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Abstract—A system may be modelled as an operational model
(which has explicit notions of state and transitions between
states) or an axiomatic model (which is specified entirely as
a set of invariants). Most formal methods (e.g., IC3, invariant
synthesis, etc) are designed for operational models and are largely
inaccessible to axiomatic models. Furthermore, no prior method
exists to automatically convert axiomatic models to operational
ones, so operational equivalents to axiomatic models had to be
manually created and proven equivalent.

In this paper, we advance the state-of-the-art in axiomatic to
operational model conversion. We show that general axioms in
the µspec axiomatic modelling framework cannot be translated
to equivalent finite-state operational models. We also derive
restrictions on the space of µspec axioms that enable the
feasible generation of equivalent finite-state operational models
for them. As for practical results, we develop a methodology for
automatically translating µspec axioms to equivalent finite-state
automata-based operational models. We demonstrate the efficacy
of our method by using the models generated by our procedure
to prove the correctness of ordering properties on three register-
transfer-level (RTL) designs.

I. INTRODUCTION

When modelling hardware or software systems using for-
mal methods, one traditionally uses operational models (e.g.
Kripke structures [1]), which have explicit notions of state
and transitions. However, one may also model a system
axiomatically, where instead of a state-transition relation, the
system is specified entirely by a set of axioms (e.g., invariants)
that it maintains. Executions that obey the axioms are allowed,
and those that violate one or more axioms are forbidden. The
vast majority of formal methods works use the operational
modelling style. However, axiomatic models have been used to
great effect in certain domains such as memory models, where
they have shown order-of-magnitude improvements in verifi-
cation performance over equivalent operational models [2].

Operational and axiomatic models each have their own
advantages and disadvantages [3]. Operational models can be
more intuitive as they typically resemble the system that they
are modelling. Hence one is not required to reason about
invariants to write the model. On the other hand, axiomatic
models tend to be more concise and potentially offer faster
verification [2].

Many formal methods (e.g., refinement procedures [4],
invariant synthesis, IC3/PDR [5], [6]) are set up to use op-
erational models. Axiomatic models are largely or completely
incompatible with these techniques, as the axioms constrain
full traces rather than a step of the transition relation. One way
to take advantage of these techniques when using axiomatic

models is to create and use operational models equivalent to
the axiomatic models. The only prior method of doing this
was to first manually create the operational model and then
manually prove it equivalent to the axiomatic model. There
have been several works doing so [2], [7], [8], [9], [10].

Manually creating an operational model and proving equiv-
alence is cumbersome and error-prone. The ability to auto-
matically generate operational models equivalent to a given
axiomatic model would be beneficial, eliminating both the time
spent creating the operational model as well as the need for
tedious manual equivalence proofs. Generated models can then
be fed into techniques currently requiring operational models
(e.g. IC3/PDR).

To this end, we make advances in this paper towards
the automatic conversion of axiomatic models to equivalent
operational models, on both theoretical and practical fronts.
In our work, we focus specifically on µspec [11], a well-
known axiomatic framework for modelling microarchitectural
orderings, which has been used in a wide range of contexts
[12], [13], [14], [15], [16] including memory consistency,
cache coherence and hardware security.

On the theoretical front, we show that it is impossible
to convert general µspec axioms to equivalent finite-state
operational models. However, we show that it is feasible to
generate equivalent operational models for a specific subset of
µspec (henceforth referred to as µspecRE). On the practical
side, we develop a method to automatically translate universal
axioms1 in µspecRE into equivalent finite-state operational
models comprised of building blocks we term as axiom
automata (finite automata that monitor whether an axiom has
been violated). Furthermore, for arbitrary µspec axioms, our
method can generate operational models that are equivalent to
the axioms up to a program-size bound.

To evaluate our technique, we convert axioms for three RTL
designs to their corresponding operational models: an in-order
multicore processor (multi_vscale), a memory-controller
(sdram_ctrl), and an out-of-order single-core processor
(tomasulo). We showcase how the generated models can
be used with procedures like BMC and IC3/PDR which are
usually inaccessible for axiomatic models, and we produce
both bounded and unbounded proofs of correctness.

Overall, the contributions of this work are as follows:
• We prove that generation of equivalent finite-state oper-

ational models for arbitrary µspec axioms is impossible.

1Axioms that do not contain ∃ quantifiers.
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Fig. 1: Roadmap to obtain finite-state operational models.

• We provide a procedure for generating equivalent finite-
state operational models for universal axioms in µspecRE.

• We propose the axiom-automata formulation to generate
equivalent finite-state operational models from universal
axioms in µspecRE (or from arbitrary µspec axioms if
only guaranteeing equivalence up to a bounded program
size).

• We evaluate our method for operational model gen-
eration by using our generated models to prove the
(bounded/unbounded) correctness of ordering properties
on three RTL designs: multi_vscale, tomasulo,
and sdram_ctrl.

Generality. While axiomatic models enforce constraints
over complete executions, operational models do this local
to each transition. Ensuring that behaviours generated by the
latter are also allowed by the former requires performing non-
local consistency checks which are hard to reason about, es-
pecially for unbounded executions. This has been observed in
manual operationalization works as well. Taking the example
of [7], (which operationalizes C11), we address issues of elim-
inating consistent executions too early [7, §3] and repeatedly
checking consistency [7, §4] by developing concepts such as
t-reordering boundedness (Def. 6) and extensibility (Def. 7).
Though we focus on µspec, we believe many of the underlying
challenges and concepts carry over to frameworks such as Cat
[2].

Outline. §II covers the syntax and semantics of µspec used
in this paper. §III covers the formulation of the space of oper-
ational models we consider. They have finite control-state and
read-only input tapes for the instruction streams (programs)
executed by each core. §IV defines our notions of soundness,
completeness, and equivalence when comparing operational
and axiomatic models. In §V, we show that it is impossible
to synthesise equivalent finite-state operational models from
arbitrary axiomatic models. We develop an underapproxima-
tion, called t-reordering boundedness, that addresses this by
bounding the depth of reorderings possible. In §VI we restrict
µspec further by requiring extensibility (preventing current
events from influencing orderings between previous events).
Restricting µspec by t-reordering boundedness and extensibil-
ity is sufficient to enable the automatic generation of equiva-
lent finite-state operational models (Thm. 2). §VII describes
our conversion procedure based on axiom automata. §VIII
evaluates our technique by using it to generate operational
models, which are then used for checking properties of RTL
designs. §IX covers related work, and §X concludes, with §XI
suggesting avenues for future work. This paper is accompanied
by an extended version which contains supplementary material
and proofs [17].

II. µSPEC SYNTAX AND SEMANTICS

A. µspec Syntax

〈AX〉 := ∀i AX | ∃i AX | φ(i1, · · · , im)

〈φ〉 := φ ∧ φ | φ ∨ φ | ¬φ | 〈atom〉
〈atom〉 := i1 <r i2 | hb(i1.st, i2.st) | P(i1, . . . )

〈st〉 := Fet | Dec | Exe | WB | · · ·

Fig. 2: µspec Syntax.

µspec [11] is a domain-specific language used for spec-
ifying microarchitectural orderings. A µspec model consists
of axioms that enforce first-order constraints over execution
graphs; each axiom quantifies over instructions and is required
to be a sentence (i.e. not have any free variables). Execution
graphs that satisfy the axioms and are acyclic are deemed
as valid executions. While ISA-level models [2], [18], [19]
treat single instructions as atomic entities, µspec decomposes
the execution of an instruction into a set of atomic events.
Each instruction i and stage st is associated with an event
i.st. A program execution is viewed as a directed acyclic
graph called a micro-architectural happens-before graph (µhb
graph) [12]. Such a graph for a given program has nodes
corresponding to events of form i.st for each instruction i in
the program and each stage st prescribed by the model. Edges
in the graph correspond to the happens-before (hb) relation:
hb(e1, e2) says that e1 happened before e2. Thus, a cyclic µhb
graph corresponds to an impossible scenario where an event
happens before itself, and thus represents an execution that
cannot occur on the microarchitecture.

Fig. 2 specifies µspec syntax. It has three types of atoms:

(i) hb(i1.st, i2.st): happens-before predicate
(ii) i1 <r i2: the reference order (typically the program order)

(iii) P(i1, . . . ): instruction predicate atoms

Atoms of type (ii) capture the order in which instructions
appear in a given program thread. Atoms of type (iii) are pred-
icates over instructions which capture instruction properties,
e.g. opcode, source/destination registers. We note that µspec
models in literature [11] also make use of the NodeExists
predicate which identifies event nodes that occur in the exe-
cution. We do not model NodeExists in this paper, but our
approach can be augmented to incorporate it (see [17]).

We identify two types of axioms of interest: Universal
axioms are of the form: ∀i1 · · · ∀ik φ(i1, · · · , ik), and rep-
resent constraints applied symmetrically over all tuples of
instructions in a program. Predicate-free axioms are axioms
that do not have occurrences of predicate (P) atoms. We extend
these terms to an axiomatic semantics if all axioms are of
that type. In this work, our theoretical treatment focuses on
universal semantics. Practically though, some underlying ideas
carry over to arbitrary axioms as we discuss in §VII, §VIII.



ax0: ∀ i1. hb(i1.Exe,i1.Com)
ax1: ∀ i1,i2. (i1<ri2 ∧ DepOn(i1,i2))

=⇒ hb(i1.Exe,i2.Exe)
ax2: ∀ i1,i2. SameCore(i1,i2) ⇒
(hb(i1.Exe,i2.Exe)∨hb(i2.Exe,i1.Exe))
ax3: ∀ i1,i2. i1<ri2 ⇒ hb(i1.Com,i2.Com)

Fig. 3: An example axiomatic model.

B. Illustrative µspec Example

Consider the four axioms in Fig. 3. In the axioms, i1,
i2 are instruction variables and Exe,Com are stage names
(short for execute and commit respectively). The axiom ax0
requires that for each instruction, the execute stage (Exe) of
that instruction must happen before the commit stage (Com).
Intuitively, ax1 says that when i2 depends on i1 (captured
by the predicate DepOn) , i1 should be executed before i2;
ax2 says that the execute events of instructions on the same
core should be totally ordered by hb. The third axiom ax3
says that when i1 and i2 are in program order (denoted by
<r), i1 must be committed before i2.

Fig. 4 shows valid and invalid execution graphs for the
program snippet in Fig. 5. The snippet is of a 2-core program,
with two instructions per core. Instruction i1 is dependent on
the result of i0 (since its source register is the same as the
destination of i0). In the example axiomatic semantics, ax1
requires that the execute event of instruction i0 be before that
of i1. The execution in Fig. 4b is invalid w.r.t. ax1 since
i1.Exe is executed before i0.Exe. The execution in Fig. 4a is
valid even though the i2.Exe and i3.Exe events are reordered
since i3 does not depend on i2. Both executions are valid w.r.t.
ax0, ax2 and ax3.

C. Programming Model

We consider multi-core systems with each core executing
a straight-line program over a finite domain of operations.
This is common in memory models [2], [12], [16], [20] and
distributed systems [21] literature.

1) Cores: The system consists of n processor cores:
Cores = [n]. Each core executes operations from a finite set
O. The axiomatic model A assigns predicates from P an in-
terpretation over the universe O. We denote this interpretation
as PA ⊆ Ok for an arity-k predicate.

2) Instruction streams: An instruction stream I is a word
over O: I ∈ O∗. A program P is a set of per-core instruction
streams: {Ic}c∈Cores. For a core c and label 0 ≤ j < |Ic|,
we call the triple (c, j, Ic[j]) an instruction2. We denote
components of instruction i = (c, j, Ic[j]), as: c(i) = c, label
λ(i) = j and operation op(i) = Ic[j]. The set of instruc-
tions occurring in P is: instrsOf(P) = {(c, j, Ic[j]) | c ∈

2Note the terminology: operations are commands that the core can execute.
Since we interpret predicates over O we require |O| to be a finite set for
computability reasons. Instructions are operations combined with the label
and core identifier (and hence form an infinite set).

Cores, 0 ≤ j < |Ic|} and the set of all possible instructions
as I = Cores× Z≥0 ×O.

3) Instruction stages: Instruction execution in µspec is de-
composed into stages. The set of stages, Stages, is a parameter
of the semantics. Instruction i performing in stage st, (i.e. i.st)
is an atomic event in an execution. The execution of P is
composed of the set of events: eventsOf(P) = {i.st | i ∈
instrsOf(P), st ∈ Stages}. The set of all possible events is
E = {i.st | i ∈ I, st ∈ Stages}.

Definition 1 (Event). An event e is of the form i.st. It
represents the instruction i ∈ I, (atomically) performing in
stage st ∈ Stages.

Example 1. Following the example in Fig. 5 we consider
an architecture with two opcodes: add, lw for add and load
respectively. For each of these, we may have several actual
operations (with different operands), thus giving us the set O.
The program P in Fig. 5 has two cores: Cores = {c0, c1}
and four instructions: instrsOf(P) = {i0, i1, i2, i3}. We have,
for example, c(i1) = c0, λ(i1) = 1,op(i1) = add r3, r2, r1

while c(i2) = c1, λ(i2) = 0. The instruction stream for core
c0 is I0 = i0 · i1 anf that of core c1 is I1 = i2 · i3.

Let us suppose that this program is executed on a 4-stage
microarchitecture with Stages = {Fet,Dec,Exe,WB,Com}.
The events corresponding to the program are given
by eventsOf(P) = {i0.Fet, i0.Dec, · · · , i3.Com} with
|eventsOf(P)| = 4× 5 = 20.

D. Formal µspec Semantics

We now define the formal semantics of µspec axioms.

Definition 2 (µhb graph). For a program P , a µhb graph
is a directed acyclic graph, G(V,E), with nodes V =
eventsOf(P) representing events and edges representing the
happens-before relationships, i.e. (e1, e2) ∈ E ≡ hb(e1, e2).

Validity of µhb graph w.r.t. an axiomatic semantics: Con-
sider an axiomatic semantics A (i.e. a set of axioms). A µhb
graph G = (V,E) is said to represent a valid execution of
program P under A if it satisfies all the axioms in A. We
denote the validity of a µhb graph G by G |=P A.

Satisfaction w.r.t. an axiom: We first define satisfaction for
the quantifier-free part, starting at the atoms. Let s : I(AX)→
I be an assignment for the symbolic instruction variables
I(AX) in axiom AX.

G |= i1[s] <r i2[s] ⇐⇒ c(s(i1)) = c(s(i2))
∧ λ(s(i1)) < λ(s(i2)) ...(i)

G |= P(i1, · · · , im)[s] ⇐⇒
(op(s(i1)), · · · ,op(s(im))) ∈ PA ...(ii)

G |= hb(i1.st1, i2.st2)[s] ⇐⇒
(s(i1).st1, s(i2).st2) ∈ E+ ...(iii)

In (i), the reference order <r relates instructions i1, i2
from the same instruction stream if i1 is before i2. In (ii)
we extend predicate interpretations, PA, (defined over O) to
instructions by taking the op(·) component. Finally, hb atoms



(a) (b)

Fig. 4: Valid (a) and an invalid (b) execution graphs for the program in Fig. 5 and axioms in Fig 3. All edges represent the
hb relation. The red (bold) edge violates ax1.

i0: lw r1, 42(r0)
i1: add r3, r2, r1

i2: lw r4, 42(r0)
i3: add r3, r2, r1

Fig. 5: Example program snippet

are interpreted as E+, i.e. transitive closure of E, as stated in
(iii). Operators ∧,∨,¬ have their usual semantics.

We now define the satisfaction of a (quantified) axiom AX
by a graph G, denoted by G |=P AX above.

G |=P φ[s] ≡ G |= φ[s]
for quantifier-free φ

G |=P ∀i φ[s] ≡ G |=P φ[s[i← i]]
for all i ∈ instrsOf(P) \ range(s)

G |=P ∃i φ[s] ≡ G |=P φ[s[i← i]]
for some i ∈ instrsOf(P) \ range(s)

The base case is G |=P φ[s] (where φ is quantifier-free)
and follows the earlier definitions. We extend G |=P φ with
(almost) usual quantification semantics: ∀ (∃) quantifies over
all (some) instructions in instrsOf(P). Execution G is a valid
execution of P under semantics A, denoted as G |=P A, if
G |=P AX for all axioms AX in A.

III. OPERATIONAL MODEL OF COMPUTATION

To concretize our claims, we introduce a model of com-
putation that characterizes the models of interest. We choose
to focus on finite-state operational models that generate to-
tally ordered traces, where transitions represent (i.st) events.
While there are less restrictive models (e.g. event structures
[22], [23]), such models require specialized, typically under-
approximate, verification techniques (e.g. [24], [25], [26]).
Our choice is motivated by the ability to (a) have finite-state
implementations of generated models (e.g. in RTL) and (b)
verify against these models with off-the-shelf tools (e.g. model
checkers using BDD and SMT-based backends).

A. Model of computation

Intuitively, the model of computation resembles a 1-way
transducer [27], [28] with multiple (read-only) input tapes (one
tape for each instruction stream). This allows us to execute
programs of unbounded length with a finite control state.3

1) Model definition: An operational model is parameterized
by cores Cores, stages Stages, and a history parameter h ∈
N ∪ {∞} which bounds the length of tape to the left of the
head. It is a tuple (Q,∆, qinit, qfinal):
• Q is a finite set of control states

3A Kripke structure-based formalism is insufficient since we want to
execute unbounded programs with distinguished instructions without explicitly
modelling control logic.

• ∆ ⊆ Q × (I ∪ { }̀)|Cores| × Q × Act is the transition
relation where Act is the set of actions

• qinit ∈ Q is the initial state
• qfinal ∈ Q is the final state which must be absorbing (i.e.

it has a self-loop)
A model is finite-state if Q is finite, and it has bounded-
history if h ∈ N. For the end goal of effective verification,
we are interested in finite-state, bounded-history models since
it is precisely such models that can be compiled to finite-state
systems.

2) Model semantics: A configuration is a triple γ =
(U, q,V) where U : Cores → I∗, V : Cores → I∗ and
q ∈ Q. Intuitively U (V) represent, for each instruction stream,
the contents of the input tape to the left (right) of the head
respectively. For a bounded history machine, a configuration is
allowed only if |U(c)| ≤ h for all c ∈ Cores. For unbounded
history all configurations are allowed.

The set of actions is

Act = {right(c) | c ∈ Cores} ∪
{stay} ∪
{sched(c, i, st) | c ∈ Cores, st ∈ Stages, i ∈ [h]} ∪
{drop(c, i) | c ∈ Cores, i ∈ [h]}

Intuitively, these represent in order: motion of the tape head
for c to the right, silent (no-effect), generation of an event,
and removing the ith instruction from the left of the head. We
provide full semantics in the supplementary material [17].

For word w ∈ I∗, let fst(w) denote its first element if
w 6= ε and òtherwise. Transitions are enabled based on
the control state and the instructions that the tape-heads point
to: transition (q1, (i1, · · · , i|Cores|), q2, ) ∈ ∆ is enabled in
configuration γ = (U, q,V) if q1 = q and fst(V(c)) = ic for
each c ∈ Cores.

3) Runs: The initial configuration is given by γinit(P) =
(Uinit, qinit,Vinit) where Uinit = λc. ε and Vinit = λc. Ic, i.e.
for each core, the left of the tape head is empty, and the right
of the tape head consists of the instruction stream for that core.
Starting from γinit(P), the machine transitions according to the
transition rules. Such a sequence of configurations γinit(P) =
γ0

e1−→ γ1 · · ·
em−−→ γm, where all γi are allowed is called a run.

A run is called accepting if it ends in the state qfinal.
4) Traces: The sequence of event labels σ = e1 · · · em

annotating a run is the trace corresponding to the run. Each
label is an event from E and hence σ ∈ E∗. We view σ as
a (linear) µhb execution graph e1

hb−→ e2 · · ·
hb−→ em, and

hence define σ |= A in the usual way. Accordingly, we will
sometimes refer to σ as an execution of a program P . The set



of traces corresponding to accepting runs of an operational
model M on a program P are denoted as tracesM(P) ⊆ E∗.

IV. SOUNDNESS, COMPLETENESS, AND EQUIVALENCE

We proceed to formalize the notion of equivalence that
relates axiomatic and operational models. In literature [29],
[2], ISA-level behaviours of programs have been annotated
by the read values of load operations. Hence, one notion of
equivalence might be to require that identical read values be
possible between the models. While this may be reasonable for
ISA-level behaviours, it can hide microarchitectural features:
different microarchitectural executions can have identical ar-
chitectural results. Given that µspec models executions at the
granularity of microarchitectural events, we adopt a stronger
notion of equivalence. For soundness, we require that the
operational semantics generates linearizations of µhb graphs
that are valid under the axiomatic semantics. Formally:

Definition 3 (Soundness). An operational model M is sound
w.r.t. A if for any program P , each trace in tracesM(P) is a
linearization of some µhb graph that is valid under A.

Before defining completeness, we need to address a subtlety.
Since operational executions are viewed as µhb graphs by
interpreting trace-ordering as the hb ordering, the operational
model always generates linearized µhb graphs. However, in
general, linearizations of valid µhb graphs could end up being
invalid w.r.t the axioms. Consider Example 2.

Example 2 (Non-refinable axiom). For the following axiom
with Stages = {S}, the graph (a) is a valid execution. How-
ever, both of its linearizations (b) and (c) are invalid. Thus,
all of the (totally-ordered) traces generated by our operational
models will be deemed invalid under the axiomatic semantics.
This renders a direct comparison between operational and
axiomatic executions infeasible.

∀ i1,i2.(¬hb(i1.S,i2.S)∧¬hb(i2.S,i1.S))

To address this issue, we develop the notion of refinability.
For two µhb graphs G = (V,E) and G′ = (V ′, E′), we say
that G′ refines G, denoted G v G′ if (1) V = V ′ and (2)
(e1, e2) ∈ E+ =⇒ (e1, e2) ∈ E′+.

Definition 4 (Refinable hb). An axiomatic semantics A is
refinable if for any program P , and µhb graph G s.t. G |=P A,
we have G′ |=P A for all linear graphs G′ satisfying G v G′.

Refinability says that all linearizations of a valid graph are
valid. While executions under axiomatic semantics are given
by (partially-ordered) µhb graphs, our class of operational
models generate totally-ordered traces. Refinability bridges
this gap by relating valid µhb graphs to valid traces. Interest-
ingly, we can check whether a universal axiomatic semantics
satifies refinability, which at a high level, we show via a small
model property (Lemma 1).

Lemma 1. Given a universal axiomatic semantics we can
decide whether the semantics is refinable.

Refinability is especially important for completeness. For
non-refinable semantics, validity of linearizations cannot be
checked based on the axioms, as all linearizations may be
invalid (Example 2).

We assume that the axiomatic semantics satisfies
refinability.

We define completeness and our formal problem statement.

Definition 5 (Completeness). An operational model M is
complete, if for any program P and valid µhb graph G |=P A,
tracesM(P) contains all linearizations of G.

Formal Problem Statement Given an axiomatic semantics
A, a set of cores Cores and stages Stages, generate a finite
state, bounded history model, M = (Q,∆, qinit, qfinal), which
satisfies soundness and completeness (Defns. 3 and 5).

V. ENABLING SYNTHESIS BY BOUNDING REORDERINGS

In this section, we develop some theoretical results for
the synthesis of operational models. First, we show that
synthesis of sound and complete (viz. Defn. 3 and 5) finite-
state operational models is not possible. Then we provide an
underapproximation for the completeness requirement, called
t-completeness, that enables the synthesis of finite-state mod-
els. This still does not allow for bounded-history models as
future events can influence past orderings (Example 3). In §VI
we add extensibility thus enabling our original goal of finite-
state and bounded-history models.

A. An impossibility result

We show that it is in fact impossible to develop a finite-state
transition systemM that satisfies the requirements prescribed
in Defns. 3 and 5. Figure 6 gives an axiomatic semantics A#

(with Stages = {S,T}) such that for all possible finite-state
models, there is some program such that either soundness or
completeness is violated. In words, the axioms in Fig. 6 state

ax0: ∀ i1. hb(i1.S,i1.T)
ax1: ∀ i1,i2. hb(i1.S,i2.S)⇒hb(i1.T,i2.T)

Fig. 6: Semantics A# that does not allow bounded synthesis

the following constraints: ax0 says that for each instruction,
the S stage event happens before the T stage, and ax1 enforces
that for any two instructions, the ordering between their S
stage events implies an identical ordering between their T stage
events. We have the following:

Theorem 1. For a single-core program P with an instruction
stream of |Ic1 | = m instructions, there is no model M =
(Q,∆, qinit, qfinal) that is sound and complete w.r.t. A# and
P , and s.t. |Q| < O(2m/m), even with h =∞.

We provide an intuitive explanation, deferring details to the
supplement [17]. In valid executions of A#, S stage events



can be ordered arbitrarily, while T stage events must maintain
the same ordering as that of corresponding S stages. Hence the
machine must remember the S orderings in its finite control.
However, the number of such orderings grows (exponentially)
with the number of instructions m, implying that existence of
a finite-state model that works for all programs is not possible.

Corollary 1. There does not exist a finite state operational
model (even with h = ∞) which is sound and complete with
respect to the A# axioms.

B. An underapproximation result

Given the results of the previous section, we must re-
lax some constraint imposed on the operationalization: we
choose to relax completeness. To do so, we define an under-
approximation called t-reordering bounded traces. Intuitively,
this imposes two constraints: (a) it bounds the depth of
reorderings between instructions on each core, (b) it bounds
the number of instructions executed on all other cores, while
a core is executing a single instruction.

We observe that (a) is a reasonable assumption since most
microarchitectures bound reordering depth, often due to finite
reorder buffers. On the other hand, (b) can be thought of as a
fairness/starvation-freedom property.

For two instructions i1, i2 on the same core, let
diffr (i1, i2) = λ(i2) − λ(i1) (recall that λ(i) is the instruc-
tion index of i). Consider a trace σ of program P . For
i ∈ instrsOf(P), we define the starting index of i, denoted
as start(i), as the index of the first event of instruction i in σ.
Similarly we define the ending index, end(i) as the largest
index for some event of i in σ. Let the prefix-closed end
index of i be the max of end over instructions that are ≤r i:
pfxend(i) = max{end(i′) | i′ ≤r i}. Two instructions i1 and i2
are coupled in a trace (denoted as coup(i1, i2)) if the intervals
[start(i1), pfxend(i1)], [start(i2), pfxend(i2)] overlap.

Definition 6 (t-reordering bounded traces). A trace is t-
reordering bounded if, for any pair of instructions i1, i2 with
c(i1) = c(i2), (1) if i2.st2

hb−→ i1.st1 then diffr (i1, i2) < t and
(2) if coup(i1, i), coup(i, i2) for some i then |diffr (i1, i2)| < t.

Intuitively, (1) says that an instruction cannot be reordered
with another that precedes it by ≥ t indices, while (2) says
that instructions on a core cannot be stalled while more than
t instructions are executed on another. Note that t-reordering
boundedness is a property of traces, and not of axioms. We
now relax completeness (and hence equivalence) to require
that the operational model at least generate all t-reordering
bounded linearizations (instead of all linearizations).

Definition 5* (t-completeness). An operational model M is
t-complete w.r.t. an axiomatic model A, if for each program P
and G |=P A, tracesM(P) contains all t-reordering bounded
linearizations of G.

Replacing Defn. 5 with its t-bounded relaxation (Defn. 5*)
addresses the issue of having to keep track of an unbounded
number of orderings. However, to allow for finite implemen-

Fig. 7: P has instruction streams i10 · i11 · i12 · i13, i20 · i21 · i22 · i23, and
i30 · i31 · i32 · i33. Blue instructions form the prefix P ′ (i.e. P ′ � P)
and red its residual P ′′ = P�P ′. The figure shows executions
G′ of P ′, G′′ of P ′′, and their composition G = G′ . G′′.

tations in practice, in addition to finite-state, we also require
bounded-history (h ∈ N). This is addressed in the next section.

VI. ADDING EXTENSIBILITY

As illustrated by the following example, the t-reordering
bounded underapproximation is insufficient to achieve
bounded-history operational model synthesis on its own.

Example 3 (Need for extensibility). Consider a single stage
axiomatic semantics: Stages = {S}, and predicate P = {P}.

∀ i0,i1,i2. (P(i0,i1,i2) ∧ i0<ri1)
=⇒ ¬hb(i1.S,i0.S)

There cannot be a sound, t-complete, and bounded-history
(for bound h) model for this axiom (for some t > 1). To
see this, consider a (single-core) program P , with instructions
i0 · i1 · · · ih+1. Depending on the instructions in P , the inter-
pretation PA of P can either be (a) PA = {(i0, i1, ih+1)} or
(b) PA = {}. In the former case, the ordering i1.S

hb−→ i0.S is
invalid while in the latter it is valid. Since we only allow
a h-sized history, i0.S must be scheduled before the tape-
head reaches ih+1, i.e. before the machine can determine
which of (a)/(b) hold. Since the machine cannot determine
whether events i0.S, i1.S can be reordered, this leads either
to a model which is unsound (always reorders) or incomplete
(never reorders).

Thus, we need an additional restriction to enable generation
of operational models with a finite history parameter h.
We propose extensibility, which intuitively states that partial
executions of program P that have not violated any axioms
can be composed with valid executions of the residual program
to generate valid complete executions of P . To do this, we
extend the notion of validity to partial executions through
prefix programs.

A program P can be split into a prefix P ′ (blue) and the
residual suffix P ′′ (red) (Fig. 7). Formally, P ′ is a prefix of
program P , if P ′ has instruction streams {I ′i}, each of which
is a prefix of the instr. streams {Ii} of P . We denote that P ′
is a prefix of P by P ′ � P . For programs P , P ′ such that
P ′ � P we denote the residual of P w.r.t. P ′ as P ′′ = P�P ′.
P ′ has instr. streams I ′′c : for each core c, Ic = I ′c · I ′′c .



In Fig. 7, for example, the first instruction stream of P is
i10 · i11 · i12 · i13. The prefix program P ′ has (the prefix) i10 · i11 · i12 as
its first instr. stream. On the other hand, the residual program,
P ′′ = P � P ′, has the suffix i13 as its instruction stream.

For graphs G′ = (V ′, E′) and G′′ = (V ′′, E′′), with V ′ ∩
V ′′ = ∅ we define G′ . G′′ as the graph G = (V,E) where,
(1) V = V ′ ∪ V ′′, and (2) E = E′ ∪ E′′ ∪ {(e′, e′′) | e′ ∈
sink(E′), e′′ ∈ source(E′′)}. The example in Fig. 7 illustrates
such a composition: we have G = G′ . G′′.

Definition 7 (Extensibility). An axiom AX satisfies extensibil-
ity if for any programs P and P ′ s.t. P ′ � P , and P ′′ = P�P ′
if G′ |=P′ AX and G′′ |=P′′ AX then G′ . G′′ |=P AX.
An axiomatic semantics A satisfies extensibility if all axioms
AX ∈ A satisfy extensibility.

We require that the axiomatic model satisfies extensibility.
We define µspecRE (RE stands for Refinable, Extensible) as
the subset of µspec in which all axioms are refinable and
extensible. Finite-state, bounded-history synthesis is feasible
for universal axioms in µspecRE, as we discuss in the next
section. Like refinability, we can check whether an axiom
satisfies extensibility (Lemma 2).

Lemma 2. Given a universal axiom we can decide whether
it satisfies extensibility.

VII. CONVERTING TO OPERATIONAL MODELS USING
AXIOM AUTOMATA

In this section, we describe our approach that converts an
axiomatic model into an equivalent operational model M. In
§VII-A we develop axiom automata, which are the building
blocks of our operationalization: they are automata that check
for axiom compliance as the operational model executes. In
§VII-B we describe how these automata can be instantiated
to ensure validity for bounded programs with arbitary µspec
axioms. §VII-C holds our main result: we describe how axiom
automata can be instantiated to get a finite-state bounded-
history model for universal axioms in µspecRE.

We focus on a single universal axiom ∀i1, · · · , ikφ, but
this can be easily extended to a set of axioms.

A. Axiom Automata

In what follows, we fix a (universal) axiom AX =
∀i1 · · · ∀ik φ(i1, · · · , ik), and let I(AX) = {i1, · · · , ik},
E(AX) = {i.st | i ∈ I(AX), st ∈ Stages}. This axiom
enforces that φ(·) holds for all k-tuples of instructions in
the given program. An axiom automaton is a finite state
automaton that monitors whether φ(·) holds for a single k-
tuple of instructions. Our operational model is composed of
several such automata - thereby allowing us to check all k-
tuples. We now define axiom automata, starting with some
auxilliary definitions.

Let nonhb(AX) denote the non-hb atoms in φ, i.e. instruc-
tion predicate applications and <r orderings. A context is an
assignment (of true/false) to each atom in nonhb(AX); cxt :
nonhb(AX) → B. Each variable assignment s : I(AX) → I
fixes the valuation of all nonhb(AX) atoms (following the

semantics in §II). Hence each assignment s leads to a unique
context, which we denote as cxt(s).

We extend assignments to events and words over events.
For e = i.st, we define s(e) = s(i).st and for w ∈ E(AX)∗,

s(w) = s(w[0]) · · · s(w[|w| − 1]) ∈ E∗

As mentioned in §III-A4, we interpret s(w) ∈ E∗ as the µhb

graph w[0]
hb−→ w[1] · · · hb−→ w[|w| − 1].

Observe that once we fix the context, the validity of φ(·)
only depends on the value of the hb atoms in φ. Hence for two
assignments s1, s2 with the same context: cxt(s1) = cxt(s2),
s1 and s2 share the same set of valid executions: s1(w)
satisfies φ if and only if s2(w) does. This implies that across
different assignments s, there are only finitely many valid sets
of executions over events in s(E(AX)) - one for each context.
Intuitively, contexts divide the set of all possible assignments
into classes which admit similar orderings.

As a consequence of the above, for each AX and context cxt,
we can construct a finite state automaton that recognizes ac-
ceptable orderings of E(AX) (Lemma 3). The main observation
behind Lemma 3 is that once the context (i.e. interpretation of
the nonhb(AX) atoms) is fixed, the allowed orderings can be
represented as a language over the symbolic events E(AX).

Lemma 3 (Axiom-Automata). Given an axiom AX and con-
text cxt, there exists a finite-state automaton aa(AX[cxt]) over
alphabet E(AX) with language {w | w ∈ E(AX)perm, s(w) |=
φ(i1, · · · , ik)[s] for all s that agree with cxt}.

B. Deploying axiom automata

1) Concretization of an axiom automaton: The automaton
aa(AX[cxt]) mentioned in Lemma 3 recognizes orderings over
the symbolic alphabet E(AX) that lead to φ being satisfied.
Our end goal, however, is identifying acceptable orderings
over the (non-symbolic) events E. This requires us to generate
concrete instances of axiom automata, one for each assignment
s : I(AX)→ I, which we now do.

Given an assignment s : I(AX) → I, we denote the
(concretized) automaton for s w.r.t AX as aa(AX, s). The
automaton aa(AX, s) is identical to aa(AX[cxt(s)]), except that
the symbolic alphabet E(AX) replaced by its image s(E(AX))
under s. Intuitively (by §VII-A), the set of valid orderings
of events in s(E(AX)) is characterized by the context of s,
cxt(s). This means that the acceptable orderings of events in
s(E(AX)) is identical to the set of words (orderings) accepted
by aa(AX[cxt(s)]), except that the symbolic events E(AX)
should be replaced by their concrete counterparts, s(E(AX)).
This justifies the definition of aa(AX, s).

We extend the notation aa(AX, s) from a single assignment
to a set of assignments. For I ⊆ I, we denote by aa(AX, I) the
set of axiom automata over I: {aa(AX, s) | s : I(AX)→ I}.

2) A basic operationalization: Lemma 3 and the con-
cretization defined in §VII-B1 suggest an operationalization
for AX. For a program P , if a trace σ is accepted by all
(concrete) automata aa(AX, instrsOf(P)) then σ |= φ[s] holds
for each assignment s, thus satisfying AX. The number of



Fig. 8: Completed prefix (pCM), in-progess (IP) and not-
fetched postfix (pNF) of instructions during execution.

these automata is |aa(AX, instrsOf(P))| ∼ |instrsOf(P)|k for
an axiom with k universally quantified variables. Since this
increases with P , the model is not finite state. Even so, this en-
ables us to construct operational models for a given bound on
|instrsOf(P)|. We can do this even for non-universal axioms
by converting existential quantifiers into finite disjunctions
over instrsOf(P). We demonstrate an application of this in
§VIII, where we check that a processor satisfies an axiom
ensuring correctness of read values.

C. Bounding the number of active instructions

As the discussion from §VII-B2 concludes, generating all
concrete automata (statically) for arbitrary µspec specifications
does not give us a finite state model. We need to bound the
number of automata maintained at any point in the trace. In
order to do this, for each index in the trace, we identify active
instructions: an active instruction is one for which we need
to maintain ordering information at that index. We observe
that under the t-bounded reordering under-approximation, only
a bounded number of instructions are active. This, in turn
implies that we only need to maintain a bounded number of
axiom automata. We now formalize these concepts.

For a t-reordering bounded trace σ of a program P and a
trace index 0 ≤ j ≤ |σ|, let CM(j) and NF(j) be instructions
which have executed all and none of their events at σ[j]
respectively. We define the following auxillary terms:

pCM(j) = {i | ∀i′. i′ ≤r i =⇒ i′ ∈ CM(j)}
pNF(j) = {i | ∀i′. i ≤r i′ =⇒ i′ ∈ NF(j)}

IP(j) = instrsOf(P) \ (pCM(j) ∪ pNF(j))

Intuitively pCM(j) represents the prefix-closed set of com-
pleted instructions, pNF(j) represents the postfix-closed set of
not-fetched instructions, and IP(j) are the rest - the in-progress
instructions (see Fig. 8). By the first condition of t-reordering
boundedness, in-progress (IP) instructions on each core are
bounded by t for all j (Lemma 4):

Lemma 4. For any t-reordering bounded trace σ, for all 0 ≤
j ≤ |σ|, we have, |IP(j)| ≤ |Cores| · t.

Active instructions Two instructions i, i′ are k-coupled
in a trace σ if they form a coupling chain of length
k: i.e. there exist instructions i1, · · · , ik−1 such that
coup(i, i1), coup(i1, i2), · · · , coup(ik−1, i

′). For trace σ, 0 ≤
j ≤ |σ| and k ∈ N, we define k-active instructions at j,
ACk(j), as instructions from pCM(j) ∪ IP(j) which are k-
coupled with some instruction from IP(j).

Intuitively, for a µspecRE axiom with k universally quan-
tified variables, the execution of two instructions affect each

Fig. 9: Experimental setup.

other only if they are k-coupled. In particular, maintaining
ordering information is important for instructions which are k-
coupled with the in-progress instructions. As Lemma 5 shows,
these active instructions - ACk(j) - are bounded at any given
point in the trace.

Lemma 5. For each k, there is a (program-independent)
bound bk, s.t. for any t-reordering bounded trace σ, for all
0 ≤ j ≤ |σ|, we have |ACk(j)| ≤ bk.

The operational model Our operational model maintains
the in-progress instructions (IP) on its tape. At each step it
schedules an event from these instructions. The validity of
event scheduling is ensured by maintaining orderings between
events corresponding to the active instructions. Lemmas 4, 5
imply that at all points in the trace, (1) the set IP is bounded
and (2) the active instructions - ACk - are bounded (as a
function of bk). Consequently, this results in a model which
has finite state (used to maintain orderings between events of
ACk) and bounded history (owing to (1)). This gives us the
main result - a finite state, bounded history operational model.

Theorem 2. For a (refinable) universal axiomatic semantics
that satisfies extensibility, synthesis of finite-state, bounded-
history operational models satisfying Def. 3 and 5* is feasible.

VIII. CASE STUDIES

In this section, we demonstrate applications of operational-
ization. We discuss three case studies: (1) multi_vscale
[30] is a multi-core extension of the 3-stage in-order vscale
[31] processor, (2) tomasulo is an OoO processor based on
[32], and (3) sdram_ctrl is an SDRAM-controller [33].

For each case, we instrument the hardware designs by
exposing ports that signal the execution of events (e.g. the PC
ports in Fig. 9). We convert axioms into an operational model
M based on the approach discussed in §VII. M is compiled
to RTL and is synchronously composed with the hardware
design, where it transitions on the exposed event signals. Thus,
any violating behaviour of the hardware will lead M into a
non-accepting (bad) state. Hence by specifying !bad as a
safety property, we can perform verification of the RTL design
w.r.t. the axioms. The operationalization approach enables us
to perform both bounded and unbounded verification using
off-the-shelf hardware model checkers. We highlight that this
would not have been possible without operationalization.

We use the Yosys-based [34] SymbiYosys as the model-
checker, with boolector [35] and abc [36] as backend solvers
for BMC and PDR proof strategies respectively. Experiments



Instructions PDR BMC (d = 20)
ALU-R 1m46s 14m30s
ALU-I 2m11s 11m31s

Load+Store 2m18s 13m35s

Fig. 10: Proof runtimes for (ax1 ∧ ax2).

are performed on an Intel Core i7 machine with 16GB
of RAM. We use our algorithm to automatically generate
axiom automata. The compilation of the generated automata
to RTL and their instrumentation with the design is done
manually. However, in the future this could be automated
following the procedure developed in §VII. The experimental
designs are available at https://github.com/adwait/axiomatic-
operational-examples.

Highlights. We demonstrate how the operationalization
framework enables us to leverage off-the-shelf model checking
tools implementing bounded and (especially) unbounded proof
techniques such as IC3/PDR. This would not have been
possible directly with axiomatic models. Even when Thm.
2 does not apply (e.g. non-universal/non-extensible axioms),
following §VII-B2 we can fall back on a BMC-based check
over all possible programs under a bound on |instrsOf(P)|.

A. The multi_vscale processor

a) Pipeline axioms on a single core: We begin with the
single-core variant of multi_vscale. We are interested in
verifying the pipeline axioms for this core. The first axiom
states that pipeline stages must be in Fet-DX-WB order and
the second enforces in-order fetch.

ax1: ∀ i1. (hb(i1.Fet,i1.DX) ∧
hb(i1.DX,i1.WB))

ax2: ∀ i1,i2.i1<ri2 ⇒ hb(i1.Fet,i2.Fet)

The setup schematic is given in Figure 9: M is the op-
erational model implemented in RTL (note that we could do
this only because the model is finite state and requires a finite
history h). Given that it is a 3-stage in-order processor, at any
given point each core has at most 3 instructions in its pipeline
and we can safely choose a history parameter of h = 3, and
M is complete for a reordering bound of t = 3. We replace the
imem_hrdata (instruction data) connection to the core by
an input signal that we can symbolically constrain. Using this
input signal, we can control the program (instruction stream)
executed by the core.

Verification is performed with a PDR based proof using the
abc pdr backend. We experiment with various choices of
instructions fed to the processor (by symbolically constraining
imem_hrdata). In Fig. 10, we show the constraint and its
PDR proof runtime, with BMC runtime (depth = 20) for
comparison. These examples demonstrate our ability to prove
unbounded correctness.

b) Memory ordering on multi-core: We now configure
the design with 2 cores: c0, c1, both initialized with symbolic
load and store operations. We then perform verification w.r.t.
the ReadValues (RV) axiom shown below. This axiom says

|I| |AA| BMC d Time
4 16 12 3m10s
6 36 16 15m48s
8 64 20 1h58m

Fig. 11: Proof runtimes for the Read-Values axiom for different
instruction counts (|I|).

that for any read instruction (i1), the value read should be the
same as the most recent write instruction (i2) on the same
address, or it should be the initial value.

RV: ∀ i1,∃ i2,∀ i3. IsRead(i1) =⇒
(DataInit(i1)∨(IsWrite(i2)∧
SameAddr(i1,i2)∧hb(i2.DX,i1.DX)
∧ValEq(i1,i2)∧((IsWrite(i3)∧

SameAddr(i1,i3)) =⇒
(hb(i3.DX,i2.DX)∨hb(i1.DX,i3.DX)))))

This not a universal axiom, and hence Thm. 2 does not
apply. However, for bounded programs we can construct
|instrsOf(P)|2 concrete automata (since there are two univer-
sally quantified variables: i1, i3) as discussed in §VII-B2.
We convert the existential quantifier over i2 into a finite
disjunction over instrsOf(P). We perform BMC queries for
programs with |I| = |instrsOf(P)| = 4, 6, 8.

By keeping instructions symbolic, we effectively prove
correctness for all programs within our bound |I|. The table
alongside shows the instruction bound, |I|, the number of
axiom automata |AA|, BMC depth d, and proof runtime.
Though our theoretical results apply to universal axioms, this
shows how an axiom automata-based operationalization can
be applied to arbitrary axioms by bounding |instrsOf(P)|.

B. An OoO processor: tomasulo

Our second design is an out-of-order processor (based on
[32]) that implements Tomasulo’s algorithm. The processor
has stages: F (fetch), D (dispatch), I (issue), E (execute),
WB (writeback), and C (commit). We verify in-order-commit,
program-order fetch, and pipeline order axioms for this pro-
cessor. A BMC proof (with d = 20) takes ∼2m.

The axiom axDep given below is crucial for correct execu-
tion in an OoO processor. It enforces that execute (E) stages
for consecutive instructions should be in program order if the
destination of the first instruction is same as the source of the
second, i.e. dependent instructions are executed in order.

axDep: ∀ i1, i2, (i1<ri2 ∧ Cons(i1,i2) ∧
DepOn(i1,i2)) =⇒ hb(i1.E,i2.E)

We add a program counter (pc) to instructions and define
Cons(i1, i2) ≡ pc(i1) + 4 = pc(i2) and DepOn(i1, i2) ≡
dest(i1) = src1(i2) ∨ dest(i1) = src2(i2).

As before, we compose the operational model M corre-
sponding to this axiom with the RTL design. We symbolically
constrain the processor to execute a sequence of symbolic
(add and sub) instructions and assert !bad. A BMC query

https://github.com/adwait/axiomatic-operational-examples
https://github.com/adwait/axiomatic-operational-examples


(d = 20) results in an assertion violation. We manually
identified the bug as being caused by the incorrect reset of
entries in the Register Alias Table (RAT) in the Com stage.
When committing instruction i0, the entry RAT(dest(i0)) is
reset, while some instruction i1 with dest(i0) = dest(i1)
is issued at the same cycle. A third instruction i2 with
src1(i2) = dest(i0) then reads the result of i0 instead of
i1, violating the axiom. We fix this bug and perform a BMC
proof (d = 20), which takes ∼6m30s. This demonstrates how
our techinique can be used to identify a bug, correct it and
check the fixed design.

C. A memory controller: sdram_ctrl

To demonstrate the versatility of our approach, we ex-
periment with an SDRAM controller [33], which interfaces
a processor host with an SDRAM device, with a ready-
valid interface for read/write requests. All intricacies related
to interfacing with the SDRAM are handled by maintaining
appropriate control state in the controller. In the following, we
once again convert axioms into an operational model by our
technique, and compose the generated model with the design.

First we verify pipeline-stage axioms for sdram_ctrl for
write (4-stages) and read (5-stages) operations executed by the
host. A PDR-based (unbounded) proof for the pipeline axioms
requires ∼8m. Next we verify properties related to SDRAMs
refresh operation [37]. The controller ensures that the host-
level behaviour is not affected by refreshes by creating an
illusion of atomicity for writes and reads. This results in the
axiom that once a write or read operation is underway, no
refresh stage should execute before it is completed. We once
again prove this property with PDR, which takes ∼1m30s.

IX. RELATED WORK

There has been much work on developing axiomatic (declar-
ative) models for memory consistency in parallel systems, at
the ISA level [2], [38], [39], the microarchitectural level [12],
[16], [11], and the programming language level [20], [40],
[41], [42], [43]. There has also been work on construct-
ing equivalent operationalizations for these models, e.g.,
for Power [2], ARMv8 [10], RA[8], C++ [7], and TSO
[19], [9]. These constructions are accompanied by hand-
written/theorem-prover based proofs, demonstrating equiva-
lence with the axiomatic model. In principle, our work is
related to these, however we enable automatic generation of
equivalent operational models from axiomatic ones, eliminat-
ing most of the manual effort.

At an abstract level, we have been inspired by classic works
that have developed connections between logics and automata
[44], [45]. There is a large body of work on synthesis of
operational implementations as well as monitors from tempo-
ral specifications (e.g. [46], [47], [48]), most commonly those
written in Linear Temporal Logic (LTL) [49] and its variants
(e.g. [50]). In this paper we perform a similar conversion
but for a very different logic: µspec specifies constraints over
partial orders while LTL does so over totally ordered traces.
Additionally, the elements over which constraints are enforced

is also different: µspec constrains orderings of a known set of
events, while LTL does so over traces with potentially differ-
ing sets of events (atoms). These differences make a direct
comparison with the previously mentioned works ineffectual,
and have required us to develop novel concepts in this work.

In terms of the application to proving properties, the work
closest to ours is RTLCheck [13], which compiles constraints
from µspec to SystemVerilog assertions. These assertions
are checked on a per-program basis. On the other hand,
we demonstrate the ability to prove unbounded correctness.
Additionally, for axioms that are not generally operationaliz-
able (for unbounded programs), we demonstrate the ability to
generate an operational model for some apriori known bound
on the program size. In this case, we can verify correctness
for all programs of size upto that bound, as opposed to on a
per-program basis as RTLCheck does. RTL2µspec [51] aims
to perform the reverse conversion: from RTL to µspec axioms.

X. CONCLUSION

In this paper we make strides towards enabling greater
interoperability between operational and axiomatic models,
both through theoretical results and case studies. We derive
µspecRE, a restricted subset of the µspec domain-specific lan-
guage for axiomatic modelling. We show that the generation
of an equivalent finite-state operational model is impossible
for general µspec axioms, though it is feasible for universal
axioms in µspecRE. From a practical standpoint, we develop
an approach based on axiom automata that enables us to
automatically generate such equivalent operational models for
universally quantified axioms in µspecRE (or for arbitrary
µspec axioms if equivalence up to a bound is sufficient).

The challenges we surmount for our conversion (discussed
in §I) find parallels in manual operationalization works [7],
and we believe that the above concepts can be extended to
formalisms such as Cat [2]. Our practical evaluation illustrates
the key impact of this work—its ability to enable users of
axiomatic models to take advantage of the vast number of
techniques that have been developed for operational models
in the fields of formal verification and synthesis.

XI. FUTURE WORK

An interesting direction for future work is to enrich µspec
semantics (e.g., with quantitative operators) such that valid
executions are guaranteed to satisfy t-reordering boundedness.
In addition to allowing generation of finite-state operational
models, we believe that such axioms would also capture
processor executions more precisely.

While some aspects of executions are easier to specify
operationally, others (e.g., non-deterministic scheduling) are
better suited to axiomatic specifications. Another direction for
future work is combining operational and axiomatic modelling,
for example using tools such as UCLID5 [52], [53].
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