
 

THEME ARTICLE: Top Picks 

Full-Stack Memory Model 
Verification with TriCheck 

Memory consistency models (MCMs) govern inter-

module interactions in a shared memory system and 

are defined at the various layers of the hardware-

software stack. TriCheck is the first tool for full-stack 

MCM verification. Using TriCheck, we uncovered 

under-specifications in the draft RISC-V instruction set 

architecture (ISA) and identified flaws in previously 

“proven-correct” C11 compiler mappings. 

Modern computer systems employ parallelism to achieve performance scaling at manageable 
power and thermal levels. At the hardware level and for many programming languages, the pri-
mary mechanism for communication is shared memory. MCMs are central to performance and 
correctness in shared memory systems. MCMs specify the values that can be legally returned 
when loads access shared memory and are defined at the various layers of the hardware-software 
stack. Properly designed MCMs enable programmers to synchronize and orchestrate the out-
comes of concurrent code. Under-specified MCMs will result in synchronization code working 
incorrectly; this can in turn result in intermittent unreliability and unpredictability, as well as in 
difficult-to-diagnose bugs when compiled programs are executed. 

Several categories of problems can arise when translating a program from a high-level language 
(HLL) such as C11 into correct, portable, and efficient assembly code. These include:  

• ill-specified or difficult-to-support HLL requirements regarding memory ordering,  
• incorrect compilation or mapping of instructions from the HLL to the target ISA,  
• inadequate specification of the ISA, and  
• incorrect microarchitectural implementation of the ISA. 

This article describes an analysis methodology and associated tool, TriCheck, for verifying that a 
HLL, ISA, and microarchitectural implementation all align well on MCM requirements. 
TriCheck supports iteratively designing an ISA MCM that provides a precise and minimally con-
strained target for compiled HLL programs. Our verification methodology systematically com-
pares permitted and forbidden language-level executions of HLL programs with their 
corresponding observable and unobservable ISA-level executions on microarchitectural imple-

Caroline Trippel and 
Yatin A. Manerkar 
Princeton University 

Daniel Lustig and 
Michael Pellauer 
Nvidia 

Margaret Martonosi 
Princeton University 

58
IEEE Micro Published by the IEEE Computer Society

0272-1732/18/$33.00 ©2018 IEEEMay/June 2018



  

IEEE MICRO 

mentations of the ISA in question. When any illegal executions are observable, TriCheck pro-
vides information that aids designers in determining if the cause is an incorrect compiler map-
ping, ISA specification, hardware implementation, or even HLL specification. As a 
demonstration of its power, we use TriCheck to characterize deficiencies in the original RISC-V 
ISA1 memory model. We also produce two counterexamples invalidating a previously “proven-
correct” compiler mapping from C11 to Power and ARMv7, leading to the discovery of a flaw in 
the C11 HLL memory model itself.2 

We hope that system designers at all levels of the hardware-software stack will use our open-
source TriCheck tool (publicly available at https://github.com/ctrippel/TriCheck) to develop new 
HLLs, ISAs, and microarchitectures with increased resilience to MCM bugs.  

TRICHECK: A TOOL FOR FULL-STACK MCM 
VERIFICATION 
TriCheck adds to the Check family of tools (see http://check.cs.princeton.edu). The Check tools 
feature a domain-specific language (DSL) called μspec that hardware designers can use to con-
struct a microarchitecture specification by defining a set of “ordering axioms.” These axioms are 
statements that provide information about the ordering behavior of individual hardware compo-
nents and locations within the design (such as “the commit stage is in order” and “the store 
buffer is FIFO”). This specification, along with a collection of user-provided litmus tests, com-
prise the Check inputs. Litmus tests are small parallel programs used to showcase MCM fea-
tures; MCMs are often described in terms of permitted and forbidden litmus test executions 
across a suite of such tests. (See the “Memory Model Features” sidebar for a litmus test exam-
ple.) 

Given the aforementioned inputs, the Check tools evaluate all of the possible ways in which the 
litmus tests could be executed on the given microarchitecture to deduce all of the observable lit-
mus test outcomes. The set of observable outcomes is compared with the set of outcomes that are 
permitted by the processor architecture specification to verify whether the microarchitecture cor-
rectly implements its required MCM.  

TriCheck is the first tool capable of full-stack MCM verification bridging the HLL, compiler, 
ISA, and microarchitecture levels. Each layer of the hardware-software stack may assume a dif-
ferent MCM; errors at any layer or in translating between layers can ultimately produce incorrect 
program results. Pre-existing verification techniques, including but not limited to prior Check 
tools, evaluate segments of the system stack in isolation. For example, some prove compiler 
mappings from an HLL to an ISA, and others prove validity of a microarchitectural implementa-
tion of an ISA. No other tool runs this top-to-bottom analysis, and TriCheck does so efficiently 
enough to find real bugs, as we describe at the end of this article. 

Litmus Test Generation from HLL Templates 
TriCheck is a litmus test-based verification framework. To get the best coverage, TriCheck must 
consider a variety of tests designed for their coverage. We created a litmus test generator capable 
of producing a suite of such tests from 1) litmus test templates containing placeholders that cor-
respond to different types of memory or synchronization operations and 2) a set of HLL MCM 
primitives to insert into these placeholders.  

The original conference article3 gives an example C11 litmus test template for the Write-to-Read 
Causality (WRC) litmus test. C11 litmus test templates contain placeholders for memory reads, 
memory writes, and/or fences. Our litmus test generator produces all permutations of each test 
template, featuring all combinations of applicable C11 memory_order primitives: relaxed (rlx), 
acquire (acq), or sequentially consistent (sc) for reads; rlx, release (rel), or sc for writes; and acq, 
rel, or sc for fences. (C11 uses “atomic” to mean “memory accesses used for synchronization,” 
not just for read-modify-write. Memory operations involving C11 atomics have “memory_order” 

59May/June 2018 www.computer.org/micro



 

TOP PICKS 

annotations that specify ordering requirements for said operations.) This type of litmus test syn-
thesis enables us to verify ISA MCM functionality for all possible HLL-level interactions and 
synchronization scenarios for a given litmus test. 

TriCheck Framework and Methodology 
The ISA MCM serves as a contract between hardware and software. It defines ordering seman-
tics of valid hardware implementations and provides ordering-enforcement mechanisms for com-
pilers to leverage, such as fences. We identify four primary MCM-dependent system 
components: 1) an HLL MCM, 2) compiler mappings from the HLL to an ISA, 3) an ISA MCM, 
and 4) a microarchitectural implementation of the ISA. 

Figure 1 illustrates the TriCheck toolflow and includes as inputs an HLL MCM, HLL ISA 
compiler mappings, an implementation μspec model, and a suite of HLL litmus tests (generated 
from litmus test templates, like the WRC example in the original conference paper3). The ISA 
places constraints on both the compiler and the microarchitecture and is present in TriCheck 
through these two inputs. Given these inputs, TriCheck evaluates whether they can successfully 
work together to preserve MCM ordering semantics guaranteed to the programmer when HLL 
programs are compiled and run on target microarchitectures. 

      
Figure 1. Overview of the TriCheck approach for full-stack MCM verification.  

In describing the TriCheck toolflow, we discuss how the inputs are combined, evaluated, and 
refined to prohibit all illegal-according-to-HLL executions and to permit as many legal-accord-
ing-to-HLL executions as possible. This results in correct but minimally constrained HLL pro-
grams. Given its inputs, the TriCheck toolflow proceeds as follows: 

1. HLL axiomatic evaluation. The suite of HLL litmus tests is run on an HLL Herd model 
(such as the C11 Herd model) to determine the outcomes that the HLL MCM permits 
or forbids for each at the program level. 

2. HLL ISA compilation. Using the HLL ISA compiler mappings, TriCheck translates 
HLL litmus tests to their assembly language equivalents. 

3. Microarchitecture evaluation. The suite of assembly litmus tests is run on the Check 
model of the microarchitecture to determine the outcomes that are observable or unob-
servable on the microarchitecture. 

HLL 
Memory Model

Arch
Memory Model 

Obs. Unobs.

Pe
rm

it

OK Strict

Fo
rb

id

Bug OK

HLL ISA 
Compiler 
Mappings

Observable/
Unobservable

Permitted/
Forbidden

Compare Outcomes

2

1

3

4

Fix one or more models

ISA
Litmus Tests

HLL
Litmus Test 
Templates

Litm
us te

st 

generator

HLL
Litmus Tests

60May/June 2018 www.computer.org/micro



  

IEEE MICRO 

4. HLL-microarchitecture equivalence check. The results of Steps 1 and 3 are compared 
for each test to determine if the microarchitecturally realizable outcomes are stronger 
than, weaker than, or equivalent to the outcomes required by the HLL model. A 
“stronger than” outcome corresponds to an HLL program that is permitted by the HLL 
MCM, yet unobservable on the microarchitectural implementation of the ISA. If Step 4 
concludes that the microarchitecturally realizable outcomes are more restrictive than 
what the HLL requires, the designer might wish to relax the ISA or microarchitecture 
for performance reasons. On the other hand, when outcomes forbidden by the HLL are 
observable on the microarchitecture, TriCheck flags the presence of a bug that must be 
corrected through refinement. 

After running TriCheck on a combination of inputs, a subsequent refinement step is possible. 
This step corresponds to modifying any combination of the HLL MCM, compiler mappings, and 
microarchitectural implementation in response to a microarchitectural execution that differs from 
the HLL-specified outcome for a given set of program executions. Discrepancies between the 
two outcomes result from one or more inputs containing bugs or being overly constrained. The 
purpose of refinement is to have a better match between HLL requirements and execution out-
comes, whether this is to eliminate bugs or improve performance by avoiding overly constrain-
ing the implementation. 

When TriCheck identifies an error, the cause may be debated. Regardless of where blame is as-
signed, designers may propose a solution that affects other layers of the hardware-software stack 
out of convenience or necessity. In the case outlined in the “MCM Bugs in the Wild” sidebar, the 
ARM ISA memory model contained a bug that permitted reordering of same-address loads, a 
behavior that is forbidden for C11 atomics. Due to the existence of buggy microarchitectures in 
the wild, ARM suggested a workaround to address the problem with compilers that stipulates 
that additional fence instructions should be added to executables to prevent the illegal reordering. 

FINDING REAL BUGS WITH TRICHECK 
Many industry MCMs are still evolving or being refined in pursuit of correctness or performance 
(such as C11, RISC-V, Nvidia, and ARMv8). Any changes to HLLs, compilers, ISAs, or micro-
architectures merit verifying that all still align on memory model requirements. TriCheck is the 
first tool capable of full-stack MCM verification bridging the HLL, compiler, ISA, and microar-
chitecture levels.   

Identifying and Characterizing Bugs in the RISC-V ISA 
Specification 
The RISC-V ISA is an open-source ISA. A widely utilized, free, and open ISA offers some key 
advantages, such as well-maintained compiler and software tool-chains and even open-source 
hardware designs. However, a clearly defined ISA MCM is crucial in achieving this vision. To 
demonstrate the applicability of our framework to modern ISA, compiler, and processor design, 
we conducted a case study that applies TriCheck to the version of the RISC-V ISA specification 
available at the time the conference article3 associated with this article was submitted.1 The 
RISC-V memory model has since been corrected by a task group that was formed in part as a 
response to our findings. 

In our case study, we used TriCheck to identify and characterize a series of deficiencies in the 
RISC-V v2.1 MCM specification.1 Such issues made it possible to build legal RISC-V imple-
mentations incapable of supporting compiled C11 programs. Following the design of the RISC-
V ISA, we divide our case study into two halves: one for the RISC-V memory model as it ap-
plies to the Baseline (or “Base”) RISC-V ISA and one as it applies with the addition of the 
Atomics ISA extension (or “Base+A”). Compiler mappings from C11 to both subsets of the ISA 
are another key component of our study. For both the Base and Base+A ISAs, we derived these 
mappings manually from the RISC-V documentation. 

61May/June 2018 www.computer.org/micro



 

TOP PICKS 

For the microarchitecture component of our analysis, we started with a 
μspec model of the RISC-V Rocket Chip,4 a six-stage in-order pipe-
line that supports the Base RISC-V ISA and some optional extensions, 
including the Atomics extension. Across a series of TriCheck runs, we 
explored a range of microarchitectures featuring increasing amounts of 
MCM relaxation, all within the bounds of what the RISC-V MCM 
specification permitted. For the first hardware specification input to 
TriCheck, we “minimally relaxed” the Rocket Chip model from a se-
quentially consistent (SC) design with no reordering to a design with 
write read reordering enabled by adding a store buffer. This design 
is referred to as “μarch 1” in Figures 2 and 3. 

We apply the iterative design and refinement methodology of Figure 1 
to these inputs. When bugs are encountered, we first identify the root 
cause of the problem. We then propose a solution that involves modi-
fying one or more of the TriCheck inputs and re-running TriCheck to 
confirm the fix is successful. As an example, Run 4 in Figures 2 and 3 
produces bugs resulting from the reordering of same-address loads, a 
behavior that is prohibited by the C11 MCM for all atomic memory 
operations, yet permitted by the RISC-V v2.1 specifications for nor-
mal assembly loads. One solution to this problem could be refinement 
of the compiler mappings to insert fences between every pair of same-
address load operations to preserve the C11-required ordering. An-
other solution, which is deployed in the “Refinement of μarch 4” mi-
croarchitecture of Figures 2 and 3, is to modify the ISA (and consequently the microarchitecture) 
to preserve the order of same-address loads by default. 

By incrementally exploring weaker and weaker microarchitectures through gradual relaxations 
on our baseline design, we push the bounds of what the RISC-V MCMs allow. Our analysis 
shows that parts of the RISC-V v2.1 MCMs are too weak and others are too strong to implement 
C11 atomics correctly and efficiently. 

Figures 2 and 3 illustrate the verification and refinement that we conducted for the Base and 
Base+A ISAs, respectively, highlighting bugs TriCheck discovered along the way. We evaluated 
seven microarchitectures, labeled μarch 1 to μarch 7. Each of these abided by the RISC-V speci-
fications, but increasingly pushed the bounds of the RISC-V MCM specifications in terms of or-
dering relaxations, with some exposing correctness issues for us to address. Short descriptions of 
the microarchitectures are given to the left of each in the figures. (Please refer to the original pa-
per for more details on the hardware optimizations used to create these designs.3) Red X’s sig-
nify that bugs were produced in a given TriCheck run. Runs immediately following bug-
producing runs feature some refinement of the inputs in response to the error. 

In addition to the bugs highlighted in Figures 2 and 3, we observed a potential inefficiency in the 
Base+A ISA. Informally, the C11 memory model requires that sc atomic loads and stores need 
only enforce acquire and release orderings respectively, in addition to appearing in a total order 
observed by all cores. Sc loads do not need to implement release semantics, and sc stores do not 
need to implement acquire semantics. This allows acq loads and rel stores to function as one-
way barriers, allowing more reordering of memory operations and theoretically improved perfor-
mance. (This type of reordering past sc atomics to “expand the critical section” has been dubbed 
“Roach-Motel movement.”) RISC-V v2.1 required sc loads and sc stores to act as two-way barri-
ers, thereby precluding some potential performance optimizations. 

In response to the flaws we identified in the earlier versions of the RISC-V ISA MCM, the 
RISC-V Foundation initiated a Memory Model Task Group to repair the RISC-V ISA MCM. 
Through that group, we are participating with other experts in specifying and formalizing a cor-
rect memory model, and a corrected MCM is (at the time of publication of this article) nearing 
final ratification. The original article3 shows quantitative results from our study. 

 

 

By incrementally 

exploring weaker 

and weaker 

microarchitectures 

through gradual 

relaxations on our 

baseline design, we 

push the bounds of 

what the RISC-V 

MCMs allow. 

62May/June 2018 www.computer.org/micro



  

IEEE MICRO 

 
Figure 2. TriCheck verification of the Base RISC-V ISA. Arrows connecting the descriptions of two 
microarchitectures illustrate that all of the features of the first (tail of the arrow) are included in the 
second (head of the arrow), along with any new features unique to the second. Dashed (or “ghost”) 
arrow inputs indicate that they are the same as the inputs for the previous run. See text for a 
discussion of Run 10’s surprising result. 

63May/June 2018 www.computer.org/micro



 

TOP PICKS 

 
Figure 3. TriCheck verification of the Base+A ISA. Arrows connecting the descriptions of two 
microarchitectures illustrate that all of the features of the first (tail of the arrow) are included in the 
second (head of the arrow), along with any new features unique to the second. Dashed (or “ghost”) 
arrow inputs indicate that they are the same as the inputs for the previous run. 

Identifying Flaws in “Proven-Correct” Compiler Mappings 
from C11 to Power and ARMv7 
TriCheck uses compiler mappings to get from HLLs to ISA. We intended to rely on existing 
proven-correct compiler mappings for our case studies. Thus, we were surprised to find that one 
of our first TriCheck results was to identify two counterexamples to previously proven-correct 
compiler mappings from C11 to Power and ARMv7; it turns out the proofs in question relied on 
an unproven and invalid axiom. These counterexamples are also noted in Figure 2, Run 10. This 
unexpected counterexample further supports our claims that full-stack verification is important 
and that verifying segments of the system stack in isolation can miss bugs. Our style of test gen-
eration produces comprehensive families of tests, exercising many interleavings and C11 feature 

64May/June 2018 www.computer.org/micro



  

IEEE MICRO 

combinations. Additionally, TriCheck allows us to run a whole family of tests efficiently, con-
sidering all possible interleavings in seconds or minutes. This allowed us to identify counterex-
amples showcasing variants of well-known litmus tests that themselves were not well studied. 
These counterexamples, along with a flaw discovered in the leading-sync mapping in concurrent 
work,5 render the C11 HLL memory model broken and in need of revision. As with the RISC-V 
work, the ISO C++ Concurrency Committee responded by making the necessary changes to the 
C++ MCM to correct the problem.14   

CONCLUSION 
Based on its success identifying shortcomings of the RISC-V and C++ 
MCMs, we argue that TriCheck is a highly efficient mechanism for 
full-stack memory model verification that can produce real counterex-
amples when they exist. As such, we envision architects using 
TriCheck early in the ISA or microarchitecture design process. While 
architects are selecting hardware optimizations for improved perfor-
mance or simplifications for ease of verification, TriCheck can be 
used to simultaneously study the effects of these choices on the ISA-
visible MCM and the ability of their designs to accurately and effi-
ciently support HLL programs. 

TriCheck is not limited to new or evolving ISA designs. Furthermore, 
there are cases when other elements (such as the compiler) are modi-
fied in response to ISA or microarchitecture MCM bugs out of con-
venience or necessity. The “MCM Bugs in the Wild” sidebar provides 
such an example. When a workaround is proposed for an MCM bug––
such as fence insertion in ARM’s case––TriCheck can be used to ver-
ify that adding the fence did indeed prohibit the forbidden outcome 
across relevant litmus tests. Our RISC-V case study showcases 
TriCheck’s applicability to ISA design by focusing on the time in the 
design process when the ISA MCM can be modified, as well as its ap-
plicability to HLL design by describing how TriCheck was able to 
find a flaw in an HLL ISA compiler mapping for C11 and the Power 
and ARMv7 ISAs. 

SIDEBAR: MEMORY MODEL 
FEATURES 
Frequently regarded as the most intuitive MCM, SC6 requires that the 
result of a program execution be the same as if all cores execute their 
own instructions in program order (PO) and a total global order exists 
on all instructions from all cores such that each load returns the value 
written by the most recent store to the same address. Unfortunately, 
common microarchitectural optimizations violate SC, resulting in low 
performance for naive SC implementations. Despite attempts at miti-
gating SC’s performance cost, most manufacturers have nevertheless 
elected to build hardware with MCMs that relax SC. Various issues 
can arise when the effects of relaxing memory orderings are not care-
fully considered at ISA design time. Here we provide some examples of MCM features that are 
relevant to our case study and results. 

Coherence, Same-Address Ordering, and Dependencies 
Coherence ensures that 1) all stores are eventually made visible to all cores and 2) there exists a 
single total order that all threads agree on for all stores to the same address.7,8  

While architects are 

selecting hardware 

optimizations for 

improved 

performance or 

simplifications for 

ease of verification, 

TriCheck can be 

used to 

simultaneously 

study the effects of 

these choices on 

the ISA-visible 

MCM and the ability 

of their designs to 

accurately and 

efficiently support 

HLL programs. 

65May/June 2018 www.computer.org/micro



 

TOP PICKS 

A dependency relates a load with a load or store that is later in PO. An address dependency re-
sults when the address accessed by a load or store depends syntactically on the value returned by 
a PO-prior load. A data dependency exists between a load and a PO-later store when the store’s 
value depends syntactically on the loaded value. A control dependency occurs when the control 
flow decision of whether to execute a load or store depends syntactically on the value returned 
by a PO-prior load.  

Store Atomicity, Cumulativity, and C11 Atomics 
A store is multiple-copy atomic (MCA) if all cores in the system, including the performing core, 
conceptually see the updated value at the same instant.9 As a performance optimization, some 
architectures allow a core to read its own writes prior to their being made visible to other cores; 
we refer to this as read-own-write-early-multiple-copy atomic (rMCA).10 (As a side-effect, this 
generally also relaxes write read ordering.) However, rMCA writes must be made visible at the 
same time to all cores other than the performing core. 

Weaker models, such as ARMv7 and Power, feature non-multiple-copy atomic (nMCA) stores 
that may become visible to some remote cores before they become visible to others. The litmus 
test in Figure 4 demonstrates the often counter-intuitive effects of nMCA stores. The specified 
non-SC outcome (the outcome that would be forbidden under the SC memory model) corre-
sponds to a causality chain where T0 sets a flag by writing 1 to x, and T1 reads the updated value 
of x, subsequently setting its own flag by writing 1 to y. T2 then sees the update of y, reading 1; 
however, it has still not observed the update of x and reads its value as 0. If this C11 program is 
compiled down to regular assembly loads and stores on an nMCA system, the forbidden out-
come will (perhaps surprisingly) be observable. 

 
Figure 4. C11 variant of the WRC litmus test. T0, T1, and T2 are three threads. The st and ld of y 
achieve release-acquire synchronization. 

An nMCA architecture must include cumulative fences to support C11-style cross-thread syn-
chronization. Fences order specified accesses in the fence’s predecessor set (accesses before the 
fence) with specified accesses in the fence’s successor set (accesses after the fence). Cumulative 
fences additionally include accesses performed by threads other than the fencing thread in the 
predecessor and successor sets. Recursively, memory operations (from any thread) that have per-
formed prior to an access in the predecessor set are also members of the predecessor set. Also 
recursively, memory operations (from any thread) that perform after a load that returns the value 
of a store in the successor set are also in the successor set. 

SIDEBAR: MCM BUGS IN THE WILD 
Mis- and under-specification of MCMs in modern hardware is a real problem that leads to pro-
cessors producing incorrect or counter-intuitive outcomes. Consider the standard compilation 
approach today, in which compilers map each C++ operation into one or more processor instruc-
tions that perform the necessary operation and enforce the necessary memory ordering (or 
stronger). When the program in Figure 5 is compiled by Clang++ v3.8, the resulting program 
intermittently produces a result that is illegal according to the C11 specification11 when run on 
some ARM hardware platforms. This behavior was first reported by J. Alglave, L. Maranget, and 
M. Tautschnig.12 We have observed the phenomenon on a Galaxy Nexus (ARM Cortex-A9) and 
a Nexus 6 (Qualcomm Snapdragon 805). 

66May/June 2018 www.computer.org/micro



  

IEEE MICRO 

In this particular example, the illegal outcome occurs because hardware does not preserve PO 
(the original thread ordering) for reads of the same address. This behavior was formally 
acknowledged by ARM as a bug in 201113 and is referred to in this article as the “ARM 
load load hazard.” 

The ARM load load hazard is the result of imprecision in the coherence specification. ARM 
acknowledged that, due to the vast number of load instructions in programs, binary patching in 
the linker is infeasible; they instead suggest that compilers be rewritten to issue a data memory 
barrier (dmb) fence instruction immediately following atomic loads. To evaluate the performance 
cost resulting from imprecise ISA MCM specifications, we conducted a measurement study in 
the original paper3 to estimate the performance overhead of this proposed workaround, finding it 
to be approximately 15.3 percent for the tested workload. 

 
Figure 5. A C11 program that intermittently produces results disallowed by the C11 MCM when 
compiled by Clang++v3.8 and run on modern ARM Android hardware. 

ACKNOWLEDGMENTS 
This work was supported in part by the Center for Future Architectures Research (C-FAR) 
under the grant HR0011-13-3-0002, the Semiconductor Research Corporation (SRC) 
STARnet program (sponsored by Microelectronics Advanced Research Corporation 
(MARCO) and DARPA), and the NSF under grants CCF-1117147 and CCF-1253700.  

REFERENCES 
1. A. Waterman et al., The RISC-V instruction set manual, volume I: User-level ISA, 

version 2.1, technical report UCB/EECS-2016-118, EECS Department, University of 
California, Berkeley, 2016. 

2. Y. A. Manerkar et al., “Counterexamples and proof loophole for the C/C++ to 
POWER and ARMv7 trailing-sync compiler mappings,” CoRR, 2016. 

3. C. Trippel et al., “TriCheck: Memory model verification at the trisection of software, 
hardware, and ISA,” Proceedings of the Twenty-Second International Conference on 
Architectural Support for Programming Languages and Operating Systems, 2017, pp. 
119–133. 

4. K. Asanovic et al., The Rocket Chip generator, technical report UCB/EECS-2016-17, 
EECS Department, University of California, Berkeley, 2016. 

5. O. Lahav et al., Repairing sequential consistency in C/C++11, technical report MPI-
SWS-2016-011, 2016. 

6. L. Lamport, “How to make a multiprocessor computer that correctly executes 
multiprocess programs,” IEEE Transactions on Computing, vol. 28, no. 9, 1979, pp. 
690–691. 

7. K. Gharachorloo, Memory Consistency Models for Shared-memory Multiprocessors, 
thesis, Stanford University, 1996. 

67May/June 2018 www.computer.org/micro



 

TOP PICKS 

8. K. Gharachorloo et al., “Memory consistency and event ordering in scalable shared-
memory multiprocessors,” 17th International Symposium on Computer Architecture 
(ISCA), 1990. 

9. W.W. Collier, Reasoning About Parallel Architectures, Prentice Hall, 1992. 
10. S. Adve and K. Gharachorloo, “Shared memory consistency models: A tutorial,” 

Computer, vol. 29, no. 12, 1996, pp. 66–76. 
11. H.J. Boehm and S. Adve, “Foundations of the C++ concurrency memory model,” 29th 

Conference on Programming Language Design and Implementation (PLDI), 2008. 
12. J. Alglave, L. Maranget, and M. Tautschnig, “Herding cats: Modelling, simulation, 

testing, and data mining for weak memory,” ACM Transactions on Programming 
Languages and Systems, vol. 36, no. 2, 2014. 

13. Cortex-A9 MPCore Programmer Advice Notice, Read-after-Read Hazards, ARM, 
2011; 
http://infocenter.arm.com/help/topic/com.arm.doc.uan0004a/UAN0004A_a9_read_rea
d.pdf. 

14. H.J. Boehm et al., P0668R0: Revising the C++ memory model, 2017; www.open-
std.org/jtc1/sc22/wg21/docs/papers/2017/p0668r0.html. 

ABOUT THE AUTHORS 
Caroline Trippel is a PhD candidate in the Computer Science department at Princeton Uni-
versity. Her research focuses on computer architecture, with a particular emphasis on con-
currency and security verification in heterogeneously parallel systems. Trippel has a 
master’s degree in computer science from Princeton University. She is a student member of 
the ACM. Contact her at ctrippel@princeton.edu. 

Yatin A. Manerkar is a PhD candidate in the Computer Science department at Princeton 
University. His research focuses on MCMs and formal verification of their implementation. 
Manerkar has a master’s degree in computer science and engineering from the University of 
Michigan. He is a student member of the ACM. Contact him at manerkar@princeton.edu. 

Daniel Lustig is a senior research scientist at Nvidia. His research focuses on architecting 
efficient and correct memory systems, with a particular focus on MCM design and verifica-
tion. Lustig has a PhD in electrical engineering from Princeton University. He is an ACM 
and IEEE member. Contact him at dlustig@nvidia.com. 

Michael Pellauer is a senior research scientist at Nvidia. His research focuses on computer 
architecture, with emphasis on nonstandard accelerator architectures using spatial program-
ming. Pellauer has a PhD in computer science from the Massachusetts Institute of Technol-
ogy (MIT). Contact him at mpellauer@nvidia.com. 

Margaret Martonosi is the Hugh Trumbull Adams ’35 Professor of Computer Science at 
Princeton University. Her research focuses on computer architecture and mobile systems, 
with a particular emphasis on verification, performance, and power efficiency in heteroge-
neous systems. Martonosi has a PhD in electrical engineering from Stanford University. She 
is a Fellow of IEEE and the ACM. Contact her at mrm@princeton.edu. 

68May/June 2018 www.computer.org/micro


