
Trace Selection for Compiling Large C Application Programs to
Microcode

Pohua P. Chang
Wen-mei W. Hwu

Coordinated Science Laboratory
1101 W. Springfield Ave.

University of Illinois
Urbana, IL 61801

ABSTRACT

Microcode optimization techniques such as code
scheduling and resource allocation can benefit
significantly by reducing uncertainties in program control
flow. A trace selection algorithm with profiling informa-
tion reduces the uncertainties in program control flow by
identifying sequences of frequently invoked basic blocks
as traces. These traces are treated as sequential codes for
optimization purposes. Optimization based on traces is
especially useful when the code size is large and the con-
trol sttucture is complicated enough to defeat hand optim-
izations. However, most of the experimental results
reported to date are based on small benchmarks with sim-
ple control structures.

For different trace selection algorithms, we report
the distribution of control transfers categorized according
to their potential impact on the microcode optimizations.
The experimental results are based on ten C application
programs which exhibit large code size and complicated
control structure. The measured data for each program is
accumulated across a large number of input files to ensure
the reliability of the result. All experiments are performed
automatically using our IMPACT C compiler which con-
tains integrated profiling and analysis tools.

1. Introduction

Code optimization techniques [l] such as register
allocation, code compaction, variable renaming, common
subexpression elimination, copy propagation, dead code

This research has been supported by the National Science
Fundation (NSF) under Grant MIP-8809478. a donation from
NCR, the National Aeronautics and Space Administration (NASA)
under Contract NASA NAG l-613 in cooperation with the Illinois
Computer laboratory for Aerospace Systems and Software.
(ICLASS), and the University of Illinois Campus Research Board.

removal, constant folding and strength reduction can per-
form significantly better by favoring the important execu-
tion paths while penalizing the unimportant ones. Trace
selection techniques with profiling information identify
the important execution paths in terms of frequently
invoked sequences of basic blocks.

Trace selection was first proposed by Fisher [S] as a
systematic approach to global microcode compaction.
Since then, improvements and implementations of optimi-
zations based on trace selection techniques have been
reported [9, 10, 11. 123. These techniques are useful for
generating efficient code for application programs which
are too large and too complicated to be handoptimized.
However, most of the experimental results reported on
using trace selection to assist optimizing large application
programs have been based on small benchmarks with sim-
ple control structures.

The IMPACT (Illinois Microarchitecture Project
using Advanced Compiler Technology) C compiler [S]
developed at the University of Illinois employs a set of
profiling and analysis tcols to guide the trace selection.
To collect the profile information for a C program, the
compiler automatically inserts function calls into the pro-
gram to update the profile database. The C programs with
probing function calls can then be compiled with standard
C compilers (including IMPACT C compiler) to collect
profile information on various host machines.

To analyze the profile information for a C program,
the compiler automatically associates the profile data with
the program control graph and extracts the necessary
information for trace selection. The compiler has been
stable enough for us to compile large C programs. This
alkws us to observe the performance of trace selection
algorithms on large C application programs over many
runs. For different trace selection algorithms, we report
the distribution of control transfers categorized according

21
‘l-HO2360/88/0000/0021$01.00 0 1988 IEEE

-2-

to their potential impacts on the microcode optimizations.

1.1.. Structure of the Paper

This paper is divided to six sections. Section 2
describes the automatic profiler and compiler interface.
Section 3 provides a brief review and an analysis of the
trace scheduling optimization. Section 4 shows three
trace selection functions. Section 5: outlines the experi-
ment and presents the experimentaI result. In section 6,
we offer some concluding remarks.

2. Weighted Program Control Graph

In this section, we first introduce the notion of
weighted program control graph. Then, we briefly
describe how the automatic profiler and the C compiler
collaborate to construct the weighted program control
graph.

2.1. Program Representation

In our C compiler, a program is represented by a
weighted program control graph. Weighted program con-
trol graph is a directed graph where every node is a basic
block, and every arc is a branch path between two basic
blocks. The weight of a node is the average execution
count of the corresponding basic block for a single run of
the program. The weight of an arc is the average execu-
tion count of the corresponding branch path for a single
run of the program.

For example, given that the program consists of
three basic blocks A, B, and C, where A has an average
execution count of 100, B has an average execution count
of 90, and C has au average execution count of 10 in a
single run. The last instruction of A is a conditional
branch to either B or C depending o:n some branch condi-
tion. The arc A->B has a weight of 90 and the arc A-X
has a weight of 10. Then one can conclude that A is the
only immediate predecessor of B and C, because the sum
of the weights of all incoming arcs = the sum of the
weights of all outgoing arcs = the no& weight.

The arc A->B is said to be an outgoing arc of node
A, and is an incoming arc of node B. From the opposite
perspective, node A is the source and node B is the desti-
nation of the arc A->B. A node may have several incom-
ing and outgoing arcs.

2.2. Control Graph Construction

The IMPACT C compiler applies constant folding,
dead code removal, and jump optimization to the program
control graph to derive a transformed control graph with
fewer and larger basic blocks. Then it inserts additional
code in all basic blocks to collect node and arc weights
dynamically.

Upon completion of a single program run, a profiler
routine is automatically activated to store the profiled
result into a database. The profiler logs the node and arc
weights, and the number of times the program has been
profiled. For each run, the profiler updates the program
profile information according to [W.permanent =
W.permanent*Nl(N+I) + W.single.runl(N+l); N=N+l]
where N is the number of time the program has been
profiled, W.permanent is the accumulated weight, and
W.singk.run is the weight calculated in the last run.

The profiler provides functions which can be called
by the compiler to obtain the profile information. The
compiler reads in the profile information and assigns node
and arc weights of the program control graph.

The resultant weighted control graph is the program
representation used to study trace selection in the next
section.

3. Trace Scheduling

We refer readers who are unfamiliar with trace
scheduling to the original paper by Fisher [5]. Trace
scheduling consists of three major functions : trace selec-
tion, local compaction, and bookkeep. First, the trace
selection function selects the most likely to be executed
program path. Then, local compaction is applied to
schedule the trace. And finally, the bookkeep function
inserts patch code at the split and rejoin points to preserve
correctness. The three functions are described in great
detail in Ellis’s thesis [113.

Trace scheduling permits the patch code created
during the bookkeep phase of a trace to be selected and
compacted as part of later traces. However, we do not
allow the additional basic blocks generated by the book-
keep function, unless they can be absorbed by jump
optimization, to be considered when forming later traces.
This requirement allows us to apply trace selection
independently of the local compaction and bookkeep
functions.

Code motion moves critical instructions on the pro-
gram critical paths up to the earliest point that they can be
executed. The usefulness of the code motion and the cost
of the bookkeeping on the total program execution time
depends on the program structure and also on the underly-
ing microarchitecture. For example, code motion applied
to a section of a program with large fine-grain parallelism
will tend to do well due to the large code movement free-
dom. In a pipelined processor, code motion allows the
execution of multi-cycle operations to overlap with the
issuing and execution of less critical operations when
there is no data dependence. Similarly in a processor
capable of issuing multiple instructions per cycle, code
motion reduces execution time by compacking operations
into fewer instructions.

22

-3-

Trace scheduling guides global code motion by
favoring most frequently executed program paths. There-
fore the goal of the trace selection function is to identify
when forming longer traces are desirable and how all
basic blocks should be partitioned to various traces. It
would be grossly complicated for the trace selection func-
tion to deal with micro-architecture dependent factors
such as degree of hardware parallelism. Disregarding the
hardware limitations, the trace selection function try to
form the longest possible traces, limited only by program
dependent factors.

The question is what program dependent factors
must the trace selection function consider. The program
control flow, local program parallelism, and the code
mobility as determined by data-flow analysis can all be
implemented in the trace selector. The program flow
analysis, either by loop analysis or dynamic profiling,
allows the trace selector to form traces by grouping series
of basic blocks which tend to execute together. The local
program parallelism and code mobility analysis tells the
trace selector when trace expansion should be stopped due
to limited code movement freedom. However, the com-
plexity of the analysis, although required in later phases of
compilation, hinders the development of a clean selection
function. It is best to use only the control flow informa-
tion and to construct the longest traces.

Our IMPACT C compiler allows automatic
profiling and provides accurate execution weights for all
control graph nodes and arcs. The problem now is how to
form traces in such a way that the in-trace transition is
maximized and the off-trace transition is minimized.
Off-trace transitions can be liner partitioned to five dif-
ferent types. Together with in-trace transition, there are a
total of six transisiton types (Tl-T6).

Tl connects the last node of a trace to the
start node of a different trace.

l2 connects the last node of a trace to a
middle node of a trace.

T3 connects a middle node of a trace to the
start node of a trace.

T4 connects two middle nodes.
TS connects two nodes within a trace.
T6 connects the lasr node of a trace to the

start node of the same trace.

Code motion is permited only for T.5 connections.
T2 transition requires bookeeping at the rejoin location.
T3 transition requires bookeeping at the branch location.
T4 connections require bookeeping at both the branch and
the rejoin locations. T2, T3, and T4 thus may execute
longer than the same code without applying trace schedul-
ing. Global code motion is not allowed across Tl and T6
connections, and therefore obtains no speedup over local
code compaction.

Let %a, %b, %c, %d, %e and %f denote the percen-
tage of Tl, T2, T3, T4, T5 and T6 transitions respectively,
in a typical program run. The goal of the trace selector is
to maximize %e and to minimize %b, %c, and %d.

The various percentages allow us to compare dif-
ferent trace selection functions. A trace selection function
is better than others if it generates higher %e and lower
%b, %c, and %d, for a given control graph.

4. Trace Selection

4.1. General Selection Function

In his trace scheduling paper (51, Fisher presented
the following trace selection algorithm with node weights
as the selection criteria. Later, Ellis in his thesis [ill
implemented the same general trace selection algorithm
but use arc weights as the selection criteria.
algorithm trace-selection

mark all nodes unvisited;
while (there are unvisited nodes)
I* select a seed *I
seed = the node with the largest execution

count among all unvisited nodes;
mark seed visited;
I* grow the trace forward *I
current = seed;
loop
s = best-sucessor-of(current);
if (s==O) exit loop;
add s to the trace;
mark s visited;
current = s;

I* grow the trace backward *I
current = seed;
loop
s = bestgredecessor-of{current);
if(s==O) exit loop;
add s to the trace;
mark s visited;
current = s;

I * compaction and bookkeep *I
trace-compaction;
book-keep;

Since we do not consider the additional basic blocks
generated by the book-keep function in the trace selection
process, the trace-compaction and the book-keep func-
tions are not included in the above algorithm.

To ensure that loop headers become the leading
nodes of traces, in growing trace forward and backward,
crossing loop back-edges is prohibited.

23

-4-

4.2. Selection According to Node Weight

Node weight is the execution count of a basic block.
This number can either be estimated statically by loop
analysis [l], or dynamically profiled by an automatic
profiler. In this paper, all weights used in the trace selec-
tion functions are strictly derived from the average pro-
gram profile accumulated over many runs.
best-successor-of(node)

n = Of all immediate successors qf node,
n has the highest execution count;

if (n is visited) return 0;
return n;

bestgredecessor-of(node)
n = Of all immediate predecessors of node,

n has the highest execution count;
if (n is visited) return 0;
return n;

4.3. Selection According to Arc W’eight

Each node (basic block) of the control graph can
have several incoming and outgoing arcs. Each arc
represents a possible branch path connecting two nodes.
Trace scheduling yields some performance gain when the
program flows through an arc within a trace, and suffers
when an off-trace is taken. Hence, arc weight is a better
selection criterian than node weight.
best-successor-of(node)

e = Of all edges leaving no&, e has the
highest execution count {highest probability);

n = the destination of e;
if (n is visited) return 0;
return n;

bestgredecessor-of(node)
e = Of all edges entering node, e has the

highest execution count (highest probability);
n = the source of e;
if (n is visited) return 0;
return n;

4.4. Selection with Minimum Arc Probability Require-
ment

Some nodes have many incoming and outgoing
arcs. If there is not a single arc which dominates all oth-
ers, the performance gain that can be extracted by includ-
ing the most likely to be taken arc by a trace will be
overshadowed by the combined off-trace cost of all other
arcs. In such instances, it is better to stop the trace expan-
sion. To detect such cases, a minimum arc probability
requirement is added to the selection function.

The probability that an outgoing arc Ai will be
taken, given that the program control is already at node Nj
which is the source of Ai, is simply [arc-weight(Ai) /
node-weight(Nj)]. The probability a node Na is reached

24

through an arc Ab is [arc-weight(Ab) /
node-weight(Na)]. In section 5, we measure the perfor-
mance of this selection heuristic with several MIN-PROB
values.
best-successor_afnode)

e = Of all edges leaving no&, e has the
highest execution count (highest probability);

if (probability(e) < = MIN-PROB) return 0;
n = the destination of e;
if (n is visited) return 0;
return n;

bestgredecessor-of(node)
e = Of all edges entering node, e has the

highest execution count (highest probability);
if (probability(e) <= MIN-PROB) return 0;
n = the source of e;
if (n is visited) return 0;
return n;

probability(e)
s = source of e;
d = destination of e;
return min((weight(e)lweight(s)).

(weight(e)lweight(d)));

5. Experiments

5.1. Procedure

The compiler compiles and profiles the benchmark
programs by inserting extra code to record the execution
count of basic blocks and branch paths. The compiled
programs are installed and tested with many inputs. For
each run, the profiler updates the accumulated average
execution count of basic blocks and branch paths for a
typical run of the program. With the profile information,
the compiler constructs the weighted control graph. Then,
trace selection is applied to the weighted control graph,
and the percentage of the six connection types (%a %b
%c %d %e %f) are measured.

5.2. The Benchmark

Ten programs from several application domains are
chosen mainly because of their popularity and substantial
program size. Each of the ten programs is run at least ten
times with realistic inputs. We have also made a special
effort to exercise nearly all program options.

In table 1, the nume column lists the program name,
the line column shows the number of non-empty lines of
C code after preprocessing in each of the benchmarks.
The run column indicates the number of runs under
profiler monitoring.

5.3. Percentage of Transaction Types

We report the percentage of each of the six transi-
tion types executed in a typical run of the benchmark pro-
gram. The loop column in the following tables is the
average number of basic blocks in a executed inner loop.
The truce column is the average number of basic blocks
of all traces executed. Table 2 corresponds to the selec-
tion according to node weight function. Table 3
corresponds to the selection according to arc weight func-
tion. Table 4 to 7 demonstrates the effect of imposing
additional minimum branch probability requirement.

5.4. Discussion of Result

As we have expected, arc weight is a better selec-
tion criterian than node weight. The additional minimum
branch probability requirement furthur reduces the off-
trace cost. As the minimum branch probability require-
ment increases, %b, %c, and %d percentages decline
slightly. However as the minimum requirement rises,
fewer and smaller traces are formed, leading to low per-
centage of in-trace transitions.

In any case, the in-trace transition (%e) is several
times larger than the off-trace transitions (%b, %c, %d).
This essentially tells us that even a small improvement in
in-trace code movement can compensate for much larger
bookkeep cost.

The off-trace transitions (%b, %c, %d) are low,
because benchmark programs have predictable branch
behavior. The profile information shows that, on the aver-
age, the branch direction of more than 90% of all branch
instructions executed can be correctly predicted statically.
Excluding function calls and returns, the average control
flow predictability, including all conditional, uncondi-
tional and multi-way branchs, for the benchmarks is sum-
mer&d in table 8.

I table 8 : Control Flow Predictabilitv. I
CPP .8803 w .9561

espresso .8095 8v .9632
more -9764 mpla .9226
nroff .9770 pit .9553
tbl .9658 WC 9250

A few of the benchmark programs show substantial
inner loop back-edge transitions (%f). Loop unrolling can
be applied to exploit program parallelism across loop
iterations. When N copies of a loop exist, the loop back-
edge of the first (N-l) instances can be transformed into
normal connection between two distinct nodes. These
(N-l) connections between different iterations of the loop
can be selected for trace expansion. Since many iterations
are usually taken before the program control leaves the
loop, the expanded loop structure will form a long trace

-5-

covering the most important path of all unrolled instances
of the loop.

For several benchmarks, the number of function
calls are substantial, more than one function call per every
six basic blocks executed. The program tbl shows the
highest function call frequency, about one function call
for every two basic blocks executed. The profile result
shows that the most frequently executed function in tbl
consists of only one basic block. Similarly in the other
programs, the most frequently executed functions tend to
be small, and can be easily in-line expanded. Since func-
tion in-line expansion not only gives larger traces, but also
eliminates register saving and resming around the func-
tion boundaries, the potential gain seems to be more sub-
stantial than loop unrolling.

Of all traces actually executed, the average trace
size is about three to four basic blocks for various selec-
tion functions. The relatively small size is due to control
uncertainties and small function body. One can expect
some increase in trace length after function in-line expan-
sion.

An inner loop as seen by the IMPACT C compiler
is a trace whose last node branches back to the trace
header. The average size of all inner loops executed is
about three basic blocks. In another word, one can expect
two conditional branchs in inner loops. Therefore, loop
unrolling and software pipelining techniques for large
integer programs must cope with at least two conditional
branchs in inner loops.

5.5. Bookkeeping Cost

Since the percentage of off-trace transition (%b,
%c, %d) is much smaller than m-trace transition (%e),
trace scheduling can tolerate large off-trace cost. In sec-
tion three, we have stated that the new basic blocks gen-
erated by the bookkeep function will not be considered in
forming later traces. The performance penalty of that
decision in terms of execution time is small.

6. Conclusion

Using profiling data in our trace selection algo-
rithm, we have reduced some control uncertainties. Furth-
ermore, our experiments with various trace selection func-
tions have shown that trace scheduling can guide global
code motion effectively with very little off-trace penalty.
The percentage of off-trace transitions (%b, %c, %d) can
be reduced by increasing the minimum branch probability
requirement. For some of the benchmark programs we
have tested, function in-line expansion and loop unrolling
should be exploited to obtain additional performance.

25

Acknowledgements

The authors would like to acknowledge Sadun
A&, Nancy Warter, Thomas Conte, and the other
members of the Computer System Group for their invalu-
able comments and suggestions.

Reference

[l] A.V. Aho, R. Sethi, and J.D. Ulh~an, Compilers: Prin-
ciples, Techniques, and Tools, Addison-Wesley
Publishing Company, 1986.

[2] D.J. Kuck, R.H. Kuhn, D.A. Padu.a, B. Leasure and M.
Wolfe, “Dependence Graphs and Compiler Optimi-
zations,” Proceedings of the 8th ACM Symposium
on Principles of Programming Languages, Jan.,
1981.

[3] Ron Cytron and Jeanne Ferrante, “The Value of
Renaming for Parallelism Detection and Storage
Allocation,” Proceedings of the 1987 International
Conference on Parallel Processing, Aug., 1987.

[4] Mario Tokoro, Eiji Tamura and Takashi Takizuka,
“Optimization of Microprograms,” IEEE Transac-
tions on Computers, vol. c-30, no.7, July, 1981.

[S] Joseph A. Fisher, “Trace Scheduling: A Technique for
Global Microcode Compaction,” IEEE Transactions
on Computers, vol. c-30, no.7, July, 1981.

[6] John Hennessy and Thomas Gross, “Postpass Code
Optimization of Pipeline Con:;traints,” ACM Tran-
sactions on Programming Languages and Systems,
vol. 5, no.3, July, 1983.

[7] B. Su, S. Ding, and J. Xia, “URPR - An Extension of
URCR for Software Pipelining,” Proceedings of the
19th Microprogramming Workshop, New York,
NY, Dec., 1986.

[8] Wen-mei W. Hwu and Pohua F’. Chang, “Exploiting
Parallel Microprocessor Microarchitectures with a
Compiler Code Generator,” The 15th Annual Inter-
national Symposium on Computer Architecture,
Honolulu, Hawaii, May, 1988.

[9] J.L. Linn, “SRDAG Compaction: A Generalization of
Trace Scheduling to Increase the Use of Global
Context Information,” Proceedings of the 16th
Microprogramming Workshop, Downingtown, PA.,
Oct., 1983.

[lo] B. Su, S. Ding, and L. Jin, “An Improvement of
Trace Scheduling for Global Microcode Compac-
tion,” Proceedings of the 17th Microprogramming
Work&p, New Orleans, LA., Nov., 1984.

[ll] J.R. Ellis, Bulldog: A Compiler for VLIW Architec-
tures. The MIT Press, 1985, PhD thesis, Yale, 1984.

6-

[12] Michael A. Howland, Robert A. Mueller and Philip
H. Sweany, “Trace Scheduling Optimization in a
Retargetable Microcode Compiler,” Proceedings of
the 20th International Microprogramming
Workshop, Colorado Springs, Dec., 1987.

26

name

CDD

line

3355

table 1 : Benchmark Set.

run

34

description

GNU C nrenrocessor

ew 3775 10

espresso 10405 18

PifeD 447 10

typeset mathematics for nroff/ditroff

boolean minimization

pattern search

more

mpla

nroff

1644 10 browse through a text file

1134 18 technology independent PLA generator

10263 10 format documents for distktv

pit

tbi

7916 20 format pictures for nroff/ditroff

3403 14 format tables for nroff/ditroff

WC 116 10 word count program

I %a

table 2 : Selection According to Node Weight.

1 %b %c 1 %d 1 %e I %f I lOOD I trace

CPP .1387 .0350 .1054 .0106 .3764 .3339 1.78 1.84

eqn .0416 .1740 -1796 .oooo .563 1 .0419 3.95 2.58

eSDreSS0 .2632 .0813 -1285 .078 1 .294 1 .1547 1.97 1.88

grep .2743 .0984 .1077 .0038 .4379 .0780 3.01 2.17

more .0956 .1366 .1380 .0095 .5964 -0240 4.74 3.83

mpla .1090 .0611 .0848 .1276 .5309 -0866 3.88 2.78

m-off .0246 .0981 JO62 -0120 .7159 Ml4 5.39 3.74

pit .0202 .1009 .1085 .0203 .7104 .0386 2.02 3.57

tbl .0343 .0816 .0909 .0050 .7023 .0859 1.90 2.45

WC .0943 .1093 -1369 .oooo .5734 .0860 6.00 3.25

I %a

table 3 : Selection According to Arc Weight.

1 %b I %c I %d I %e I %f I loon I trace

CPP .1256 .0098 .0804 .0203 .4299 .3339 1.82 1.97

eqn .1969 .0103 .0219 .0215 .73 14 -0181 1.33 3.07

espresso .1490 .0571 .0968 .1862 .4025 -1083 2.10 2.16

grep .1775 .0206 .0289 .0087 .6799 .0845 4.93 3.42
more .2010 .0160 .0213 .0073 .7514 .003 1 2.95 4.41

mpla .1232 .0468 -0737 .1276 .5421 -0865 3.88 2.77

m-off .0506 .0079 .0169 .0184 .8711 .0356 6.66 5.11

pit .0942 .o 147 a411 .0133 .7928 &I39 5.60 3.94

tbl .0649 JO77 -0176 .0153 .8128 .08 14 1.52 2.73

WC .0703 JO38 .0278 ,024 1 .7880 .0860 7.00 5.73

21

CPP
eqn

espresso
grep
more
mpla
muff
pit
tbl
WC

%a
.3582
-2372
.5663
.0198
-2016
.2899
.0585
.1498
.0906
.0703

table 5 : Minimum Branch Probability = 70%.
%b %c %d %e

.OCRO .0146 -0181 .3409

.005 1 .0144 .0082 .7186

.01.45 .0217 .0870 .2017

.0157 .0240 .0002 .6746

.0159 ,021l JO72 -7512

.0087 .023 1 .1270 .4937

.007 1 .0140 .0177 .8670

.0106 .0256 .0102 .769 1

.OO69 .0105 .0134 .7972

.0038 .0278 .024 1 .7880

%f
.2590
.0166
.1089
.0866
SKI31
.0577
.0356
.0349
.08 14
.0860

1WP
1.74
1.31
1.88
4.89
2.99
3.19
6.64
1.85
1.48
7.00

trace
1.58
2.65
1.57
3.24
4.40
2.14
4.97
2.83
2.56
5.73

2x

I %a %b %t %d %e %f bP I trace
CPP 1 &%a .QQ44 .twY .QQ82 ,288 1 .2427 1.61 1 1.43
em I 2827 .oQQ9 m69 m77 I 6866 .0154 1.22 1 236

mO7 .m9 .QQ65 1 .1417 1 ~0831 f 1.34 1 1.20
$002 .0083 .QQQQ .6Q97 .M66 1 4.89 258 1, _ 1 1
ml4 .oQ63 a073 I .6908 I .Qo31 I 295 I 3.34

mph .w3 .oQ81 .1270 1 A270 1 AM13 3.48] 1.81
nmff .1762 m13 .0696 .7295 .Q197 2.63 3.28 _ .im~ 1 1
pit : ,3254.. ml12 JO18 .0054 1 d5491 .0171 1.72 1.98 L
tbl .1265 .*53 Jm3 .0114 j ,768l 1 .QW 1.46 2.42

I WC SY98 I a002 1 .Qoo2 1 .QQoo I ,419-Y I .QQQQ I 0.00 I 1.72 I

29

