encodes the user’s synthesis problem in SyGuS using
our novel synthesis encoding. PipeSynth then passes this file to a
SyGuS solver like CVC5 [4], which attempts to solve it. If the solver
returns a synthesis result, this indicates that a completed microar-
chitectural specification was found which outlaws the forbidden
litmus tests and permits the required execution traces. On the other
hand, if the solver returns that the synthesis failed, it is impossible
to create additional axioms matching the parameters used that out-
law the forbidden litmus tests while permitting the required traces.
PipeSynth’s use of SyGuS also lets us take advantage of advances
in SyGuS solvers.

The user can ask PipeSynth to synthesise a single axiom or mul-
tiple axioms, depending on the number of templates they choose to
use in the synthesis query. (Note that if an axiom is unnecessary, it
can just be synthesised as True.) We look at both use cases in our ex-
periments (Section 7.3). For single-axiom synthesis, we synthesise
each axiom when given all other axioms of the microarchitecture.
For multi-axiom synthesis, we remove increasing numbers of ax-
ioms from the microarchitecture and attempt to synthesise them
all. Axioms are removed from the microarchitecture in the order of
the high-level templates they conform to. Within a set of axioms
that conform to a given template, we remove them in ascending
order of their single-axiom synthesis runtimes.

Users could attempt to synthesisemultiple axiomswith PipeSynth
iteratively. Specifically, they could first attempt to synthesise many
axioms with PipeSynth. If this fails, they could add a handwritten
axiom to the 𝜇spec, and then re-attempt to synthesise the remaining
axioms, repeating as necessary. Our multi-axiom synthesis experi-
ments (Section 7.3) form a mirror image of such a flow.

4 CHALLENGES IN 𝜇SPEC SYNTHESIS
This section describes the significant challenges involved in syn-
thesising 𝜇spec axioms.

4.1 SyGuS for Quantified Expressions
Virtually all 𝜇spec axioms beginwith quantifiers (forall or exists).
However, synthesis with quantifiers is known to be very challenging
and requires specialized, heuristic-based techniques [9, 41]. Fur-
thermore, the SyGuS standard (and hence CVC5 [4]) does not allow
grammars with quantifiers. While “unrolling” finite quantification
into a conjunction (disjunction) for ∀ (∃) respectively is a potential
solution, all the conjuncts (disjuncts) need to be identical for this
to work. This requires context-sensitivity, which is impossible for
the context-free grammars required by SyGuS solvers like CVC5.

PipeSynth solves this problem by synthesising only the quantifier-
free body of the axiom, and specifying the constraint as a finite
conjunction/disjunction over the synthesised expression. However,

using a naive SyGuS encoding of the quantifier-free portion of the
axiom runs into performance issues as we now discuss.

4.2 Poor Performance of a Naive Encoding
A natural way to encode the axiom synthesis problem into Sy-
GuS is to translate placeholder functions in the incomplete micro-
architectural specification directly to a single synthesis function in
SyGuS. This typically entails trying to synthesise the body of an
axiom (i.e., its quantifier-free portion) as a monolithic SyGuS query.
Figure 7a shows a graphical depiction of possible synthesis solu-
tions when using such an encoding. The grammar of this synthesis
function would include the logical connectives (e.g., ∧, =⇒ ) and
predicates from 𝜇spec (e.g., IsRead(i), AddEdge((i, IF), (i,
DX))).

Empirically, this naive encoding leads to infeasible SyGuS prob-
lems. For instance, using such a naive encoding, synthesis of the
axiom responsible for constraining load values on our simplest
microarchitecture (Multi-V-scale [32]) fails to finish even after 20
hours on a 2016 MacBook Pro with a Core i7 processor and 16 GB
of RAM.

In hindsight, this result is not very surprising. Figure 7a indicates
how the space of expressions resembles a tree in this encoding. Even
for expressions with just a few terms, there are a large number of
possibilities for the solver to consider across the various logical
connectives and predicates. Crucially, many of these possibilities
are redundant. For instance, in this naive encoding, a solver would
consider both ¬𝑎 ∨ 𝑏 and 𝑎 =⇒ 𝑏 for any 𝑎 and 𝑏, despite them
being semantically equivalent. Likewise, it would also consider both
𝑎∧𝑏 and 𝑏 ∧𝑎 for a given 𝑎 and 𝑏, despite only needing to consider
one of the two. PipeSynth addresses this redundancy by developing
a novel encoding of our synthesis problem (Sections 5.1 to 5.3) that
exploits the particular structure of 𝜇spec axioms and precludes the
examination of many redundant synthesis candidates.

4.3 Execution Trace Requirement
As Section 3 covers, 𝜇spec axiom synthesis requires both permitted
and forbidden litmus tests in order to work. However, knowledge of
permitted (ISA-level) litmus tests does not contain enough informa-
tion to infer microarchitectural execution details. This is because
distinct behaviours at the microarchitectural level (distinct 𝜇hb
graphs) may have identical ISA-level observations. Consider the
allowed variant of mp (Figure 1b). In this outcome, it is clear that
the load i3 of y reads from the store i1. However, this says nothing
about whether the value of y was propagated from core 0 to core
1 through a shared store buffer, a cache-to-cache transfer, the last
level cache, main memory, or some other path.

Synthesis in the absence of such microarchitectural information
can result in unreasonable 𝜇spec axioms. For instance, if required to
enforce in-order pipeline execution to forbid litmus tests, a synthe-
sis procedure could simply enforce that every instruction commits
before any subsequent instruction is fetched. While this would
enforce correctness for the relevant litmus tests, it is not an axiom
that any reasonable pipelined microarchitecture would ever want
to abide by. This suggests that in order to guide the synthesis to-
wards more precise axioms, we need additional constraints on the
microarchitectural executions.
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Figure 7: (a) A monolithic synthesis encoding contrasted with (b) our structured conjunct-based encoding of a path axiom. Red
boxes represent the decisions made by the solver from groups (columns) of black boxes. Our conjunct-based encoding prevents
a synthesis solver from examining numerous redundant and nonsensical candidate solutions. This greatly reduces the state
space of solutions that the solver must search over and makes synthesis of 𝜇spec axioms feasible.

PipeSynth solves this challenge by augmenting permitted litmus
tests with execution traces, and ensuring that its synthesis results
respect these execution traces. Section 5.5 provides details.

5 PIPESYNTH OPERATION
This section covers PipeSynth’s operation, focusing on our novel
conjunct-based encoding of 𝜇spec axiom synthesis. As Section 4.2
covers, a naive SyGuS encoding of the quantifier-free portion of a
𝜇spec axiom results in synthesis being infeasible. Our key insight
with the conjunct-based encoding is that information about the
structure of standard 𝜇spec axioms is lost in a naive SyGuS grammar.
This causes a solver conducting synthesis with such a grammar
to examine many nonsensical and redundant candidate solutions.
Our conjunct-based encoding conveys more detailed information
about the structure of 𝜇spec axioms to the synthesis procedure,
allowing it to focus on likely candidate solutions and ignore many
nonsensical and redundant ones.

Our encoding makes use of template-based synthesis as de-
scribed in Section 5.1. Section 5.2 describes the specific set of tem-
plates we use. These templates contain conjunctions of 𝜇spec predi-
cates, which we synthesise using Section 5.3’s technique. Section 5.4
discusses the generality of our encoding, and Section 5.5 explains
how to generate the execution traces that PipeSynth takes in as
one of its inputs.

5.1 Template-Based Synthesis
First, we make the key observation that the high-level structure of
the vast majority of 𝜇spec axioms conforms to three patterns (or
combinations of those patterns). These patterns (and combinations
of them) cover all but one of the axioms in our evaluated microar-
chitectures. Section 5.2 covers the three patterns in detail. In line

with prior work on sketch-based synthesis, e.g. [6, 49, 52], we cre-
ate three templates (also called sketches in the synthesis literature)
corresponding to these high-level patterns, and enforce that any
synthesis solutions considered by PipeSynth must conform to our
built-in templates or to custom templates (Section 6.3) created by
the user. The templates contain holes (i.e., synthesis functions) that
must be filled by the synthesis solver with terms corresponding to
specific grammars to generate the overall 𝜇spec axiom. Conducting
such template-based synthesis prevents the synthesis solver from
examining candidate solutions that do not correspond to the given
templates. This results in a significant reduction in the state space
that must be examined by the synthesis solver, which can notably
reduce PipeSynth’s runtime.

5.2 Axiom Templates
The majority of 𝜇spec axioms fall into one of three types: path ax-
ioms, FIFO axioms, and sourcing axioms. Path axioms (Section 5.2.1)
govern the ordering of events within a single instruction (i.e., the
path it takes through the microarchitecture). FIFO axioms (Sec-
tion 5.2.2) govern orderings between pairs of instructions, partic-
ularly those where one edge between them implies the existence
of another. Sourcing axioms (Section 5.2.3) govern orderings that
arise due to the values written and read by instructions. These
three types of axioms were initially outlined by PipeCheck [27]
before the 𝜇spec language was developed. They were intended to
form a general organisation of axioms capable of describing a wide
variety of microarchitectures. We formalise the 𝜇spec patterns that
correspond to these types of axioms as synthesis templates and
use them to reduce the state space that our synthesis solver must
examine. We believe that these three templates serve as a very
good base of templates for microarchitectures in general. This is
evidenced by the fact that all but one of the axioms in our evaluated
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Axiom "ReadsPath":
forall microops "i",

IsRead(i) => (AddEdge((i, IF), (i, DX))
/\ AddEdge ((i, DX), (i, WB))).

Figure 8: An example 𝜇spec path axiom.

microarchitectures conform either to one or a combination of these
templates (Section 5.4 provides details on the latter). Axioms that
are not covered by our built-in templates or a combination of them
can be handled using custom templates (Section 6.3).

5.2.1 Path Axioms. Path axioms impose constraints on the order of
events seen in the execution of an instruction. For instance, Figure
8’s axiom imposes constraints on the sequence of stages seen in
Read instructions. Path axioms are of the following form:

∀𝑖 . (𝑃 (𝑖) =⇒ 𝑄 (𝑖)) (1)

where 𝑃 (𝑖) is a conjunction of predicates on instruction 𝑖 that does
not involve the AddEdge predicate (IsRead(i) is 𝑃 (𝑖) in Figure 8).
𝑄 (𝑖), on the other hand, is a conjunction of positive occurrences
of AddEdge for instruction 𝑖 . These restrictions are not problem-
atic because path axioms are usually conditioned on the type of
instruction (which does not require AddEdge) and add edges be-
tween nodes of that instruction (which requires only AddEdge). We
encode path axioms by fixing the above template and synthesising
the conjunctions 𝑃 and 𝑄 using Section 5.3’s technique.

5.2.2 FIFO Axioms. Now we consider axioms which have univer-
sal quantification over two instructions. The most common case
amongst these is where axioms enforce one edge conditioned on
another edge existing in the graph. Since these axioms preserve
order across two pairs of events, they are called FIFO axioms. Figure
3 shows an example FIFO axiom from Multi-V-scale. The template
for axioms of this form is:

∀𝑖 ∀𝑗 . (¬SameMicroop(𝑖, 𝑗) ∧ 𝑃 (𝑖, 𝑗)) =⇒ 𝑄 (𝑖, 𝑗) (2)

Here we require 𝑃 to be a conjunction over instructions 𝑖 and 𝑗 ,
and 𝑄 to be a conjunction of positive occurrences of the AddEdge
predicate over 𝑖 and 𝑗 . The ¬SameMicroop(𝑖, 𝑗) condition ensures
that the AddEdge constraints in 𝑄 (𝑖, 𝑗) are between two distinct
instructions. Unlike path axioms, we allow 𝑃 to contain AddEdge
and its negation. This allows FIFO axioms to express a disjunction
of 𝜇hb edges (see also Section 5.4) through the following equiva-
lence (where 𝐴𝑑𝑑𝐸𝑑𝑔𝑒1 (...) and 𝐴𝑑𝑑𝐸𝑑𝑔𝑒2 (...) are instances of the
AddEdge predicate):

𝑃 (𝑖, 𝑗) =⇒ (𝐴𝑑𝑑𝐸𝑑𝑔𝑒1 (...) ∨𝐴𝑑𝑑𝐸𝑑𝑔𝑒2 (...))
≡ (𝑃 (𝑖, 𝑗) ∧ ¬𝐴𝑑𝑑𝐸𝑑𝑔𝑒1 (...)) =⇒ 𝐴𝑑𝑑𝐸𝑑𝑔𝑒2 (...) (3)

5.2.3 Sourcing Axioms. Sourcing axioms often express constraints
over the sourcing of read instructions. These axioms have a double
quantifier alternation (i.e., a forall-exists-forall pattern). Figure 9
shows an example sourcing axiom, with some details elided for
brevity.

Figure 9’s axiom requires that for any read instruction i that
does not read from the initial state of memory, there must be a
write w (the “source”) such that there is no other write instruction
w’ to the same address between w and i (enforced by ensuring

Axiom "Read_Values":
forall microops "i",
(IsRead(i) /\
~DataFromInitialStateAtPA(i)) =>
exists microop "w",
IsWrite(w) /\ ReadsFrom(i, w) /\ (
forall microop "w'",
WriteOnSameAddr(w, w') =>
(AddEdge(w', w) \/ AddEdge(i, w'))

).

Figure 9: Example sourcing axiom, with some details elided
for brevity. The DataFromInitialStateAtPA predicate here
can be part of a discriminator (Section 5.4).

appropriate edges among i, w, and w’). Again, it does not make
sense for the instructions quantified over to be identical, so we
explicitly enforce this by using the ¬SameMicroop predicate. This
results in the following template for sourcing axioms where 𝑃 (𝑖),
𝑄 (𝑖, 𝑗), and 𝑅(𝑖, 𝑗, 𝑘) are conjunctions. (Note that the ¬∃ in the
innermost quantifier is equivalent to a ∀.)

∀𝑖 . (𝑃 (𝑖) =⇒ ∃ 𝑗 . (¬SameMicroop(𝑖, 𝑗) ∧𝑄 (𝑖, 𝑗)
∧ ¬∃𝑘 (¬SameMicroop(𝑖, 𝑘)
∧ ¬SameMicroop( 𝑗, 𝑘) ∧ 𝑅(𝑖, 𝑗, 𝑘)))) (4)

5.3 Synthesising Conjunctions
In our synthesis templates (Section 5.2), we deliberately enforce
that conjunctions like 𝑃 (𝑖) and 𝑄 (𝑖, 𝑗) each correspond to some
conjunction of 𝜇spec predicates, i.e., 𝐶0 ∧𝐶1 ∧𝐶2 ∧ ... ∧𝐶𝑛 where
each conjunct 𝐶𝑖 is a 𝜇spec predicate (or its negation). In our en-
coding, each such conjunct corresponds to a hole (i.e., synthesis
function) to be filled by the synthesis solver with a term from a
specified grammar. For example, in Figure 7b, the antecedent of the
implication corresponds to such a conjunction.

Focusing on conjunctions allows us to fix the logical structure of
that portion of the axiom. This prevents the solver from examining
other redundant logical structures for that portion of the axiom. For
instance, for a given 𝑎 and 𝑏, a solver only needs to examine one of
𝑎∧𝑏 and¬(¬𝑎∨¬𝑏), as both are semantically equivalent. Under our
encoding, the solver would only examine the first. Our conjunct-
based encoding is quite expressive; Section 5.4 provides more detail
on how our encoding can capture different logical structures.

We further restrict the state space of possible conjunction so-
lutions by only allowing a few predicates to be a solution to each
conjunct. These constraints are enforced through appropriate Sy-
GuS grammars for those synthesis functions. The possible solutions
for a given conjunct are referred to as a group. For instance, in Fig-
ure 7b, the group of possible solutions for the first conjunct consists
of True, IsRead(i), and IsWrite(i).

Groups prevent the synthesis solver from examining many non-
sensical and redundant solutions, e.g., where two of the conjuncts
are mutually exclusive (in which case the conjunction evaluates to
false) or where one of the conjuncts implies the other (in which
case one of the conjuncts is unnecessary). For instance, if we allow
conjuncts to be filled with any 𝜇spec predicate, a solver could con-
sider solutions like IsRead(i) /\ ~IsRead(i), which will always
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evaluate to false. As an example of a case where one predicate im-
plies another, consider ProgramOrder(i, j) /\ SameCore(i, j).
If i and j are in program order with respect to each other, they
must be on the same core as well, so the SameCore predicate here is
unnecessary. We prevent such scenarios by ensuring that mutually
exclusive predicates and predicates where one implies the other are
always in the same group, so that only one of them can be selected.

Instances of the same predicate on different micro-operations
will be placed in different groups. So for example, for two micro-
operations 𝑖 and 𝑗 , IsRead(i) and IsRead(j) will be placed in
separate groups as one does not directly depend on the other.

The assignment of different groups to different conjuncts also re-
duces redundancy. For instance, in Figure 7b, the solver will examine
IsRead(i) /\ AccessType(RMW, i) as a potential solution to the
antecedent conjunction, but not AccessType(RMW, i) /\ IsRead(i)
(which is semantically equivalent). (RMW stands for read-modify-
write.)

Finally, every group also includes True, since we instantiate the
conjunctions in our templates with a large number of conjuncts
(e.g., one per allowed edge for conjunctions that can contain edges),
and not all of them may be necessary. Setting a conjunct to True
effectively removes it from the conjunction (since 𝑎 ∧𝑇𝑟𝑢𝑒 = 𝑎), so
this allows the solver to use more or fewer conjuncts as it sees fit.

5.4 Generality of Our Encoding
While our templates may seem restrictive, they can cover a wide
variety of logical statements through equivalences. For instance, if
an axiom requires a disjunction 𝑎 ∨ 𝑏 for some 𝑎 and 𝑏, PipeSynth
can synthesise this as ¬𝑎 =⇒ 𝑏. Equation 3 shows an instance
of a similar transformation. Meanwhile, if the constraints to be
synthesised must take a form like (𝑎 ∨ 𝑏) ∧ (𝑐 ∨ 𝑑), this can be
synthesised as two separate axioms (each expressed using one
template), one being (𝑎 ∨ 𝑏) and the other being (𝑐 ∨ 𝑑). Note
that the user does not need to do these sorts of rewrites manually;
PipeSynth would simply synthesise the axiom(s) in a formmatching
the templates and groups provided to it. Overall, our three built-in
templates (and combinations of them) are capable of representing
45 out of 46 of the axioms in our four microarchitectures.

Some axioms conform to a combination of our templates despite
not appearing to do so. Consider trying to synthesise a constraint
(𝑎∧𝐹1) ∨ (𝑏∧𝐹2), where 𝑎 and 𝑏 are 𝜇spec predicates and 𝐹1 and 𝐹2
are 𝜇spec fragments. On the surface, this does not seem to conform
to any of our templates. However, if exactly one of 𝑎 and 𝑏 is always
true, then this constraint is equivalent to two axioms: (𝑎 =⇒ 𝐹1)
and (𝑏 =⇒ 𝐹2). In such cases, we refer to the set {𝑎, 𝑏} as a
discriminator. If each of these two axioms corresponds to one of
our built-in templates, PipeSynth can synthesise a replacement for
the original axiom using a combination of our built-in templates.

We discovered that this pattern occurred in a number of the
axioms which at first glance had appeared not to conform to our
built-in templates. A common theme in such axioms was the use of
{DataFromInitialStateAtPA(i), SameData(i, j)} as a discrim-
inator for a load i and a store j. A given load imust either read from
the initial state ofmemory (making DataFromInitialStateAtPA(i)
true) or must read from some write (in which case SameData(i,j)
is true for some write j). Both cases cannot be true at the same time,

making the combination of these predicates a discriminator. Many
axioms that did not correspond to one of our built-in templates can
be covered by combinations of our templates using discriminators
or logical equivalences for the microarchitectures, tests, and execu-
tion traces we consider. Figure 9’s sourcing axiom is an example of
a sourcing axiom that makes use of a discriminator. Specifically, the
use of DataFromInitialStateAtPA can be seen in Figure 9, while
SameData appears in the implementation of the ReadsFrom macro.

We stress that the user does not need to specify the discriminator
to get the synthesis to work. They can simply try combinations of
various templates mechanically—this can even be done automati-
cally and in parallel. If the axiom in question can be replaced by a
combination of our templates, PipeSynth is capable of finding the
rewrite and the corresponding synthesis result.

5.5 Generating Execution Traces
PipeSynth requires examples of both forbidden and permitted lit-
mus tests to conduct its synthesis. Additionally, as Section 4.3 dis-
cusses, providing permitted tests alone can lead to unrealistic so-
lutions. To solve this problem, we augment permitted litmus tests
with timestamped execution traces of said tests. Execution traces
provide examples of microarchitectural event orderings that must
be allowed by the synthesised axioms, which litmus tests cannot
directly encode. An execution trace can also be thought of as a
single 𝜇hb graph that must satisfy all axioms (including those syn-
thesised). This use of execution traces is an important difference
between PipeSynth and MemSynth [6]. As MemSynth only synthe-
sises ISA-level MCM specifications, it does not need to deal with
microarchitectural execution details. PipeSynth, meanwhile, must
take microarchitectural details into account in order to generate
realistic axioms.

PipeSynth’s use of execution traces means that users must pro-
vide them to the tool. It is desirable that the generation of such
traces be as painless as possible for users. Thankfully, early-stage
pre-RTL architectural simulators such as gem5 [5] can be instru-
mented in a straightforward manner to emit timestamped execution
traces of programs. These traces can then be fed into PipeSynth to
satisfy the execution trace requirement. Simulators like gem5 could
generate diverse traces by taking in a random seed and using that
seed to randomise event orderings of nondeterministic simulated
microarchitectural events.

Execution traces may come from other sources as well. As an
example, the Multi-V-scale processor [32, 47] from our case studies
did not have an architectural simulator, but its RTL is publicly
available. Thus, we instrumented Multi-V-scale’s RTL and ran it
through Verilator to generate execution traces for our Multi-V-scale
case study. Figure 6 shows an example of such a trace. We stress that
our use of RTL to generate Multi-V-scale execution traces is purely
due to the absence of an architectural simulator for Multi-V-scale,
and is not a fundamental limitation of our approach.

6 AUXILIARY SYNTHESIS OPTIONS
This section describes a number of auxiliary synthesis options that
users can leverage to speed up or enhance PipeSynth’s synthesis
capabilities.
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6.1 Removing Group Members or Groups
PipeSynth allows users to remove group members or entire groups
from the synthesis encoding if they know that the group members
or groups in question do not apply to the given scenario. This
reduces the state space that the solver needs to cover and can make
synthesis faster. Removal of irrelevant group members or groups
can also result in more interpretable synthesis results.

For instance, consider the encoding of groups in Figure 7b. If
we consider only the three groups shown, there are 3×3×2 = 18
possibilities for the solver to consider. A user might know that the
axiom they wish to synthesise in this particular case does not deal
with writes. In such a case, the user could remove the IsWrite(i)
predicate from the leftmost group in Figure 7b. This would reduce
the number of synthesis possibilities to 2×3×2 = 12.

Users can also eliminate entire groups from a particular syn-
thesis instance, further reducing the state space. Consider again
Figure 7b’s group encoding. A user may know that the axiom they
wish to synthesise for this particular case should not involve RMW
operations. Thus, they can remove the entire second group in the
encoding, as it only contains RMW predicates and True. This elim-
inates the second group’s synthesis function, and reduces the num-
ber of synthesis possibilities by a factor of 3 (since there were 3
possible solutions to that group’s synthesis function).

6.2 Edge Restriction
Just as users can restrict the predicates that are allowed in candi-
date solutions, they can also restrict the edges that can be used in
candidate solutions. Specifically, PipeSynth allows the user to spec-
ify the 𝜇hb edges that may be referred to by a given conjunction.
Architects will often have knowledge about which event orderings
certain axioms should enforce, and this feature allows them to re-
strict synthesised axioms to use relevant 𝜇hb edges. In Fig. 7b, the
third group restricts the edge to only be Fetch-Decode (or none at
all).

Consider synthesising an axiom like that in Figure 3, which
represents the in-order nature of the DX stage in Multi-V-scale.
Architects can deduce that WB nodes and edges will be irrelevant
to this axiom, as WB is later in the pipeline than DX. Consequently,
for synthesis of this axiom, they can restrict the edges accessible to
the synthesis procedure to those between IF and DX stages.

The restriction of edges accessible to a synthesis procedure re-
duces the space of possibilities that the solver must search over,
which will likely improve synthesis time. It also gives users finer
control over the form of the axioms generated, leading to more
interpretable axioms. Consider the 𝜇hb graph in Figure 2. If an
axiom needs to enforce an ordering between an instruction’s IF
stage and its WB stage, this can be accomplished by adding a single
edge from the IF node to the WB node or with two edges: one from
IF to DX and one from DX to WB, as is the case in Figure 2. While
both enforce the IF-WB edge semantically, edge restriction allows
for the synthesis of axioms that are better aligned with user intent.

Edge restriction can be iterative. An initial synthesis with PipeSynth
may result in axioms which use edges that work, but which the user
would prefer not to use. In such cases, the user can then restrict the
synthesis to only use edges that they want to use and re-run the
synthesis.

In our experiments, we restrict the 𝜇hb edges available to synthe-
sis functions to those that are present in the original (i.e., solution)
microarchitecture. Thus, in every synthesis query that deals with
edges, the solver searches over all 𝜇hb edges that are present in
the solution microarchitecture. When synthesising a single axiom,
we do not further restrict the edges available to just those that are
present in that axiom in the solution microarchitecture. However,
a user could theoretically do so to further reduce the state space.

6.3 Custom Axiom Templates
PipeSynth’s three built-in templates (Section 5.2) or a combination
of them are sufficient to cover all but one of the axioms in our
evaluated microarchitectures. However, in the general case, there
will be a few axioms that do not belong to these categories. Expert
users may create custom axiom templates for such axioms, as we
do for the one axiom that does not fit our templates. PipeSynth
provides APIs that allow users to create conjunctions, define the
grammar of the conjuncts, and place them as desired in an axiom
structure. This generalises our technique to work with axioms
beyond the three default templates. If a particular custom template
is found to be prevalent across a number of microarchitectures, we
can add it to PipeSynth’s built-in templates in the future.

This customisation can also be used to improve synthesis run-
times. If the user knows one part of an axiom and wishes to syn-
thesise the rest, they may include the known part of the axiom to
remove the need to synthesise it. For instance, a user synthesising
a path axiom which only applies to reads may use the following
axiom template:

∀𝑖 (IsRead(𝑖) ∧ 𝑃 (𝑖)) =⇒ 𝑄 (𝑖)

This template hard-codes the known IsRead predicate into the
structure of the axiom. This guarantees that it is present in the
resulting axiom and reduces the synthesis problem to only involve
unknown portions of the axiom.

7 METHODOLOGY
7.1 Test Microarchitectures
To evaluate PipeSynth, we used it to try and synthesise axioms
from four microarchitectures:

(1) Multi-V-scale [32, 47]: A microarchitecture with 3-stage
in-order pipelines and an arbiter that only allows one core
to access its single-cycle memory at any time.

(2) FiveStage [26]: A microarchitecture with a 5-stage pipeline
and per-core store buffers.

(3) FiveStageOoOSLR: A microarchitecture that has a 5-stage
pipeline and per-core store buffers and performs speculative
load reordering (SLR). This microarchitecture is very similar
to the gem5.uarch microarchitecture in the COATCheck
public repository [26], though with 2 fewer pipeline stages.

(4) FiveStagePeekaboo [26]: A microarchitecture with a 5-
stage pipeline and per-core store buffers that exhibits the
Peekaboo scenario (with mitigations) [36, 37]. Modelling the
Peekaboo scenario requires modelling invalidation-before-
use, prefetching, and a livelock-prevention mechanism that
allows limited use of stale data. This microarchitecture also
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uses the ViCL (Value in Cache Lifetime) abstraction [36] to
model cache behaviour.

All of our microarchitectures intend to implement the Total
Store Order (TSO) consistency model [38], except for Multi-V-scale,
which aims to implement SC. TSO relaxes orderings from writes
to subsequent reads. TSO also allows a core to read its own write
early, before the write is made visible to other cores.

All but one of the axioms in our tested microarchitectures were
covered by our path, FIFO, and sourcing templates, or a combination
thereof. The one axiom that required a custom template was the
Reads axiom from FiveStagePeekaboo.

7.2 Litmus Tests and Execution Traces
We generated our forbidden litmus tests using litmustestgen [30].
With a bound of 4 instructions, we generated a set of forbidden
litmus tests for all ISA-level axioms in the TSO memory consis-
tency model. The tool generated 18 forbidden litmus tests. For
Multi-V-scale, we removed the 4 litmus tests which involved RMW
operations, as Multi-V-scale does not support RMWs.

For each of our forbidden litmus tests, we removed an ISA-level
coherence edge or changed the data value of a memory read in order
to create a permitted litmus test. For all microarchitectures except
Multi-V-scale, we generated execution traces by taking the complete
𝜇spec for them, running the permitted litmus tests on the complete
𝜇spec, and using the acyclic 𝜇hb graphs generated for those tests as
execution traces that the synthesis needed to obey. This produces
18 execution traces for each of those microarchitectures.

For Multi-V-scale, meanwhile, we used an RTL simulator to gen-
erate execution traces. We instrumented the RTL of Multi-V-scale to
print out events of interest when they occurred in an execution. We
then ran Verilator on the RTL to obtain an executable which could
be invoked with a binary file containing a sequence of instructions
for each core. By using binaries that represented litmus tests, we
were thus able to simulate litmus tests on the processor. The output
of these simulations on the instrumented RTL gave us execution
traces like the one in Figure 6.

7.3 Single and Multi-Axiom Synthesis Flows
When evaluating the synthesis time for a single axiom, we remove
it from the microarchitecture and replace it with one or more tem-
plates corresponding to that axiom’s structure. We then attempt
to synthesise that axiom with PipeSynth using the specified tem-
plate(s). In other words, we try and synthesise each axiom indepen-
dently when given all others. Our single-axiom synthesis flow can
be described as follows for a 𝜇spec microarchitecture𝑀 :
For each axiom ax in M:

Remove ax from M to get M'
M' = M' + templates(ax)
Synthesise ax using M'

For multi-axiom synthesis, we iteratively remove axioms from
the microarchitecture and try and synthesise replacements for all
axioms removed so far. When removing axioms, we do not imme-
diately replace them with templates, as sometimes an additional
template is not necessary. For instance, if two FIFO axioms are
removed, PipeSynth may be able to find a single axiom that can
replace both of them from just one FIFO template. If indeed an

axiom does require its own template, we add the same template
that we used when synthesising the axiom in the single-axiom case.
Our multi-axiom synthesis flow can be described as follows for a
𝜇spec microarchitecture𝑀 :
For each axiom ax in M:

Remove ax from M
retVal = synthesise removed axioms using M
if retVal == FAILED:

Add template(s) for ax to M
retVal = Retry synthesis using M
if retVal == TIMEOUT:

break

In other words, we try and synthesise as many axioms as we can at
the same time. We remove axioms one at a time in the following
order: first, axioms that proved unnecessary in the single-axiom syn-
thesis (as they can be synthesised trivially), then FIFO axioms, then
path axioms, then sourcing axioms, and then any others. Within
each of these sets, we remove axioms in ascending order of their
single-axiom synthesis runtimes (i.e., the axiom that was synthe-
sised fastest is removed first). Section 8 contains the results of these
experiments.

7.4 Experimental Parameters
PipeSynth produces a SyGuS file for each of our synthesis queries.
We ran PipeSynth using Python 3.8. We used CVC5 version 0.0.4
to generate our SyGuS files, and we used CVC5 version 1.0.2 to
solve those SyGuS files4. We allowed each synthesis query to run
for a maximum of two hours. The experiments were performed on
nodes of a 429-node cluster. Each synthesis query was given 16GB
of RAM.

The conjuncts for our synthesis queries contained all 𝜇spec pred-
icates used in the corresponding microarchitectures, with the ex-
ception of predicates related to fence operations (e.g., IsFence).
This is because no fence operations were present in the litmus
tests we used that were generated by litmustestgen [30]. Thus,
fence-related predicates were irrelevant to our synthesis, and we
excluded them from our synthesis possibilities. We do, however,
synthesise axioms dealing with RMW instructions for microarchi-
tectures other than Multi-V-scale. (Multi-V-scale does not support
RMWs.)

8 RESULTS
8.1 Single-Axiom Synthesis Results
Figure 10 depicts our single-axiom synthesis results. It shows the
number of axioms synthesised by PipeSynth over time, separated by
microarchitecture. Each synthesis query is assumed to be run sepa-
rately and in parallel, so for instance, the last axiom for FiveStagePeek-
aboo at the top of the graph takes just over 45 minutes (its absolute
x-value) rather than about 4 minutes (the distance from its x-value
to the previous x-value on the green line). PipeSynth was able to
synthesise replacements for 42 out of the 46 axioms in our test mi-
croarchitectures, within 2 hours each. Table 1 provides a breakdown
of the axioms across our microarchitectures by axiom template. It

4CVC5-1.0.2 contains a bugfix for a soundness error in its SyGuS solving, which was a
key reason behind us using it to solve SyGuS files.
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Figure 10: The number of successful syntheses of individual
axioms against time, separated by microarchitecture. Each
synthesis query is assumed to be run separately and in par-
allel.

Table 1: A breakdown of our single-axiom synthesis success/-
failure results by template andmicroarchitecture, not includ-
ing axioms pertaining to fences. (“Comb.” = Combination.)

Template Vscale FiveStage OoOSLR Pkboo.
Path 2/2 0/0 0/0 1/1
FIFO 7/7 7/7 6/6 10/10

Sourcing 0/0 1/1 1/1 1/1
Comb. 1/1 1/2 1/2 0/1
Other 0/0 0/0 0/0 0/1

also lists how many axioms of each type in each microarchitec-
ture succeeded in our single-axiom synthesis. (Combinations of our
templates are as defined in Section 5.4.) Table 1 does not include 3
axioms in our microarchitectures that pertain to fence instructions.
Our tests did not contain fence instructions, so these axioms can
always evaluate to True no matter what template is used. Thus,
we used an empty template containing no synthesis functions for
these axioms.

Our synthesised axioms were often more verbose than necessary.
A post-processing algorithm can remove their redundant conjuncts.
Also, some synthesised path axioms had fewer conjuncts than ex-
pected. PipeSynth found 14 of the axioms to be unnecessary to
satisfy the litmus tests and execution traces. In each of these cases,
PipeSynth synthesised an empty axiom, with all conjuncts as True.
Due to the simplicity of synthesising an empty axiom, these 14
axioms were each synthesised in under 1 minute. 5 of these axioms
proved unnecessary because they were designed to implement fea-
tures not seen in our litmus tests, including fence operations and
postconditions on memory values. 2 other axioms that proved un-
necessary are the path axioms for reads and writes in Multi-V-scale.
These axioms are not necessary because the remaining axioms guar-
antee a total order on the DX stages and WB stages of all instructions
in a test, as well as any necessary read value requirements. The
other 7 axioms that proved unnecessary were FIFO axioms that
added “convenience” edges which were not necessary to produce a
cycle in any of our forbidden litmus tests. For instance, STB_FIFO

Table 2: Synthesis time (in minutes and seconds) versus the
number of axioms removed from each microarchitecture.
Blue entries correspond to trivial synthesis results. (T/O =
Timeout.)

# Vscale FiveStage OoOSLR Peekaboo
1 0m3s 0m12s 0m12s 0m17s
2 0m3s 0m12s 0m12s 0m17s
3 0m3s 0m10s 15m24s 0m16s
4 0m7s 12m3s 19m48 27m4s
5 0m7s 9m13s 14m22s 47m30s
6 0m6s 21m5s 98m20s 52m49s
7 1m1s 16m13s T/O 106m58s
8 1m52s T/O T/O 69m56s
9 2m8s T/O T/O 90m41s
10 58m44s T/O T/O T/O

in FiveStage was synthesised as an empty axiom because it adds
edges between StoreBuffer stages, which (despite being a valid
ordering) turn out not to contribute to 𝜇hb cycles that make the for-
bidden tests unobservable. This instance shows how PipeSynth can
potentially be used in the future to optimise 𝜇spec specifications
by reducing their size.

We were able to individually synthesise all axioms for Multi-V-
scale, with the longest individual synthesis time being 83 seconds.
We failed to synthesise the Reads axiom from the remaining archi-
tectures and the L1ViCLs axiom from FiveStagePeekaboo within
2 hours each. These axioms each involved 4 or more quantifiers,
making them rather complex, so it is not extremely surprising that
we were unable to synthesise them. Three of these axioms can
be replaced by combinations of our templates and 1 (Reads from
FiveStagePeekaboo) did not fit our templates. We will investigate
feasible synthesis of such axioms in future work.

8.2 Multi-Axiom Synthesis Results
To evaluate the performance of PipeSynth when synthesising multi-
ple axioms simultaneously, we progressively removed axioms from
each microarchitecture as outlined in Section 7.3. Table 2 shows the
time of each such synthesis against the number of axioms removed
for each microarchitecture. Trivial synthesis results (with all con-
juncts as True) are highlighted in blue. For Multi-V-scale, PipeSynth
found a suitable synthesis result for each query, including when all
10 axioms were removed. In other words, we were able to generate
a complete microarchitectural specification for Multi-V-scale that
satisfies the litmus tests and execution traces in under 1 hour. For
FiveStage, FiveStageOoOSLR and FiveStagePeekaboo, we were able
to simultaneously synthesise 7 (4 non-trivial), 6 (4 non-trivial), and
9 (6 non-trivial) axioms respectively within our 2 hour time limit.
We believe that our results bode well for using PipeSynth to syn-
thesise larger portions of microarchitectural specifications in the
future.

Our multi-axiom synthesis times generally increase as we re-
move axioms from each microarchitecture, as the synthesis func-
tions must replace more of the specification. However, they do
not monotonically increase with respect to the number of axioms
removed. This is because the removal of axioms can lead to a more
flexible synthesis query where synthesis solutions do not need
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to uphold the exact orderings of the original microarchitecture,
potentially enabling faster discovery of a solution.

9 RELATEDWORK
There has been much work on formal MCM specification and
verification in recent years. Researchers have developed formal
MCM specifications for many commercial ISAs by hand, including
x86 [38], Power [2, 31, 48], ARMv8 [43], and RISC-V [46]. There has
also been work on formal specifications of GPU MCMs [1, 28, 56].

For formalMCMverification of hardware implementations against
their ISA MCMs, there are two main lines of work. The first is
the automated Check suite [27, 29, 35, 36, 54] and tools based on
it [34, 60]. The second line of work is Kami [7, 55], which conducts
more manual verification using the Coq proof assistant. These tools
take formal specifications as input, and cannot generate such spec-
ifications by themselves. In contrast, PipeSynth enables users to
automatically generate formal specifications from litmus tests and
execution traces.

Program synthesis is the automatic generation of programs
matching a high-level correctness specification. In recent decades,
notable variants of program synthesis include counterexample-
guided synthesis (CEGIS) [50], oracle-guided synthesis (OGIS) [21],
and syntax-guided synthesis (SyGuS) [3]. Popular synthesis frame-
works include Sketch [49], PROSE [42], and Rosette [52]. More
recently, researchers have proposed Semantics-Guided Synthesis
(SemGuS) [22] and Synthesis Modulo Oracles (SyMO) [40] as alter-
native synthesis methods. We refer the reader to a recent survey
on program synthesis [16] for a more detailed overview of the area.
PipeSynth utilises SyGuS for its synthesis. However, it is well-placed
to use techniques like OGIS and SyMO in the future. For instance,
PipeSynth can use execution traces from simulators, which can
thus function as oracles (Section 5.5).

MemSynth [6] takes in a set of allowed and forbidden litmus tests
plus a sketch (i.e., template) of the overall structure of an ISA-level
MCM specification, and synthesises a complete ISA-level specifi-
cation matching the tests and sketch. Like MemSynth, PipeSynth
also synthesises formal specifications related to MCMs using litmus
tests. However, PipeSynth synthesises microarchitectural ordering
axioms (as opposed to ISA-level MCMs). PipeSynth also requires
microarchitectural execution traces in addition to litmus tests for its
synthesis, as litmus test outcomes do not convey any specific infor-
mation about the microarchitectural orderings of events that need
to be maintained by its synthesised axioms. (See also Section 4.3.) In
addition, while MemSynth’s synthesis is useful only when creating
or modifying an ISA, PipeSynth’s synthesis is potentially useful in
the development of any parallel microarchitecture, even if its ISA
MCM was formalised long ago.

Prior work on synthesising formal specifications for hardware
includes RTL2𝜇spec [19] and the ILA line of work [51, 58, 59].
Meanwhile, Godbole et al. [13] convert 𝜇spec axioms to operational
models (which are compilable to RTL). Both RTL2𝜇spec and the ILA
line of work are capable of generating microarchitectural specifica-
tions, with RTL2𝜇spec generating 𝜇spec axioms like PipeSynth does.
However, both of these approaches use an RTL implementation
of the hardware to accomplish their synthesis, which means that
they can only be used after the processor has been implemented.

Formal verification can be much more effective when it is used
before RTL is written, as doing so catches bugs earlier and can
reduce overall development time [33]. PipeSynth enables pre-RTL
synthesis of microarchitectural specifications, enabling users to
leverage the benefits of early-stage design time verification without
writing entire specifications by hand.

10 CONCLUSION
Formal methods can provide the strong correctness guarantees
we require from our processors today. However, most automated
formal verification approaches require formal specifications of the
system being verified. These specifications are typically written by
hand, which is tedious and error-prone. In addition, most architects
and hardware engineers today do not have formal methods exper-
tise, making it difficult for them to write formal specifications for
their processors. Prior work on automated specification synthesis
either does not apply to microarchitecture or requires an RTL im-
plementation. This hampers the use of early-stage pre-RTL formal
verification approaches, which can catch bugs earlier and reduce
verification overhead and development time.

In response, we present PipeSynth, an automated formal method-
ology and tool for the pre-RTL formal synthesis of microarchitec-
tural ordering axioms in the domain-specific 𝜇spec language. Given
a partial 𝜇spec ordering specification, litmus tests, and observable
execution traces, PipeSynth can automatically synthesise additional
𝜇spec ordering axioms that are necessary to guarantee correctness
for the provided tests and traces. PipeSynth thus helps architects
and hardware engineers automatically generate formal ordering
specifications for their microarchitectures even if they do not have
formal methods expertise. In doing so, it will enable the increased
use of formal verification for emerging microarchitectures. This
will help architects catch bugs faster and will substantially improve
the correctness of the processors of tomorrow.
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A ARTIFACT APPENDIX
A.1 Abstract
This artifact5 contains the code, litmus tests, and execution traces
for PipeSynth. PipeSynth can synthesise 𝜇spec microarchitectural
ordering axioms to be added to a partial 𝜇spec specification so that
the overall specification respects the constraints of provided litmus
tests and execution traces.

A.2 Artifact Check-List (Meta-Information)
• Run-time environment: PipeSynth requires Cython, scikit-

build, pytest, toml, CVC5-0.0.4 python bindings, and theCVC5-
1.0.2 binary. We have tested PipeSynth onmacOS Ventura and
Monterey.

5Official artifact DOI: https://doi.org/10.5281/zenodo.7592848.

https://doi.org/10.5281/zenodo.7592848
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• Metrics: Execution time is our main metric. When multiple
axioms are synthesised, another metric is also the number of
axioms we were able to synthesise.
• Output: Our output is a log file consisting of the runtime of
each experiment and the synthesis result, if successful.
• Experiments: The procedure for running our experiments is
detailed in the Experiment Workflow section.
• How much disk space required (approximately)?: 2GB
• How much time is needed to prepare workflow (approxi-
mately)?: 15 minutes
• How much time is needed to complete experiments (approxi-
mately)?: 48 hours
• Publicly available?: Yes, our code is available at https://github.
com/chasenorman/PipeSynth-AEC
• Code licenses (if publicly available)? MIT License
• Data licenses (if publicly available)? N/A

A.3 Description
A.3.1 How to Access. PipeSynth is available at https://github.com/
chasenorman/PipeSynth-AEC. Our official artifact DOI is https:
//doi.org/10.5281/zenodo.7592848.

A.3.2 Software Dependencies. PipeSynth requires Python 3.8, Cython,
scikit-build, pytest, toml, Python bindings for CVC5-0.0.4, and the
binary for CVC5-1.0.2.

A.4 Installation
A.4.1 Setup Python3.8 Required Build Libraries. Our artifact uses
the CVC5 solver’s Python APIs to generate SyGuS-IF files. The
specific Python versionwe use is Python3.8. PipeSynth also requires
the following Python libraries:
• Cython
• scikit-build
• pytest
• toml

Installation of the packages above can be accomplished by pip:
pip install Cython
pip install scikit-build
pip install pytest
pip install toml

A.4.2 Setup the CVC5 Execution Environment. Our artifact cur-
rently requires 2 versions of CVC5, one for generating SyGuS files
and one for solving them. CVC5-0.0.4 along with its Python-Binding
API is used to generate SyGuS-IF files, while CVC5-1.0.2 is used to
solve these generated SyGuS-IF files. It is not completely straight-
forward for us to use just one version of CVC5. The Python APIs
available in CVC5-0.0.4 (which we use for generating SyGuS-IF
files) are not the same as those in CVC5-1.0.2. On the other hand,
CVC5-1.0.2 contains a bugfix for a soundness error in SyGuS solv-
ing, so we can’t use the old version for the purpose of solving. We
are currently working on updating our codebase to just use one
CVC5 version in an effort to make it easier to use, and will update
our GitHub repository when this change is ready.

Run the following commands, all of which should be ex-
ecuted under the project folder. First, install CVC5-0.0.4 for
Python API Bindings:
• Download CVC5-0.0.4 source code

• Build CVC5-0.0.4 and Python-Binding from source code with
the following terminal commands

./configure.sh --python-bindings
--auto-download

cd build
make
sudo make install
sudo cp -r ./build/lib/*

$( python -c 'import sysconfig;
print(sysconfig.get_paths()["purelib"])')

Next, install the CVC5-1.0.2 binary for SyGuS solving. If you
are on Linux, change cvc5-macOS in the command below to
cvc5-Linux. If you are on an ARM Mac, change cvc5-macOS
in the command below to cvc5-macOS-arm64.

wget -O cvc5 https://github.com/cvc5/cvc5/
releases/download/cvc5-1.0.2/cvc5-macOS

Place this binary in the project root directory such that
./cvc5 executes the binary.

A.4.3 Basic Test. The following terminal commands, executed in
the PipeSynth root directory, should produce a file that is named
out/vscale-pofetch-fifo.sy and then run CVC5 on the file. The
synthesis result and runtime of CVC5 will be written to a file called
out/results.txt.

python3 main.py Vscale pofetch fifo
./benchmark

Synthesis should take no more than 2 minutes. CVC5 should not
report that the query is infeasible, nor should CVC5 crash. To reset
to a clean slate, empty the out directory.

A.5 Experiment Workflow
A.5.1 Single-Axiom Synthesis. Figure 10 in our paper shows our
single-axiom synthesis runtimes for four microarchitectures (Vs-
cale, FiveStage, FiveStageOoOSLR, and FiveStagePeekaboo). Table 1
shows how many axioms of each type we were successfully able to
synthesise during our single-axiom synthesis. These results can be
reproduced using the following procedure.

The following commands generate SyGuS files for the synthesis
of each of the axioms in our four microarchitectures. Each SyGuS
file attempts to synthesise one axiom in a microarchitecture, given
all other axioms and litmus tests and execution traces.

python3 main.py Vscale all
python3 main.py FiveStage all
python3 main.py FiveStageOoOSLR all
python3 main.py FiveStagePeekaboo all

The above commands will generate the SyGuS files for single-axiom
synthesis and put them in the out/ directory. Next, use CVC5 to
attempt synthesis of the queries in the files with our benchmarking
script:

./benchmark

This script will run CVC5 on each SyGuS file in the out/ directory,
with a time limit of 2 hours each. The synthesis results and runtimes
will be found in the out/results.txt file.

https://github.com/chasenorman/PipeSynth-AEC
https://github.com/chasenorman/PipeSynth-AEC
https://github.com/chasenorman/PipeSynth-AEC
https://github.com/chasenorman/PipeSynth-AEC
https://doi.org/10.5281/zenodo.7592848
https://doi.org/10.5281/zenodo.7592848
https://cython.org
https://pypi.org/project/scikit-build/
https://docs.pytest.org/en/6.2.x/
https://pypi.org/project/toml/
https://github.com/cvc5/cvc5/releases?page=2
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A.5.2 Multi-Axiom Synthesis. Table 2 details our multi-axiom syn-
thesis results for our four microarchitectures. To reproduce our
multi-axiom synthesis results, please follow the procedure below for
eachmicroarchitecture. For demonstration, we use FiveStageOoOSLR.
We will remove axioms from FiveStageOoOSLR in the order speci-
fied by axioms.txt, which corresponds to the order in which we
removed axioms when generating Table 2 for each microarchitec-
ture.

Our multi-axiom synthesis flow removes axioms iteratively from
a microarchitecture and only adds synthesis templates for them if
necessary. (See Section 7.3 in our paper for details.) The first axiom
we removed from FiveStageOoOSLRwas stbfifo. To generate and
run CVC5 on a SyGuS file corresponding to the removal of stbfifo
from FiveStageOoOSLR, do the following:
python3 main.py FiveStageOoOSLR stbfifo
time ./cvc5 out/FiveStageOoOSLR-stbfifo.sy

CVC5 should be successful here, indicating that additional templates
are not necessary at this point. Continue by removing both the first
and second axioms, namely stbfifo and mfence:
python3 main.py FiveStageOoOSLR

stbfifo mfence
time ./cvc5 out/FiveStageOoOSLR-

stbfifo-mfence.sy

Continue until a synthesis failure. In this case, we expect the first
failure to occur after the removal of the third axiom, pofetch, due
to an insufficient variety of templates in the SyGuS file to allow the
synthesis to succeed:
python3 main.py FiveStageOoOSLR

stbfifo mfence pofetch
time ./cvc5 out/FiveStageOoOSLR-

stbfifo-mfence-pofetch.sy

On synthesis failure, add the names of the template(s) correspond-
ing to the last axiom removed as arguments. The templates are
specified by axioms.txt. In this case, the template for the pofetch
axiom is fifo.
python3 main.py FiveStageOoOSLR

stbfifo mfence pofetch fifo
time ./cvc5 out/FiveStageOoOSLR-

stbfifo-mfence-pofetch-fifo.sy

Continue to remove axioms (in the order specified by axioms.txt)
and re-run CVC5, adding templates corresponding to the last re-
moved axiom where necessary. Stop when the synthesis times out
(i.e., takes longer than 2 hours).

A.6 Evaluation and Expected Results
For our single and multi-axiom synthesis cases, we expect our
synthesis results (synthesis success/timeout) to correspond to those
in Tables 1 and 2 respectively. We expect our runtimes for single
and multi-axiom synthesis to correspond to those in Figure 10
and Table 2 respectively, making allowances for any differences
in performance between the machines we used and those you use,
and for any nondeterminism in CVC5’s operation.

The runtimes for single-axiom synthesis runs can be directly read
from the results.txt file. For multi-axiom synthesis, they will be

output as a result of the time command for successful synthesis
queries, or the timeout will be reached.

A.7 Experiment Customization
Any set of axioms can be removed from architecture <arch> and
replaced with a set of templates by following this form:

python3 main.py <arch> <axiom_1> ... <axiom_n>
<template_1> ... <template_k>
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